3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás Önálló projektek - 2015. február 6. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék 1
Követelmények 2 kis házi feladat (kötelező) vizsga önálló projektek megajánlott jegy: szakirodalom feldolgozása programfejlesztés rövid szeminárium (10-15 perc) 2
Input: egy ponthalmaz és ennek Delaunay háromszögelése Feladat: a háromszögelés finomítása különböző kényszerek figyelembevételével - lerögzített élek, legkisebb szög, leghosszabb él-hossz előírása - alapján Szemináriumi előadás és prototípus implementáció 3
Voronoi diagramok, közép tengely diagramok, (MAT - medial-axis-transform) Input: konvex vagy konkáv poligon Output: MAT diagram Interaktív tesztprogram létrehozása Szeminárium és demó 4
Progresszív hálók rövid szeminárium és prototípus implementáció Input: mesh Output: animált progresszív háromszögháló Az animáció megállítható, valamint tovább- és visszaléptethető az egyszerűsítés módszerei: (i) nézőpont szerint (ii) síklapúság szerint (iii) háromszögméret szerint 5
Input: egy tetszőleges háromszögháló Output: egy izotropikus háromszögháló, amely az inputot közelíti Szemináriumi előadás és prototípus implementáció 6
Subdivision surfaces - 3D-s interaktív grafikus tesztprogram Input adatok: általános topológiájú poliéder módszer: a) Doo-Sabin, b) Catmull-Clark, c) Középosztásos kontroll poliéder - osztási mélység (m1) felület megjelenítés - osztási mélység (m2 >> m1) az aktuális kontroll poliéder csúcsait interaktívan módosítani lehet megjelenítés: kontroll poliéder, felület (shading, + opcionálisan görbületi térképek) Szemináriumi előadás és prototípus implementáció 7
N-oldalú felület generálás (n=5,6) szemináriumi előadás és prototípus implementáció határgörbék - Bézier görbék keresztderiváltak - Bézier-szerű kontrollpontok 3D-s háromszögháló előállítása kontrollpontok módosítása 8
Két Bézier felület G1 (érintősík alapú) összekapcsolása a) azonos fokszámú négyoldalú felületek b) azonos fokszámú háromoldalú felületek szemináriumi előadás és prototípus implementáció Két Bézier felület folytonos összekapcsolása Kontrollpontok mozgatása, 3D-s háromszögháló előállítása Kontrollpontok módosítása az egyik oldalon változtatja a kontrollpontokat a másik oldalon a G1 megkötés miatt!! 9
T-splines - tesztprogram szemináriumi előadás és prototípus implementáció szakirodalom elolvasása kiindulás - teljes B-spline kontroll háló operációk: kontrollpontok ritkítása új T-spline kontrollháló előállítás kontrollpontok editálása felületek megjelenítése 10
Felület-felület metszés Input: 1. két Bézier felület (két kontrollpont rács - file-ban) 2. görbekövetési paraméterek (pl. lépéshossz, tolerancia) Output: a két felület metszésgörbéje (csak nyitott görbék, széltől-szélig) Szeminárium és demó 11
Lekerekítő felületek generálása Input: 1. két Bézier felület (két kontrollpont rács - file-ban), és egy poligon, amely a metszésgörbét közelíti, valamint egy lekerekítési sugár érték Output: egy közelítő lekerekítő felület létrehozása az adott sugárral, Bézier formában Szeminárium és demó 12
Beosztás 1. szeminárium 2. szeminárium Ápr. 24. Péntek Ápr. 27. Hétfő Máj. 4. Hétfő Máj. 8. Péntek Máj. 11. Hétfő 13