Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó Emlékeztető Tobit modell sarokmegoldás Cenzorált modell maximált értékek Csonkolt modell x értékei nem megfigyeltek bizonyos intervallumon Heckman modell: nem véletlen minta Nem véletlen minta okozói Mintavétel módszere Válaszmegtagadások Panel adatok: lemorzsolódás Járulékos szelekció: y nem megfigyelhető egy másik kimeneti változó miatt Pl.: bérregresszió csak azokra becsülhető, akik munkaerőpiacon vannak OLS szelektív minta esetén OLS konzisztens az alábbi esetekben: Exogén szelekció: szelekció csak a megfigyelt exogén magyarázó változóktól függ Pl. végzettség, életkor befolyásolja béreket, ugyanezek a tényezők befolyásolják munkaerőpiaci státuszt Véletlen szelekció Szelekció exogén változóktól és azoktól független véletlen tényezőtől függ Pl. bérregresszió, meg nem figyelt tényező: IQ OLS nem konzisztens pl. csonkolt minta esetén Szelekciós modell Példa: bérregresszió munkaerőpiaci részvétel y = xβ + u, E(u x) = 0 Szelekciós egyenlet: s = 1[zγ + v >= 0], E(v z) = 0 s=1, ha y megfigyelt Feltevések: x részhalmaza z-nek, u független z-től
E( y z, v) = xβ + E( u z, v) E( y z, v) = xβ + ρv E( y z, s = 1) = xβ + ρλ( zγ ) λ(.) :inverz Mills hányados Ha ρ = 0 : OLS konzisztens Szelekciós modell, folyt. Feltevés: u, v együttes eloszlása normális Heckman modell (Heckit módszer) Probit modell becslése: s függő változó, z magyarázó változó. Inverz Mills hányados becslése. Szelektált modell becslése: y függő változó, x és becsült λ magyarázó változók Szelekciós torzítás tesztelése: H 0 : ρ = 0 Heckman modell, megjegyzések 2 lépcsős becslés: szokásos standard hibák nem érvényesek 2 lépcsős becslés alternatívája: ML becslés 1 lépcsőben x szigorú részhalmaza legyen z-nek Kell legalább egy változó, ami befolyásolja szelekciót, de nem a lényegi kimeneti változót (y-t)! Gyakorló feladatok W 17.7: egyetemre beiratkozás magyarázó tényezőinek vizsgálata, adatok: egyetemre felvettek W 17.4: bérregresszió becslése, Heckman modell becslése EViews segítségével Acs, Z. J. et al. (1994) R&D spillovers and recipient firm size. The Review of Economics and Statistics. Kérdésfeltevés Kis cégek innovációs képességének vizsgálata Bizonyos piacokon kis cégek innovatívabbak miért? Honnan ered az innovációs képesség?
I = CRD β1 * UR β2 * (UR*GC) β3 * e Modell Megfigyelési egység: termék állami szinten (USA) I: innovatív output CRD: magán R&D kiadás UR: egyetemi R&D kiadás GC: egyetemi és ipari kutatólaboratóriumok egybeesésének indexe Adatok I: innovációk száma 1982-ben 5 technológiai kategória, 29 állam (145 megfigyelés) Becslés Tobit modell: 0 megfigyelés több technológia iparág párban
Eredmények elemzése Pozitív együtthatók várakozásnak megfelelően Kisvállalatok: Innováció rugalmassága R&D kiadásokra kisebb Egyetemi kutatások jelentősége nagyobb Kutatólaboratóriumok földrajzi elhelyezkedése fontosabb Probléma: erős pozitív korreláció log(crd) és log(ur) között Muraközy B., Halpern L. (2009) Innovation, Productivity and Exports: the Case of Hungary. KTI Műhelytanulmány. A tanulmány célja Innováció mennyiben befolyásolja a vállalatok teljesítményét? Innováció és exportálás összefüggése Magyarországi adatok Multinacionális vállalatok szerepe Adatok Forrás: Közösségi Innovációs Felmérés + mérlegadatok Szelekciós probléma: csak akkor van megfigyelés innovációra vonatkozó változókról, ha innovatív output vagy R&D pozitív Innováció indikátorai: Dummy: folytonos R&D aktivitás elmúlt 3 évben R&D intenzitás: R&D kiadás / alkalmazottak száma Dummy változók: folyamat innováció, termékinnováció Új termékek értékesítési hányada
Modell 4 lépcső: Van-e R&D beruházás R&D mértéke Tudás termelési függvénye: R&D innováció Innováció termelékenység 1 + 2: Heckman modell 2. lépcső: vállalat mérete kihagyva magyarázó változók közül 3. lépcső: probit modellek (innováció bináris indikátoraira) Becslési eredmények 1. és 2. lépcső
Becslési eredmények 3. lépcső, marginális hatás az átlagban R&D 5-7%-os hatása: Nyugat-Európában jellemzően nagyobb Becslési eredmények, 4. lépcső
Megjegyzések Labour productivity: log értékesítés / alkalmazottak száma TFP: log output log alkalmazottak száma log tőkeállomány 1. és 4. specifikáció: multikollinearitás Innovatív vállalatok 20-30%-kal termelékenyebbek, mint nem innovatívak: nagy hatás Innováció hatása exportra Megjegyzések Táblázatban szereplő értékek: marginális hatások a mintaátlagban Exportőr: dummy változó Probit modell Export intenzitás: export / értékesítés Tobit modell Innováció hatásának dekompozíciója: Új piacokra exportálás Exportált termékek száma nem nő Exportálás intenzitására nincs szignifikáns hatás Tulajdonosi struktúra befolyása Külföldi tulajdon definíciója: min. 10% tulajdoni hányad külföldi Külföldi tulajdonlás: R&D valószínűségét nem befolyásolja De: R&D intenzitására pozitív hatás Innovációra és termelékenységre pozitív hatás