7. Hőszivattyú-rendszerek



Hasonló dokumentumok
Hőszivattyú hőszivattyú kérdései

Előadó: Varga Péter Varga Péter

2009/2010. Mérnöktanár

NILAN JVP HŐSZIVATTYÚ. (földhő/víz) M E G Ú J U L Ó H Ő E L L Á T Á S K Ö R N Y E Z E T T E R H E L É S N É L K Ü L

Hőszivattyús rendszerek

Válassza a PZP hőszivattyút, a célravezető megoldást az energia megtakarításához!

Buderus: A kombináció szabadsága

Belső energia, hőmennyiség, munka Hőtan főtételei

HŐSZIVATTYÚK AEROGOR ECO INVERTER

10. Napelemes (fotoelektromos) rendszerek

Földgáztüzelésű abszorpciós hőszivattyú. Gas HP 35A

Geotermikus energia. Előadás menete:

Gépészmérnök. Budapest

TELJESÍTMÈNY, AMIKOR ARRA A LEGNAGYOBB SZÜKSÉG VAN

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

AERMEC hőszivattyú az előremutató fűtési alternatíva

Tudományos és Művészeti Diákköri Konferencia 2010

TAKARÍTSA MEG EGY NYARALÁS ÁRÁT MINDEN ÉVBEN!

Energiatakarékos épületgépész rendszer megoldások

Két szóból kihoztuk a legjobbat... Altherma hibrid

A különböző megoldások rövid ismertetése: Egyedi hőszivattyús fűtési módok

Dióhéjban a hőszivattyúkról

Megoldás házaink fűtésére és hűtésére egy rendszerrel

Fűtési célú hőszivattyúk. Hőszivattyúk Buderus Fűtéstechnika Kft. Minden jog fenntartva!

Hőtan I. főtétele tesztek

Napkollektoros pályázat Beleznai Nándor Wagner Solar Hungária Kft. ügyvezető igazgató

Tüzelőanyagok fejlődése

Thermoversus Kft. Telefon: 06 20/ Bp. Kelemen László u. 3 V E R S U S

LOGITEX MÁRKÁJÚ HIBRID VÍZMELEGÍTŐK

CDP 75/125/165 légcsatornázható légszárítók

Geotermikus Energiahasznosítás. Készítette: Pajor Zsófia

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

ÜDVÖZÖLJÜK A NAPKOLLEKTOR BEMUTATÓN!

A természetes. ombináció. DAikin Altherma

Estia 5-ös sorozat EGY RENDSZER MINDEN ALKALMAZÁSHOZ. Főbb jellemzők. További adatok. Energiatakarékos

Hőszivattyús rendszerek. HKVSZ, Keszthely november 4.

Hőszivattyúk - kompresszor technológiák Január 25. Lurdy Ház

Halmazállapot-változások

óra C

PLASSON ELEKTROFÚZIÓS GEOTERMIKUS RENDSZER vigyázunk a környezetünkre

Geotermikus hőszivattyú Geopro GT. Élvezze a Föld melegét Geopro-val

A geotermikus energiában rejlő potenciál használhatóságának kérdései. II. Észak-Alföldi Önkormányzati Energia Nap

LWZ 304 Trend A ++ A + A B C D E F G A B C D E F G. 3,20 kw. 4 kw. 59 db /2013

Megújuló energiák alkalmazása Herz készülékekkel

A kondenzációs kazántechnika kiaknázási lehetőségei társasházaknál

AZ EURÓPAI UNIÓ TANÁCSA. Brüsszel, január 15. (OR. en) 5303/14 ENV 29

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

KLÍMABERENDEZÉSRÔL. Minden, amit tudni kell a. Minden, amit tudni kell sorozat. PEUGEOT TANÁCSADÁS A LENGÉSCSILLAPÍTÓK

1. HMV előállítása átfolyó rendszerben

Kaméleonok hőháztartása. Hősugárzás. A fizikában három különböző hőszállítási módot különböztetünk meg: Hővezetés, hőátadás és a hősugárzás.

NAGYÍTÓ ALATT A FÛTÉS FELÚJÍTÁS. A j övõ komfortos technikája

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

MI AZ A HÕSZIVATTYÚ?

Energiahatékony fűtési és vízmelegítési rendszerek az ErP jegyében. Misinkó Sándor megújuló energia üzletágvezető HAJDU Hajdúsági Ipari Zrt.

BETON KOMFORTOS ÉS MEGFIZETHETŐ OTTHONOK. Dr. Gável Viktória kutatómérnök, CEMKUT Kft. Beton Fesztivál 2017, Budapest

Akadémia Összetett fűtési rendszerek II. Napkollektorok és hőszivattyúk

WPF 10 M 55 C 35 C A ++ A + A B C D E F G A + A kw kw. 51 db

Talajhő-víz és levegő-víz hőszivattyúk Gazdaságos fűtés a föld vagy a levegő energiájával

Fujitsu Waterstage levegős hőszivattyú

Hőszivattyú. A hőszivattyú működési elve

BETON A fenntartható építés alapja. Hatékony energiagazdálkodás

I. Nagy Épületek és Társasházak Szakmai Nap Energiahatékony megoldások ESCO

WPC 05 cool A ++ A + A B C D E F G A B C D E F G. 7 kw. 6 kw. 43 db /2013

Passzív házak. Ni-How Kft Veszprém Rozmaring u.1/1. Tel.:

6. Vízmelegítés napenergiával

GEOTERMIKUS ENERGIA. Hőszivattyú

GREE VERSATI II ECONOMY PLUS

Hagyományos és modern energiaforrások

Vállalati szintű energia audit. dr. Balikó Sándor energiagazdálkodási szakértő

A magyar geotermikus energia szektor hozzájárulása a hazai fűtés-hűtési szektor fejlődéséhez, legjobb hazai gyakorlatok

BIO-SZIL Természetvédelmi és Környezetgazdálkodási Kht Panyola, Mezővég u. 31.

Háztartási kiserőművek. Háztartási kiserőművek

Alternatív ENERGIAFORRÁSOK Új Termék +10% hatásfok -25% ár NAPKOLLEKTOR

Éjjel-nappal, télen-nyáron

Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző

Fűtő / HMV hőszivattyúk

NAPKOLLEKTOR VAGY NAPELEM?

Készítette: Csernóczki Zsuzsa Témavezető: Zsemle Ferenc Konzulensek: Tóth László, Dr. Lenkey László

Légáram utófűtéshez kör keresztmetszetű légcsa tornákban

Magyarország kereskedelmi áruházai

WPL 23 E 55 C 35 C A ++ A + A B C D E F G A + A kw kw. 58 db. 65 db

Jelen projekt célja Karácsond Község egyes közintézményeinek energetikai célú korszerűsítése.

NILAN VP 18 M2. Központi szellőztető és hőközpont integrált szűrőkkel

Major Ferenc részlegvezető ACIS Benzinkúttechnika kft.

Levegő-víz. hőszivattyú

Levegő-víz inverteres hőszivattyú

Energetikai Szakkollégium Egyesület

Geotermikus távhő projekt modellek. Lipták Péter

Beszerelési javaslat

Az alternatív energiák fizikai alapjai. Horváth Ákos ELTE Atomfizikai Tanszék

MÉRÉSI JEGYZŐKÖNYV. A mérési jegyzőkönyvet javító oktató tölti ki! Kondenzációs melegvízkazám Tanév/félév Tantárgy Képzés

1. tudáskártya. Mi az energia? Mindnyájunknak szüksége van energiára! EnergiaOtthon

A GEOTERMIKUS ENERGIA

CDP 35/45/65 falra szerelhetõ légszárítók

TestLine - Fizika hőjelenségek Minta feladatsor

PannErgy Nyrt. NEGYEDÉVES TERMELÉSI JELENTÉS II. negyedévének időszaka július 15.

Geotermikus hőszivattyú túlfűtő funkcióval Geopro SH. Élvezze a Föld melegét Geopro-val

Átírás:

7. Hőszivattyú-rendszerek Bevezető gondolat A fosszilis tüzelőanyagok árával folyamatosan növekvő energiaszámlák közepette a hőszivattyúk egyre vonzóbb lehetőséggé válnak. Alapvetően megújuló energiát használnak, csökkentik a fűtés környezeti hatásait és mivel hűtésre is használhatóak nyáron is alkalmasak a belső hőmérséklet szabályozására, azaz a légkondicionálás energiaszámláját is csökkenthetik. Időtartam 3 óra Évszak Bármikor Hely Osztályterem Szükséges anyagok Jegyzetfüzet, toll Tantárgyak Fizika, Technika, Földrajz, Társadalomismeret (vagy Osztályfőnöki óra) Cél Hétköznapi példák és jelenségek segítségével megismertetni a tanulókkal a hőszivattyút, bemutatni annak előnyeit-hátrányait Módszerek Megfigyelés, megbeszélés: kiselőadás Bevezetés A nyári hónapok során a Föld felmelegszik, majd gyenge hővezető képessége illetve nagy tömege révén képes e meleget a tél folyamán is tárolni. A hőszivattyú olyan rendszer, amely alkalmas az ilyen alacsony hőmérsékleten tárolt hő kivonására a levegőből, a földből vagy a vízből és arra, hogy összpontosítsa azt és így hasznos, légtérfűtésre és vízmelegítésre alkalmas meleget nyújtson. A folyamathoz ugyan elektromos energiát kell felhasználni, a fűtőteljesítmény azonban akár négyszerese is lehet a bevitt energiának. Hőszivattyúk a nyár folyamán a belső terek hűtésére is alkalmasak. E folyamat során a magasabb hőmérsékletű levegőt kivonják az épületből és visszasugározzák a földbe vagy a légkörbe. Így ugyanazt a rendszert használhatjuk a lakóterek fűtésére, hűtésére sőt még vízmelegítésre is. Az első hőszivattyúrendszert 1862-ben állították üzembe, hogy hőt nyerjen ki egy osztrák tóból, így a technológia mára kiforrottnak tekinthető. 7.1 feladat Hőátvitel a hétköznapokban Megjegyzések tanárok számára: Háttér: E feladat során azt vizsgáljuk, milyen képességgel rendelkeznek az egyes közegek a hőszivattyúban hasznosítható alacsony hőmérsékleten tárolt hő továbbítására. Cél: A nap által melegített levegő, föld és víz eltérő hőelnyelő, tároló és hőleadó képességének megismertetése. Segédanyagok: papír, toll. Kulcsszavak: a nap által fűtött források, anyagok közötti hőátvitel. Készségek: Csoportmunka, megfigyelés, vita, értelmezés és elemzés. Tantárgy: fizika. Korosztály: 8-10 év. Időigény: 10 perc. Érdekesség A hűtőszekrény ugyanúgy működik, mint a hőszivattyú. A hűtőszekrénybe helyezett ételek és italok hőjét (az ételek melegebbek, mint a hűtőszekrény belseje) a berendezés továbbítja az egység hűtőközegének. A hűtőanyagot ezután összenyomják majd kitágítják, hogy megemeljék a hőmérsékletét; majd e magas hőmérsékletű hőt a hűtőszekrény hátán eltávolítják. Ezért marad a hűtőszekrény belseje hideg, miközben a háta felmelegszik. KITH handbook for schools v4.3 d 30.10.06 1

7.1 Feladatlap Hőátvitel a hétköznapokban Saját tapasztalatotokból biztos tudtok mondani olyan eseteket, amikor észrevettétek, hogy bizonyos közegek (a levegő, a talaj vagy a víz) lassabban hűlnek ki mint mások, vagy gyorsabban melegszenek fel. 1. Soroljatok fel ilyeneket! Pl. nyári estéken jól esik egy balatoni fürdőzés, hiszen a víz nagy tömege miatt eltárolja a napközben felvett meleget, és este lassabban hűl ki. Emiatt melegebb ilyenkor a Balaton, mint a levegő, amely este gyorsan lehűl. 2. Mondjatok olyan természetföldrajzi (éghajlati) jelenséget, amit bizonyos közegek eltérő hőháztartása idéz elő! 3. Nevezzetek meg olyan háztartási eszközt, amely a hőszivattyú elvén működik! KITH handbook for schools v4.3 d 30.10.06 2

Műszaki-technikai információk A hőszivattyú főbb elemei: Kollektornak nevezzük azt a csőrendszert, mely a benne keringő levegő vagy folyadék által felveszi az általunk hőkinyerésre felhasználni kívánt közeg hőjét. A csőrendszer hossza a forrás hőmérsékletétől, hőkapacitásától és a kollektorfolyadékba történő hőátvitel arányától kell függjön. A csőrendszer a rendelkezésre álló hely alapján vízszintesen vagy függőlegesen is beszerelhető. Amennyiben a hőforrás kinti levegő, úgy az közvetlenül átfújható a párologtató hőcserélő egyik oldalán keresztül; ha a forrás a talaj, a hő a kollektorcsőben áramló folyadékba vezethető (ez a folyadék lehet sós víz vagy a hűtőfolyadék); ha pedig a forrás egy folyó, tó vagy tenger vize, az magában a kollektorcsőben is keringethető, vagy pedig hője a kollektorcsőben keringő folyadéknak adható át. Tipikus talajfeltételek és tipikus családi házak esetén a kollektorcső hossza talajhőszivattyúk esetén 30 m (3 kw hőteljesítmény) és 100 m (10 kw) között mozog. A kollektorcsövet vagy vízszintes árokba fektetik, vagy függőlegesen, egy különlegesen fúrt lyukban helyezik el. Az utóbbihoz (kőzet)fúróberendezésre van szükség, míg a vízszintes árok kertet vagy szabad területet igényel. A vízszintes ároknak megfelelő mélységűnek kell lennie, hogy a talajhőmérsékletet ne befolyásolja a külső levegő hőmérséklete. Közép-Európában 0,9 m is elég, míg Észak- Európában 1,2 méteres vagy akár 1,5 m-es mélységre is szükség lehet. A hűtőközeg egy olyan anyag, amely szobahőmérsékleten gáznemű, és csak nulla fok alatt, például -5; -10 C-on válik folyékonnyá. A hőszivattyú renszer két hőcserélőből (lásd az ábrán: kondenzátor és elpárologtató), egy kompresszorból és egy fojtó (expanziós) szelepből áll. Ezeket csővezetékek kötik össze, melyekben a hűtőközeg kering. A fojtószelep által lecsökkentett nyomású, hideg folyadék a elpárologtató hőcserélőbe jut. Az elpárologtatóban a kollektorból felvett hő hatására a hűtőközeg forrni kezd, vagyis elpárolog, ezáltal hőt von el a környezettől. A már gáz halmazállapotú hűtőközeget a kompresszor ismét összenyomja, és nagy nyomáson cseppfolyósítja vagyis kondenzálja, a hűtőközeg a halmazállapot változáskor jellemző hőt ad le a környezetnek, vagyis a kondenzátor oldalt melegíti. A ténylegesen megfizetendő energia a kompresszor működtetéséhez szükséges elektromos energia lesz. Miután a hűtőközeg elhagyta a párologtatót, azt a kompresszor összenyomja, és folyadékká alakítja át. Az összenyomás által a közeg hőmérséklete növekszik, mert a folyadékok hőmérséklete a növekvő nyomással emelkedik. A hűtőfolyadék ezt követően áthalad egy hőcserélőn, amelyben a hűtőfolyadék hőjét az elosztórendszer fűtőközegére továbbítják. Amennyiben ez az anyag levegő, akkor az közvetlenül a lakótérben forgatható egy légvezető rendszer segítségével, ha ez víz, akkor a meleg vizet a megszokott módon, fűtőtesteken keresztül oszthatjuk el, vagy tartályban tárolhatjuk a tisztálkodást szolgáló melegvíz céljára. Miután elhagyta a kondenzátort, a lehűtött hűtőfolyadék nyomását lecsökkentjük, így újból gázzá alakul és ezzel újból elkezdődik a ciklus. A talajhőszivattyúk esetében adott a nyári ingyenes hűtés lehetősége, amelyhez nincs szükség a kompresszor működtetésére sem. Ebben az esetben a szobából kivont hő áthalad a kondenzátoron, és a hűtőanyagon keresztül a párologtatóba jut, hogy ezt a hőt átadhassa a kollektorcsövet körülvevő területnek (ahonnan a téli hónapok során a hőt vonták ki), s így a belső tereket hűtsék KITH handbook for schools v4.3 d 30.10.06 3

7.1. ábra: Hőszivattyú rendszer felépítése Forrás: http://www.cva.hu/index.php?vanlap=4 Mivel a hőszivattyúval előállított meleg víz hőmérséklete alacsonyabb lesz, mint a fosszilis tüzelőanyaggal működő kazánok esetében, nem árt javítani a lakóhely szigetelésszintjét, hogy a fűtőtestek mérete azonos maradhasson. A legmagasabb hatékonyságot az alacsony hőmérsékleten működő fűtési rendszerek, például meleg levegő befúvás vagy padlófűtés esetén kapjuk (25-35 ºC). Alacsonyabb hatékonysággal működnek a melegvizes, radiátoros rendszerek, mivel a bennük keringő víz hőmérséklete magasabb (45-55 ºC). KITH handbook for schools v4.3 d 30.10.06 4

7.2 Feladat Milyen energiát és hogyan lehet hasznosítani hőszivattyúval? Megjegyzések tanárok számára Hazánkban a hőszivattyúrendszerek igen nagy potenciállal rendelkeznek. Ahol a hálózati gáz hozzáférhetetlen vagy elektromosságot használnak közvetlen villanyfűtésre, minden kazáncsere idején érdemes megfontolni a hőszivattyúk üzembe helyezését. A magas színvonalú szigeteléssel rendelkező új épületek esetén a hőszivattyú valószínűleg már kezdettől fogva költséghatékony lehet, mivel ezen épületek hővesztesége igen alacsony. Háttér: A hőszivattyú működési elve és az általa kínált lehetőségek sokak számára nem egyértelműek. A működés pontos megismerése elengedhetetlen a későbbi tudatos használathoz. Erre megfelelő módszer a tanulói kiselőadás lehet. A felkészüléshez szükséges anyagok összegyűjtéséhez fontos a tanár útmutatása. (Ezen kézikönyv anyagai valamint az interneten elérhető anyagok.) A feladat befejezéseként fontos az előnyök és hátrányok közös megbeszélése is. A hőszivattyúk előnyei: Az elektromosság és az alacsony hőmérsékleten tárolt hő számos forrásból elérhető. A rendszerek az egy szoba fűtésére méretezettektől a lakások vagy társasházak fűtésére tervezettekig minden méretben rendelkezésre állnak. Néhány rendszer visszafordítható, azaz fűtésre és hűtésre egyaránt alkalmas. A hőszivattyút működtető elektromosság megújuló energiaforrásokból is származhat. Terjedőben vannak a nulla vagy nagyon alacsony környezeti hatású természetes hűtőközegek. A rendszer magas összhatásfokú, ezért alacsony a fenntartási költsége. egy lakás teljes fűtési szükségletét a hőszivattyú jellemzően az átlagos energiafelhasználás 25-30%-ából fedezi. Amennyiben hőszivattyúval fűtjük a lakásunkat, lényegesen kisebb környezeti hatást okozunk, mintha fosszilis energiahordozókat használnánk fel. A hőszivattyú működtetése közvetlenül nem jár üvegházhatású gázok kibocsátásával, és nem kell a fosszilis üzemanyagokat messziről szállítani. A hátrányok: Talajhőkollektor esetén nagy területre van szükség. Léghőkollektorok esetében a hatékonyság a kinti hőmérséklet csökkenésével esik. Viszonylag magas beruházási költségek. A hűtőközeget a rendszer használatának befejezése után vissza kell nyerni. Egy másik potenciális szennyezést a talajhőkollektor okozhat, a gyűjtőcső megrongálódása vagy szivárgása esetén ugyanis a sós vizes oldat beszivároghat a talajvízbe Közvetett módon az a kis mennyiségű elektromos áram, melyet a hőszivattyú felhasznál, hozzájárul üvegházhatású gázok kibocsátásához, ha pl. az áramot földgáz- vagy széntüzelésű erőművekben állították elő. Cél: Megmutatni, milyen energiát és hogyan lehet hasznosítani hőszivattyúval. Segédanyagok: képek, ábrák Kulcsszavak: hőszivattyú, megújuló energiaforrások. Készségek: adatgyűjtés, elemzés, információkezelés és kiselőadás. Tantárgyak: Fizika vagy technika Korosztály: 12-14 év. Időigény: otthoni munka -2 óra;tanórán 25 perc. KITH handbook for schools v4.3 d 30.10.06 5

10.2 Feladatlap Milyen energiát és hogyan lehet hasznosítani hőszivattyúval? A hőszivattyúk működése A kiselőadás alapján foglaljátok össze azt, amit a hőszivattyúkról megtudtatok! Feladatok: 1. Rendszerezzétek ismereteiteket! 2. Csoportokban készítsetek plakátokat, amelyek a hőszivattyú üzemelésének módját ismertetik! 3. Tanárotok segítségével foglaljátok össze a hőszivattyú alkalmazásának lehetséges előnyeit és hátrányait! Ezeket is jelenítsétek meg a plakátokon! KITH handbook for schools v4.3 d 30.10.06 6

Számoljunk! 7.3 Feladat Milyen hőt hasznosít a hőszivattyú? Megjegyzések tanárok számára Háttér: Amíg közvetlen a talajfelszínen a talaj hőmérséklete az évszakok szerint változik, kb. 15 méter mélységben a hőmérséklet stabilizálódik, és általában 9 C környékén állapodik meg. (ld. például barlangok állandó hőmérséklete) A lenti ábra alapján kb. 2 méter mélységben a hőmérséklet nagyjából 6 C - 12 C között változik. A talajhőmérséklet éves vázlatos hőmérséklet-diagrammja A körülvevő levegő hőmérséklete ugyanakkor a nap- és évszakok szerint változik, és egy hideg napon jóval fagypont alá is süllyedhet, ami azt jelenti, hogy a hőforrás (talaj) és a fűtendő épületben elérni kívánt hőmérséklet közötti különbség sokkal nagyobb lehet, azaz a rendszer hatékonysága csökken. Ezért az aranyszabály értelmében úgy kell méretezni a hőszivattyút, hogy a szükséges hőmennyiség körülbelül 90 százalékát termelje meg, az igazán hideg hónapokban pedig kiegészítő hőforrást, például elektromos fűtőtestet vagy fatüzelésű kandallót használjunk. Cél: A talaj felszínének és mélyebb rétegeinek eltérő hőmérsékletének bemutatása. Segédanyagok: feladatlap, toll. Kulcsszavak: felszíni és talajhőmérséklet Készségek: Értelmezés és elemzés, megbeszélés Tantárgy: földrajz Korosztály: 10-12 év. Időigény: 15 perc. KITH handbook for schools v4.3 d 30.10.06 7

7.3 Feladatlap Milyen hőt hasznosít a hőszivattyú? Az alábbi ábra segítségével töltsétek ki a táblázatot, majd eredményeiteket beszéljétek meg tanárotokkal! Mélység Felszínen 2,5 m mélyen 5 m mélyen 10 m mélyen 15 m mélyen A talaj hőmérséklete az adott mélységben, C -ban januárban Áprilisban júliusban októberben Nevezzetek meg a természetben olyan helyszínt, ahol a legegyszerűbben tapasztalhatjátok ezt a jelenséget! KITH handbook for schools v4.3 d 30.10.06 8