Az elektromágneses indukció jelensége
|
|
- Erika Szekeresné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér hatására keletkezhet-e áram: Ha egy tekercs állandó mágneses térben nyugalomban van akkor semmi nem történik. Viszont az árammérő kilendül akkor amikor: a tekercset vagy a mágnest mozgatjuk (egymáshoz képest), illetve forgatjuk. elektromágnes esetén amikor a teret ki- vagy bekapcsoljuk.
2 Mozgási indukció Ha egy vezetőt mágneses térben mozgatunk akkor a benne lévő töltésekre Lorentz-erő hat. Ez az az idegen erő amely a töltések mozgatásáért felelős: Tehát az idegen térerősség: A Neumann-törvény megadja a mozgó vezető A és B pontja között indukálódó elektromotoros erőt amint az a mágneses térben mozog: Ebben a jobbra látható egyszerű esetben, ha a rúd hossza l, az elektromotoros erő:
3 Az áramjárta vezetőre hat az Ampère-erő amit egy húzóerővel kell kompenzálnunk. Mechanikai teljesítményből elektromos teljesítmény a fogyasztón. Legyen h a mozgó rúd és az ellenállás közötti távolság. Ekkor: A mágneses indukciófluxus ebben az egyszerű esetben: Alkalmazás: Lineáris generátor Ha a mágneses térben mozgó vezető végeit összekötjük egy párhuzamos sínpárral egy R ellenálláson keresztül, akkor a körben áram folyik. Az áramerősség: A mágneses indukciófluxus időderiváltja pedig: Faraday és Lenz törvénye: 6. feladat Zárt vezetőhurokban indukált elektromotoros erő egyenlő a hurok által körülfogott mágneses indukciófluxus változási gyorsaságának ellentettjével (másképpen az Ampère-erő segítene!)
4 Alkalmazás: Váltakozó áramú generátor Vezető keret állandó ω szögsebességgel forog egy homogén mágneses térben. Ha kezdetben akkor: A mágneses indukciófluxus az idő függvényében: A Faraday-Lenz törvényt felhasználva: Ha a keret N menetből áll: Az elektromotoros erő maximális értéke: Tehát az indukált elektromotoros erő: 7. feladat
5 A feszültség és áramerősség effektív értéke A váltakozó áram effektív értéke a hőhatás szempontjából egyenértékű stacionárius (egyen-) áramot jelenti. Tehát egy periódusidő alatt a fogyasztón az elektromos munkavégzés megegyezik: Innen R-el egyszerűsítve az effektív áramerősségre: Szinuszosan változó áramra: Tehát az effektív értékekre:
6 Nyugalmi indukció - Kölcsönös indukció Láttuk, hogy a mágneses indukciófluxus változása elektromotoros erőt indukál. A fluxus változhat azáltal, hogy: változik vagy elfordul a felület (mozgási indukció) a mágneses tér változik (nyugalmi indukció) A változtatható ellenállást állítgatva változik az áramerősség és ezáltal a mágneses indukció. Tehát változik a mágneses fluxus. A vasmag biztosítja, hogy ezt szinte teljes mértékben körülfogja a szekunder tekercs. Amíg a fluxus változik addig a szekunder körben áram folyik. A magyarázat most nem a Lorentz-erő, hisz a szekunder kör nem mozog. Az időben változó mágneses tér elektromos teret indukál és ez mozgatja a szekunder körben a töltéseket. Ezt a jelenséget kölcsönös indukciónak is nevezzük. 8. feladat
7 Nyugalmi indukció - Önindukció A kapcsoló segítségével a feszültséget ráadhatjuk a tekercsre. Be- és kikapcsolásnál az áramerősség nem ugrásszerűen változik. A változó áram változó mágneses teret kelt, ami egy változó fluxust okoz. Az indukált feszültség az őt létrehozó hatást próbálja gyengíteni. (Lenz-törvénye) A Faraday-Lenz törvényben az elektromotoros erőt kifejezve az indukált elektromos térerősség zárt görbe mentén vett integráljával: Az elektromos térerősség integrálját a Stokes-tétel segítségével átalakítva felületi integrállá, majd állandó nagyon kicsi felületet véve egy pont körül megkapjuk a lokális alakot: A változó mágneses tér által indukált elektromos térerősség örvényes (nem konzervatív) és forrásmentes, míg a töltések által létrehozott elektromos tér forrásos és örvénymentes.
8 Szolenoid önindukciós együtthatója Múlt előadáson láttuk, hogy hosszú egyenes tekercs esetén a mágneses térerősség és indukció: Az N menetes A keresztmetszetű tekercsre a mágneses indukciófluxus: Tehát a fluxus arányos az őt létrehozó árammal. Az arányossági tényező az önindukciós együttható (L): A tekercsben indukálódott elektromotoros erő: A tekercsben lévő mágneses tér energiája:
9 Kölcsönös indukciós együttható Szorosan csatolt szolenoidok esetén a vasmag miatt a mágneses indukció a két tekercsben ugyanaz, így a fluxusok arányosak a menetszámokkal. A primer körre váltóáramot csatolva: A szekunder tekercs fluxusa az primerben folyó áram miatt: A A A szekunder körben indukálódott elektromotoros erő: Szerepeket megcserélve kapnánk: Látható, hogy ha l 1 = l 2 akkor L 12 = L 21 = M (kölcsönös indukciós együttható).
10 Huroktörvény általánosítása változó áramra A tekercsben indukálódott elektromotoros erő: A tekercs L önindukciós együtthatója egyben a kör önindukciós együtthatója. A kondenzátoron eső feszültség (g 2 görbe): A g = g 1 + g 2 zárt görbe mentén kiintegrálva az elektromos térerősséget (nem nulla, mert az indukált tér örvényes és nem konzervatív): Tehát a huroktörvény általánosított egyenlete soros RLC körre: Valamilyen t időben I(t) áram folyik.
11 Bekapcsolási jelenségek RL körben* A K kapcsolóval a t = 0 időpontban rákapcsoljuk a körre az áramforrást. Az RL körre felírva az általános huroktörvényt: Átrendezve és szétválasztva a változókat: Kiintegráljuk mindkét oldalt t = 0 és egy t idő között, miközben az áramerősség 0-ról I-re nő: Tehát az áramerősség az idő függvényében:
12 Kikapcsolási jelenségek RL körben* A K kapcsolóval a t = 0 időpontban lekapcsoljuk a körről az áramforrást. Az RL körre felírva az általános huroktörvényt: Átrendezve és szétválasztva a változókat: Kiintegráljuk mindkét oldalt t = 0 és egy t idő között, miközben az áramerősség I 0 = ε/r-ről I-re csökken: Tehát az áramerősség az idő függvényében: Az RL kör időállandója τ adja meg, hogy mennyi idő alatt esik az áram e-ad részére.
13 Bekapcsolási jelenségek RC körben* A K kapcsolóval a t = 0 időpontban rákapcsoljuk a körre az áramforrást. Az RC körre felírva az általános huroktörvényt: Átrendezve és szétválasztva a változókat: Kiintegráljuk mindkét oldalt t = 0 és egy t idő között, miközben az töltés 0-ról Q-ra nő: Deriválva az idő szerint: A τ időállandó adja meg, hogy mennyi idő alatt esik a töltő áram e-ad részére.
14 Kikapcsolási jelenségek RC körben* A K kapcsolóval a t = 0 időpontban lekapcsoljuk az áramforrást és kisütjük a kondenzátort. Az RC körre felírva az általános huroktörvényt: Átrendezve és szétválasztva a változókat: Kiintegráljuk mindkét oldalt t = 0 és egy t idő között, miközben az töltés Q 0 = εc-ről Q-ra csökken: Deriválva az idő szerint: A τ időállandó adja meg, hogy mennyi idő alatt esik a kisütő áram e-ad részére. A negatív jel most azért kell, mert a töltés csökken de mi szeretnénk pozitív értékeket.
15 Ideális tekercs szinuszos váltakozó feszültségen* A körre most is az általános huroktörvényt írjuk fel figyelembe véve hogy az elektromotoros erő most függ az időtől: Átrendezve és az idő szerint kiintegrálva kapjuk: A feszültség és az áramerősség maximális értékeinek hányadosára bevezetjük az induktív ellenállást: Az áramerősség továbbá π/2 fáziskésésben van a tekercsre kapcsolt feszültséghez képest.
16 Kondenzátor szinuszos váltakozó feszültségen* A kondenzátor a váltakozó feszültség hatására periodikusan feltöltődik és kisül. Az általános hurokegyenletet felírva: Átrendezve és az idő szerint deriválva kapjuk az áramerősséget: A feszültség és az áramerősség maximális értékeinek hányadosára bevezetjük a kapacitív ellenállást: Az áramerősség továbbá π/2 fázissal siet a kondenzátorra kapcsolt feszültséghez képest:
17 Soros RLC kör gerjesztett elektromágneses rezgései Felírva az általános huroktörvényt: Ez szerkezetét tekintve ugyanolyan mint a gerjesztett rezgés mozgásegyenlete: A megfelelő mennyiségek: x Q ; m L (tehetetlenség) ; b R (csillapítás); D 1/C (rúgóállandó) rezonancia körfrekvencia: Lederiváljuk az eredeti egyenletet, hogy az áramerősségre kapjunk egy inhomogén másodrendű differenciálegyenletet:
18 Soros RLC kör gerjesztett elektromágneses rezgései Soros RLC körben az áramerősségre kaptuk: Ennek megoldása az áramforrással megegyező frekvenciájú, de egy kezdőfázissal eltolt váltóáram: A feszültség és az áramerősség maximális értékeinek hányadosa az impedancia (Z). Ezzel felírva az Ohm-törvény általános alakja váltóáramú körökre: Az impedancia az áramkör váltóáramú ellenállása, amely tartalmazza a kapacitív és induktív ellenállások járulékát is. Az impedancia és a fáziskésés kiszámítását segíti a különféle ellenállásokat a komplex síkban ábrázoló fázisábra. Ennek alapján: és vagy
19 Feszültség az áramköri elemeken Grafikusan a feszültségeket úgy kaphatjuk meg, hogy az impedancia vektorábrán minden ellenállás-jellegű mennyiséget beszorzunk az áramerősséggel. Látható, hogy az Ohmos ellenálláson a feszültség az áramerősséggel fázisban van, de a kondenzátoron π/2-ővel késik, míg a tekercsen π/2 fázissal siet. Az ábra ω szögsebességgel forog az origó körül. Egy időpontban a ténylegesen mérhető feszültség a valós tengelyre vett vetület. Az áramerősségre ugyanez vonatkozik.
20 Rezonancia soros RLC körben A kapacitív és az induktív ellenállások függnek a frekvenciától, ezért az impedancia is frekvenciafüggő: Amikor az impedancia minimális értéket vesz fel az áramerősség a lehető legnagyobb. Rezonancia frekvencia az a frekvencia amelynél az impedancia minimális és (áram)rezonancia lép fel. Látható, hogy ez akkor igaz amikor: Látható, hogy ekkor a kondenzátor és a tekercs éppen kiejtik egymás hatását, tehát az áram fáziskésése nulla lesz, az impedancia pedig egyszerűen az ohmos ellenállással lesz egyenlő:
21 Teljesítmény soros RLC körben Az áramforrás pillanatnyi teljesítménye: Ezt átalakítjuk trigonometrikus összefüggések felhasználásával: Legyenek: és Tehát a pillanatnyi teljesítmény: Az átlagteljesítmény ennek az időátlaga, de az első tag egész periódusokra vett integrálja nulla. A második (konstans) tag időátlaga önmaga: 9. feladat ez rezonancia esetén a legnagyobb
22 A primer kör tekercse egy váltóáramú áramforrásra van kapcsolva: Ennek hatására az áram a primer körben (elhanyagolható ohmos ellenállás): A transzformátor A primer tekercsben a mágneses indukció: Az indukcióvonalak a vasmagban haladnak ezért a menetfluxus nem változik: A szekunder tekercsben az indukálódott feszültség: Tehát: Mivel Feszültség feltranszformálásakor az áram letranszformálódik és fordítva:
23 Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér kelt elektromos teret). Az Ampere-féle gerjesztési törvényt kiegészítette még egy taggal, amit eltolási áramnak nevezett el: Felhasználva az elektromos indukciófluxus definícióját: Az eltolási áram nem jár töltések áramlásával. Az első tagban I i a vezetési áram. Példa: Kondenzátor feltöltésénél (ill. kisülésénél) a lemezek közötti változó elektromos tér is ugyanúgy mágneses teret hoz létre mint a lemezekhez futó zsinórokban folyó vezetési áram a vezetékek körül. A Stokes-tétel és az áramsűrűség felhasználásával egy időben állandó kicsiny F felületre: (lokális vagy differenciális alak)
24 A Maxwell-egyenletek rendszere A XIX. század legnagyobb hatású eredménye, az elektromágneses hullámok elméleti alapja. 1. Az Ampère-Maxwell-féle gerjesztési törvény: integrális alak differenciális alak A mozgó töltések és az időben változó elektromos tér örvényes mágneses teret keltenek. 2. Faraday-Lenz féle indukciós törvény: integrális alak differenciális alak Az időben változó mágneses tér örvényes elektromos teret kelt.
25 3. Az elektromos Gauss-törvény: A Maxwell-egyenletek rendszere integrális alak differenciális alak Az elektromos tér forrásai a töltések. 4. A mágneses Gauss-törvény: integrális alak differenciális alak A mágneses térnek nincsenek forrásai (nincsenek monopólusok). Szükség van még az alábbi egyenletekre: Lineáris anyagegyenletek: és (csak közelítő jellegűek) Differenciális Ohm-törvény:
26 Elektromágneses hullámegyenlet Valódi töltésektől és vezetési áramoktól mentes szigetelőkre felírva az első két egyenletet: Az anyagegyenletek továbbá: Ezekből levezethetők a homogén hullámegyenletek a térerősségekre. Bármely komponensre (i lehet x, y, vagy z): Összehasonlítva az általános homogén hullámegyenlettel egy tetszőleges u mennyiségre: : Laplace operátor Az általános alakban v a hullám terjedési sebessége, tehát az elektromágneses hullámra: amely vákuum esetén: (a fény sebessége vákuumban)
27 Monokromatikus síkhullám megoldás Az előbbi homogén hullámegyenleteknek egyik lehetséges megoldásai a síkhullámok. Ha a hullám forrásától elegendően messze vagyunk akkor mindig tekinthetjük a hullámokat síkhullámoknak. Egy z irányba terjedő síkhullámra: elektromos tér f: frekvencia λ: hullámhossz z körfrekvencia körhullámszám Ez a megoldás monokromatikus mivel csak egyféle frekvenciát tartalmaz. mágneses tér Az elektromágneses hullámban E és H merőleges, továbbá E, H, és v jobbsodrású rendszert alkot (itt x, y, z). Az elektromágneses hullám transzverzális.
28 Tetszőleges irányba terjedő síkhullám Általánosan a hullám terjedési irányát a hullámszám vektor iránya jelöli ki (a sebesség iránya is ugyanaz). Az elektromos és mágneses térerősség a hely és idő függvényében: Térben az azonos fázisban lévő pontok halmaza egymást hullámhossznyi távolságonként követő síkok. Általában az elektromágneses hullám sok különböző frekvenciájú hullámból tevődik össze. A különböző frekvenciák arányát mutatja a ez elektromágneses hullám spektruma (színképe). Ha a hullámhossz nagyjából 400 és 800 nm között van, akkor a hullám a látható tartományba esik.
29 A teljes elektromágneses színkép Az elektromágneses hullám hullámhossza (frekvenciája, vagy energiája) több nagyságrenden keresztül változhat. A látható tartomány (fény) ennek csak nagyon kis része:
30 Energiaterjedés az elektromágneses hullámban Az elektromágneses hullám terjedése során energia is áramlik. Az energiaterjedés iránya ugyanaz mint a hullám iránya, és a pillanatnyi energia-áramsűrűséget egy pontban a Poynting-vektor adja meg: Egy tetszőleges felületen átáramló pillanatnyi teljesítmény tehát: Az elektromágneses tér energiasűrűsége: Mivel az energia oda-vissza alakul elektromos és mágneses energia között: Tehát a Poynting-vektor kifejezhető csak az egyik térerősséggel: a hullám terjedési irányába mutató egységvektor Belátható továbbá, hogy: S = w EM ve
31 A hullám intenzitása Az energia-áramsűrűség nagyságának időátlagát a hullám intenzitásának nevezzük: időátlag Ha két egyenlő frekvenciájú, egymásra nem merőleges síkokban rezgő hullám a tér egy részében úgy találkozik, hogy a fázisuk közötti különbség huzamosabb ideig állandó akkor abban a térrészben állóhullám jön létre. Az ilyen hullámokat koherens hullámoknak nevezzük, a megfigyelhető jelenség pedig az interferencia. Legyen a két hullám: Az eredő térerősség négyzetének várható értékére levezethető: E 2 = E E E 10 E 20 cos k 2 k 1 r δ Tehát az intenzitásban megjelenik egy interferencia tag: I 12 = 2 ε μ E 10 E 20 cos k 2 k 1 r δ = 2 ε μ E 10 E 20 cos φ 10. feladat : fáziskülönbség
32 Hullám viselkedése két közeg határfelületén Különböző közeghez érve a hullám egy része mindig visszaverődik (ugyanolyan szögben), a másik része pedig megtörve behatol a másik közegbe. Bizonyos esetekben a hullám teljes mértékben visszaverődik. A beesési és a törési szögekre érvényes a Snellius-Descartes törvény: beesési merőleges n 1 és n 2 az 1-es és 2-es közeg abszolút törésmutatója (vákuumra vonatkoztatott), míg n 21 a 2-es közeg 1-esre vonatkoztatott törésmutatója. A törésmutató a közegekben mért fénysebességek hányadosának reciprokja: A teljes visszaverődés határszöge: Csak akkor lehetséges ha n 21 < 1, vagyis n 2 < n 1 (sűrűbb közegből ritkább felé haladva)
33 Diszperzió Egy közeg törésmutatója általában függ a rajta áthaladó fény hullámhosszától. Emiatt a különböző színű fénysugarak különböző mértékben törnek meg. Az ilyen eszközökkel a fehér fény színeire bontható:
Az elektromágneses indukció jelensége
Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Az elektromágneses indukció jelensége
Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér
Huroktörvény általánosítása változó áramra
Huroktörvény általánosítása változó áramra A tekercsben indukálódott elektromotoros erő: A tekercs L önindukciós együtthatója egyben a kör önindukciós együtthatója. A kondenzátoron eső feszültség (g 2
Fizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /
FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok
Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35
Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.
izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás
1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés
Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.
FIZIKA II. Az áram és a mágneses tér kapcsolata
Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:
-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása
Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30
Elektromágneses hullámegyenlet
Elektromágneses hullámegyenlet Valódi töltésektől és vezetési áramoktól mentes szigetelőkre felírva az első két egyenletet: Az anyagegyenletek továbbá: Ezekből levezethetők a homogén hullámegyenletek a
= Φ B(t = t) Φ B (t = 0) t
4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
Az elektromágneses tér energiája
Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége
EGYFÁZISÚ VÁLTAKOZÓ ÁRAM
VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású
Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok
Elektrotechnika 11/C Villamos áramkör A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.
Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:
3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója
Elektrotechnika. Ballagi Áron
Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:
Pótlap nem használható!
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3
Elektromágneses hullámok
Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses
Ha valahol a mágneses tér változik, akkor ott a tér bizonyos pontjai között elektromos potenciálkülönbség jön létre, ami például egy zárt vezető
Ha valahol a mágneses tér változik, akkor ott a tér bizonyos pontjai között elektromos potenciálkülönbség jön létre, ami például egy zárt vezető hurokban elektromos áramot hoz létre. Mozgási indukció A
Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás
Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt
Fizika 1 Elektrodinamika belépő kérdések
Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció
7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?
1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás
Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?
Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.
Elektrotechnika 9. évfolyam
Elektrotechnika 9. évfolyam Villamos áramkörök A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.
1. tétel: A harmonikus rezgőmozgás
1. tétel: A harmonikus rezgőmozgás 1. A harmonikus rezgőmozgás kinematikája 1.a. A kitérés-idő függvény származtatása egyenletes körmozgásból 1.b. A sebesség-idő függvény származtatása egyenletes körmozgásból
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális
MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK
MÁGNESES NDUKCÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK Mágneses indukció Mozgási indukció v B Vezetőt elmozdítunk mágneses térben B-re merőlegesen, akkor a vezetőben áram keletkezik, melynek iránya az őt létrehozó
Vezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
TARTALOMJEGYZÉK. Előszó 9
TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha
A mechanikai alaptörvények ismerete
A mechanikai alaptörvények ismerete Az oldalszám hivatkozások a Hudson-Nelson Útban a modern fizikához c. könyv megfelelő szakaszaira vonatkoznak. A Feladatgyűjtemény a Mérnöki fizika tárgy honlapjára
Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált
Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Időben állandó mágneses mező jellemzése
Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű
A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.
11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség
Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 1. (b) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 Síkhullámok végtelen kiterjedésű, szilárd izotróp közegekben (1) longitudinális hullám transzverzális
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
Elektromágnesség tesztek
Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS
Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja
Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben
azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
A teljes elektromágneses spektrum
A teljes elektromágneses spektrum Fizika 11. Rezgések és hullámok 2019. március 9. Fizika 11. (Rezgések és hullámok) A teljes elektromágneses spektrum 2019. március 9. 1 / 18 Tartalomjegyzék 1 A Maxwell-egyenletek
3.1. ábra ábra
3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség
1. fejezet. Gyakorlat C-41
1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,
A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra
A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával
Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett
11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét
ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként
TARTALOMJEGYZÉK EL SZÓ... 13
TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Számítási feladatok a 6. fejezethez
Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz
FIZIKA II. Az áram és a mágneses tér kapcsolata
Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér: forrásos
Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat
Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos
Számítási feladatok megoldással a 6. fejezethez
Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5
Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.
Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2
1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2
Geometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
Elektromos áramerősség
Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.
Rezgések és hullámok
Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő
71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:
Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati
Áram mágneses hatása, elektromágnes, váltakozó áram előállítása, transzformálása
Áram mágneses hatása, elektromágnes, váltakozó áram előállítása, transzformálása A feltekercselt vezeték; tekercs, amelyben áram folyik, rúdmágnesként viselkedik, olyan mágneses tere lesz, mint a rúdmágnesnek.
Az aszinkron és a szinkron gépek külső mágnesének vasmagja, -amelyik általában az
8 FORGÓMEZŐS GÉPEK. Az aszinkron és a szinkron géek külső mágnesének vasmagja, -amelyik általában az állórész,- hengergyűrű alakú. A D átmérőjű belső felületén tengelyirányban hornyokat mélyítenek, és
László István, Fizika A2 (Budapest, 2013) Előadás
László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben
Optika fejezet felosztása
Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
Fizika 2 - Gyakorló feladatok
2015. június 19. ε o =8.85 10-12 AsV -1 m -1 μ o =4π10-7 VsA -1 m -1 e=1,6 10-19 C m e =9,11 10-31 kg m p =1,67 10-27 kg h=6,63 10-34 Js 1. Egy R sugarú gömbben -ρ állandó töltéssűrűség van. a. Határozza
A soros RC-kör. t, szög [rad]
A soros C-kör Az átmeneti jelenségek vizsgálatakor soros C-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
Mágnesesség. Mágneses tér gerjesztése: Az Ampère-féle gerjesztési törvény. j g I A. A zárt görbe által körülfogott áramok előjelezése
Mágnesesség... Mágneses tér gerjesztése: Az Ampère-féle gerjesztési törvény... A mágneses indukció-vektor bevezetése... A Lorentz-erő... 3 orgatónyomaték homogén mágneses mezőben nyugvó sík áramhurokra...
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
Fizika A2 Alapkérdések
Fizika A2 Alapkérdések Az elektromágnesség elméletében a vektorok és skalárok (számok) megkülönböztetése nagyon fontos. A következ szövegben a vektorokat a kézírásban is jól használható nyíllal jelöljük
A TételWiki wikiből. A Maxwell-egyenletek
1 / 6 A TételWiki wikiből 1 A Maxwell-egyenletek 2 Indukció 2.1 Nyugalmiindukció 2.2 Mozgásiindukció 2.3 Kölcsönös- és önindukció 3 Az elektromágneses tér makroszkópikus mennyiségei 3.1 Energia 3.2 Impulzus
Mágneses mező jellemzése
pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző
A soros RL-kör. t, szög [rad] áram feszültség. 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen
A soros L-kör Mint ismeretes, a tekercsen az áram 90 fokot késik a hez képest, ahogyan az az 1. ábrán látható. A valós terhelésen a és az áramerősség azonos fázisú. Lényegében viszonyítás kérdése, de lássuk
Kvázistacionárius jelenségek
0-0 Kvázistacionárius jelenségek Majdnem időben állandó = lassú (periodikus) változás. Időben lassan változó mezők: eltolási áram elhanyagolható a konduktív áram mellet Maxwell-egyenletek: rot E = 1 c
11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám
Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan
Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték
Négypólusok helyettesítő kapcsolásai
Transzformátorok Magyar találmány: Bláthy Ottó Titusz (1860-1939), Déry Miksa (1854-1938), Zipernovszky Károly (1853-1942), Ganz Villamossági Gyár, 1885. Felépítés, működés Transzformátor: négypólus. Működési
Teljesítm. ltség. U max
1 tmény a váltakozó áramú körben A váltakozv ltakozó feszülts ltség Áttekinthetően szemlélteti a feszültség pillanatnyi értékét a forgóvektoros ábrázolás, mely szerint a forgó vektor y-irányú vetülete
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Komplex természettudományi tagozat. Fizika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Komplex természettudományi tagozat Fizika 11. osztály II. rész: Az időben állandó mágneses mező Készítette: Balázs Ádám Budapest, 2018. 2. Tartalomjegyzék
Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A
Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
Fizika A2 Alapkérdések
Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
Orvosi Fizika 14. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet
Orvosi Fizika 14. Elektromosságtan és mágnességtan az életfolyamatokban 3.. Bari Ferenc egyetemi tanár SZTE ÁOK-TTK Orvosi Fizikai és Orvosi nformatikai ntézet Szeged, 2011. december 19. 2. DEMO eredménye
Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan
Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték
4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!
Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg
Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/
Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a
ELEKTROMOSSÁG ÉS MÁGNESESSÉG
ELEKTROMOSSÁG ÉS MÁGNESESSÉG A) változat Név:... osztály:... 1. Milyen töltésű a proton? 2. Egészítsd ki a következő mondatot! Az azonos elektromos töltések... egymást. 3. A PVC-rudat megdörzsöltük egy
Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket)
Mágnesség Schay G. Magnesia Μαγνησία Itt találtak már az ókorban mágneses köveket (valószínű villámok áramának a tere mágnesezi fel őket) maghemit Köbös Fe 2 O 3 magnetit Fe 2 +Fe 3 +2O 4 mágnesvasérc
Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:
3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő
MÁGNESES TÉR, INDUKCIÓ
Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses
2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések
. REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós
4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)
4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes
ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA
ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri