Kézikönyv a hőszivattyúval hasznosított megújuló energiáról



Hasonló dokumentumok
Hőszivattyús rendszerek. HKVSZ, Keszthely november 4.

2009/2010. Mérnöktanár

Hőszivattyúk alkalmazása Magyarországon, innovatív példák

Hőszivattyús rendszerek

Tóth István gépészmérnök, közgazdász. Levegı-víz hıszivattyúk

Hőszivattyúk. Hőszivattyúk csoportosítása hőforrás szerint. Talaj

Kombinált napkollektoros, napelemes, hőszivattyús rendszerek. Beleznai Nándor Wagner Solar Hungária Kft. ügyvezető igazgató

A geotermikus energiában rejlő potenciál használhatóságának kérdései. II. Észak-Alföldi Önkormányzati Energia Nap

Készítette: Csernóczki Zsuzsa Témavezető: Zsemle Ferenc Konzulensek: Tóth László, Dr. Lenkey László

A magyar geotermikus energia szektor hozzájárulása a hazai fűtés-hűtési szektor fejlődéséhez, legjobb hazai gyakorlatok

Energiatakarékos épületgépész rendszer megoldások

Dióhéjban a hőszivattyúkról

TÖRÖK IMRE :21 Épületgépészeti Tagozat

EGY VÍZSZINTES TALAJKOLLEKTOROS HŐSZIVATTYÚS RENDSZER TERVEZÉSE IRODALMI ÉS MONITORING ADATOK FELHASZNÁLÁSÁVAL

Fűtő / HMV hőszivattyúk

I. Nagy Épületek és Társasházak Szakmai Nap Energiahatékony megoldások ESCO

Két szóból kihoztuk a legjobbat... Altherma hibrid

Energiakulcs A gondolatoktól a megszületésig. Előadó: Kardos Ferenc

Sekély geotermikus energiahasznosítás: Kutatási eredmények és üzemeltetési tapasztalatok

HŐSZIVATTYÚK AEROGOR ECO INVERTER

A Nemzeti Épületenergetikai Stratégia Bemutatása Megújulók szerepe az épületenergetikában

Távhőszolgáltatás és fogyasztóközeli megújuló energiaforrások

Energiahatékony gépészeti rendszerek

ENERGIA- MEGTAKARÍTÁS

VRV rendszerek alkalmazása VRV III referenciák

A geotermikus hőtartalom maximális hasznosításának lehetőségei hazai és nemzetközi példák alapján

Vágóhídi tisztított szennyvíz hőhasznosítása. Fodor Zoltán Magyar Épületgépészek Szövetsége Geotermikus Hőszivattyú tagozat elnök

Fókuszban a Bosch hőszivattyúk

SZENNYVÍZ HŐJÉNEK HASZNOSÍTÁSA HŰTÉSI ÉS FŰTÉSI IGÉNY ELLÁTÁSÁRA. 26. Távhő Vándorgyűlés Szeptember 10.


Energia hatékonyság, energiahatékony épületgépészeti rendszerek

5kW, 6kW, 8kW, 10kW, 14kW, 16kW modell. Levegő-víz hőszivattyú. Kiválasztás, funkciók. 1 Fujitsugeneral Ltd ATW Dimensioning

HATÁSFOKOK. Elhanyagoljuk a sugárzási veszteséget és a tökéletlen égést és a további lehetséges veszteségeket.

HOGYAN TOVÁBB? TÁVHŐELLÁTÁS GÁZMOTORRAL, ÉS DECENTRALIZÁLT HŐSZIVATTYÚPROGRAMMAL

BETON A fenntartható építés alapja. Hatékony energiagazdálkodás

Működési elv. Hőszivattyú eladási statisztika (Ausztria) Németországi hőszivattyú értékesítés. Hőszivattyú eladási statisztika (Svédország)

NCST és a NAPENERGIA

Hőszivattyús helyzetkép

Tóth István gépészmérnök, közgazdász. levegő-víz hőszivattyúk

Magyar Mérnöki Kamara Szilárdásvány Bányászati Tagozat Geotermikus Szakosztály tevékenysége

Hajdúnánás geotermia projekt lehetőség. Előzetes értékelés Hajdúnánás

Hőszivattyús s rendszerek

LÍRA COMPACT SYSTEM HŐKÖZPONT A JÖVŐ MEGOLDÁSA MÁR MA

Ariston Hybrid 30. Kondenzációs- Hőszivattyú

Energiakulcs - az alacsony energiaigényű épület gépészete. Előadó: Kardos Ferenc

Hőszivattyús rendszerek alkalmazása

Hidraulikai kapcsolások Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék

Levegő-víz inverteres hőszivattyú

A HŐSZIVATTYÚ TELEPÍTÉS GAZDASÁGOSSÁGI KÉRDÉSEI ÉS A SZABÁLYOZÁS HATÁSA AZ ÉVI SPF ÉRTÉK ALAKULÁSÁRA

Földhőszondás primer hőszivattyús rendszerek tervezési és méretezési elvei

Buderus: A kombináció szabadsága

Előadó: Varga Péter Varga Péter

Energiamenedzsment ISO A SURVIVE ENVIRO Nonprofit Kft. környezetmenedzsment rendszerekről szóló tájékoztatója

ÜDVÖZÖLJÜK A NAPKOLLEKTOR BEMUTATÓN!

A megújuló energiaforrások környezeti hatásai

A megújuló energiák épületgépészeti felhasználásának műszaki követelményei, lehetőségei az Új Széchenyi Terv tükrében

Megújuló források integrálása az épületekben Napenergia + hőszivattyú

Fujitsu Waterstage levegős hőszivattyú

A geotermia ágazatai. forrás: Dr. Jobbik Anita

Hőszivattyú hőszivattyú kérdései

Takács Tibor épületgépész

Legújabb műszaki megoldások napkollektoros használati meleg víz termeléshez. Sajti Miklós Ügyvezető

Jelen projekt célja Karácsond Község egyes közintézményeinek energetikai célú korszerűsítése.

III.1. Alkalmazott energiafelhasználások azonosítása

CSOLNOKY FERENC KÓRHÁZ ENERGETIKAI SZAKREFERENSI ÖSSZEFOGLALÓ 2017 ÉVRE

A KÖRNYEZET ÉS ENERGIA OPERATÍV PROGRAM. Széchenyi Programirodák létrehozása, működtetése VOP

A KÖRNYEZET ÉS ENERGIA OPERATÍV PROGRAM. Széchenyi Programirodák létrehozása, működtetése VOP

Földgáztüzelésű abszorpciós hőszivattyú. Gas HP 35A

Tüzelőanyagok fejlődése

A GeoDH projekt célkitűzési és eredményei

A napenergia hasznosítás támogatásának helyzete és fejlesztési tervei Magyarországon Március 16. Rajnai Attila Ügyvezetı igazgató

Hőszivattyús földhőszondák méretezésének aktuális kérdései.

Havasi Patrícia Energia Központ. Szolnok, április 14.

Energetikai szakreferensi jelentés ESZ-HU-2017RAVAK RAVAK Hungary Kft. Energetikai szakreferensi jelentés Budapest, március 21.

A hazai hőszivattyús helyzet, a fejlődési lehetőségek projektpéldákon keresztül. Hazai jogi és gazdasági feltételek.

HÓDOSI JÓZSEF osztályvezető Pécsi Bányakapitányság. Merre tovább Geotermia?

A hőszivattyú műszaki adatai

Fodor Zoltán MÉGSZ Geotermikus Hőszivattyús Tagozat Elnöke

Kapcsolt energia termelés, megújulók és a KÁT a távhőben

Energiatermelés, erőművek, hatékonyság, károsanyag kibocsátás. Dr. Tóth László egyetemi tanár klímatanács elnök

Estia 5-ös sorozat EGY RENDSZER MINDEN ALKALMAZÁSHOZ. Főbb jellemzők. További adatok. Energiatakarékos

A levegő-víz hőszivattyúk használata energetikai szempontból - a Fujitsu Waterstage hőszivattyúk főbb jellemzői

Élő Energia rendezvénysorozat jubileumi (25.) konferenciája. Zöld Zugló Energetikai Program ismertetése

Éves energetikai szakreferensi jelentés

Multifunkciós készülékek alkalmazásának hatása az SPF érték, valamint a beruházási költség alakulására III.

...komfort Neked. naturalhouse. épületgépészet

A megújuló energiahordozók szerepe

Fodor Zoltán MÉGSZ Geotermikus Hőszivattyús Tagozat Elnöke Honlap.

Épületek energiahatékonyság növelésének tapasztalatai. Matuz Géza Okl. gépészmérnök

Miért éppen Apríték? Energetikai önellátás a gyakorlatban

Geotermikus energiahasznosítás - hőszivattyú

LEVEGŐ VÍZ HŐSZIVATTYÚ

Új Széchenyi Terv Zöldgazdaság-fejlesztési Programjához kapcsolódó megújuló energia forrást támogató pályázati lehetőségek az Észak-Alföldi régióban

Az 55/2016. (XII. 21.) NFM rendelet a megújuló energiát termelő berendezések és rendszerek műszaki követelményeiről

Érvek, számítások a hőszivattyús rendszer mellett 1

Napenergia-hasznosítás iparági helyzetkép

PannErgy Nyrt. NEGYEDÉVES TERMELÉSI JELENTÉS II. negyedévének időszaka július 15.

kiaknázási lehetőségei This project is implemented through the CENTRAL EUROPE Programme co-financed by the ERDF.

A napkollektoros hőtermelés jelenlegi helyzete és lehetőségei Magyarországon

2018. ÉVES SZAKREFERENS JELENTÉS. A Beton Viacolor Térkő Zrt. Készítette: Group Energy kft

Átírás:

Kézikönyv a hőszivattyúval hasznosított megújuló energiáról EUROPEAN REGIONAL DEVELOPMENT FUND

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND Kézikönyv a hőszivattyúval hasznosított megújuló energiáról 2012 Nemzeti Környezetvédelmi és Energia Központ Nonprofit Kft. a Magyar Hőszivattyú Szövetség közreműködésével Kézikönyv a hőszivattyúval hasznosított megújuló energiáról 1

TARTALOMJEGYZÉK BEVEZETÉS...3 1 MEGÚJULÓ ENERGIA FELHASZNÁLÁSA AZ EURÓPAI UNIÓBAN ÉS MAGYARORSZÁGON...3 2 MI A HŐSZIVATTYÚ...4 3 HATÉKONYSÁG...7 4 PRIMER HŐFORRÁSOK...8 5 SZEKUNDER HŐLEADÓK...11 6 RENDSZERSZEMLÉLET...12 7 GAZDASÁGOSSÁG...13 GAZDASÁGOSSÁGI SZÁMÍTÁS MÓDSZERE...14 MEGTÉRÜLÉSI IDŐ SZÁMÍTÁSÁNAK MÓDSZERE...14 KÖRNYEZETVÉDELMI SZEREP, CO 2 MEGTAKARÍTÁS...16 8 HŐSZIVATTYÚ MONITORING...18 9 PROJEKTPÉLDÁK...18 MINTA ÉRTÉKŰ HAZAI GYAKORLATOK...18 VÍZKUTAS HŐSZIVATTYÚS RENDSZER...18 TALAJSZONDÁS HŐSZIVATTYÚS RENDSZER... 20 LEVEGŐS HŐSZIVATTYÚS RENDSZER...21 MINTA ÉRTÉKŰ NEMZETKÖZI GYAKORLATOK... 22 IRODALOMJEGYZÉK...24 BEVEZETÉS Az elmúlt XX. század, különösen a második fele a fosszilis energiaforrások térnyerésének az időszaka volt. Ez a relatív energiabőség óriási technikai fejlődést és jólétet illetve kényelmet hozott, különösen a fejlett ipari országok lakosságának számára. Életünket eddig folyamatosan növekvő villamos energia, gázenergia és közlekedési célú energiafogyasztás jellemezte, ami viszont globális környezeti és társadalmi problémák kialakulásához vezetett. Az üvegházhatású gázok kibocsátás-csökkentése és ezzel együtt a klímaváltozás hatásainak mérséklése az emberiség legsürgetőbb feladata lett. Ahhoz, hogy teljesíteni tudjuk a hazai, a regionális, illetve a globális klímavédelmi és energiaracionalizálási célokat, segítségünkre lehet a megújuló energiák alkalmazása, és ezen belül a hőszivattyús technológia elterjedése. A Geo.Power stratégiai szintű geotermikus energiafelhasználás alkalmazásának ösztönzése lakó- és ipari épületek energiaracionalizálása során című INTERREG IVC programból megvalósult projekt amely nemzetközi együttműködés egyik végtermékeként a Tisztelt Olvasó most e kézikönyvet a kezében tartja célja az alacsony entalpiájú geotermikus alapú hőszivattyús rendszerek támogatása a projekt során definiált minta értékű külföldi és belföldi példák/gyakorlatok elterjesztésén keresztül. A Kézikönyv a hőszivattyúval hasznosított megújuló energiáról című kiadvány célja egy rövid kitekintést adni a megújuló energiaforrások hasznosításáról az Európai Unióban és Magyarországon, valamint egy átfogó képet rajzolni a hűtés-fűtés szektorhoz kapcsolódó hőszivattyú alkalmazásokról a működési elmélet és a gyakorlati tapasztalatok bemutatásával. 1 MEGÚJULÓ ENERGIA FELHASZNÁLÁSA AZ EURÓPAI UNIÓ- BAN ÉS MAGYARORSZÁGON Az Európai Unió (EU) tagjaként a megalkotott közös joganyagok és hosszú távú stratégiai célkitűzések számos feladatot fogalmaznak meg és rónak Magyarországra ezen a területen. Az EU energia és klímacsomagjának nyomán megszületett uniós Megújuló Energia Útiterv 2020-ra 20 százalékos megújuló energiaforrás részarányt, ezen belül a közlekedés vonatkozásában 10 százalékot, továbbá 20 százalékos energiahatékonyság-növelést, és az üvegházhatású gázok (ÜHG) kibocsátásának (az 1990-es szinthez képest) 20 százalékra való mérséklését tűzte ki. A megújuló energiaforrások jövőben tervezett hasznosítása, valamint az uniós célok elérése tette szükségessé Magyarország Megújuló Energia Hasznosítási Cselekvési Tervének 1 megalkotását. Az Európai Parlament és Tanács RED 2 irányelve Ma- 1 Magyarország Megújuló Energia Hasznosítási Cselekvési Tervével összefüggő egyes feladatokról szóló 1002/2011. (I. 14.) Korm. határozat 2 Az Európai Parlament és a Tanács 2009. április 23-i, a megújuló energiaforrásból előállított energia támogatásáról, valamint a 2001/77/EK és a 2003/30/EK irányelv módosításáról és azt követő hatályon kívül helyezéséről szóló 2009/28/EK irányelv 2 Kézikönyv a hőszivattyúval hasznosított megújuló energiáról Kézikönyv a hőszivattyúval hasznosított megújuló energiáról 3

gyarország számára 2020-ra jogilag kötelező módon - minimum 13 százalékban határozta meg a megújuló energiaforrásból előállított energia bruttó végső energiafogyasztásban képviselt részarányát. Magyarország 2030-ig szóló energiastratégiája 3 a megújuló és az alternatív energia arányának növelését az egyik kitörési pontként jelöli meg, mert lehetőséget ad a munkahelyteremtésre, a hazai zöldipar kialakítására, és új területet nyit meg a kutatás-fejlesztés, az innováció számára. Fentiekkel összhangban Magyarország reális célkitűzése, hogy a megújuló energiaforrások a teljes bruttó energiafogyasztás 14,65 százalékát érjék el 2020-ra. 1. ábra: A villamos energia, hűtés-fűtés és a közlekedés szektorokban felhasznált megújuló energiahordozók megoszlása (2010-2020) Az NCsT földhőszivattyús ambícióit a természeti adottságok alapján, a hőpiac meglétével és a többi tagállam előirányzataival való összehasonlításban lehet minősíteni. Magyarország 2010-ben a legkevesebb hőszivattyús teljesítményt üzemeltetők között volt. Az előirányzatok szerint 2020-ra több mint hússzoros növekedés várható. Hazánk geotermikus potenciálja közismerten magas. Az Európai Geotermikus Energia Tanács (EGEC) szakemberei szerint a Pannon-medence nevű geológiai egység magas hőmérsékletű medence és kiemelkedő geotermikus potenciállal rendelkezik az európai kontinentális területek között. A hőpiac az ország klimatikus viszonyaitól és a lakosság számától függ. Tekintettel arra, hogy Magyarország éghajlata kontinentális, télen jelentős fűtési, nyáron jelentős hűtési igény lép fel. nyabb hőfokszintről egy magasabb hőfokszintre emeli fűtési üzemben. A hőforrása lehet a külső levegő, egy folyó vagy tó vize, kutak vizének vagy a talajnak a hőtartalma, vagy ipari hulladékhő. Elvi alapja a termodinamika második főtétele, amely szerint nem lehetséges olyan körfolyamat, amelynek eredménye az, hogy egy hőtartályból felvett hővel egyenlő értékű munkavégzés történjék. Azaz a hidegebb test nem adhat át hőt a melegebb testnek, a hő magától csak a melegebb helyről a hidegebbre mehet át: így egyenlítődnek ki a hőmérséklet-különbségek (Holics, 1998). A hőszivattyúk elméleti működését a Carnot-féle termodinamikai körfolyamat írja le. Holics (1998) szerint a reverzibilis Carnot-körfolyamat hatásfoka független a folyamatot végző munkaközeg anyagi minőségétől és a gép szerkezetétől, csak a hőátadó test T1 és a hőátvevő test T2 hőmérsékletének függvénye. A hőszivattyú egy hőforrásból hasznos energiát állít elő. Ehhez szükség van egy alacsony forráspontú munkaközegre, amely az elpárologtatóban (elgőzölögtetőben) hőt vesz fel kis hőmérséklet és alacsony nyomás mellett, így gázzá alakul. Ez a gáz a szívóvezetékbe kerül, onnan pedig az elektromos energiával üzemelő kompresszor segítségével egy nyomóvezetékbe, ahol a munkaközeg nyomása és ez által hőmérséklete is megnő. A kondenzátorban ismét cseppfolyósodik, és így leadja a hasznos hőt. Ez azon a fizikai törvényen alapul, hogy a párolgás hőt von el, a kondenzáció pedig hőkibocsátással jár. A folyadék állapotú munkaközeg ezután egy expanziós (adagoló) szeleppel elválasztott folyadék- illetve befúvó vezetékbe kerül, ami ismét az elpárologtatóhoz juttatja, csökkentve ezzel ismét a munkaközeg nyomását és hőmérsékletét. Így visszajut a ciklus elejére. Az alábbi ábrán bemutatott elemek alkotják a hőszivattyús rendszert. 2 MI A HŐSZIVATTYÚ A hőszivattyú a környezeti hő hasznosítására szolgáló berendezés, amely a hűtőgép elvén alapul. Télen fűtésre, nyáron hűtésre, légkondicionálásra használható, illetve használati melegvíz előállítására is alkalmas. A működtetésére felhasznált energiát nem közvetlenül alakítja hővé, hanem a külső energia segítségével a hőt az alacso- 2. ábra: A hőszivattyú elvi felépítése 3 A Nemzeti Energiastratégiáról szóló 77/2011. (X.14.) OGY határozat 4 Kézikönyv a hőszivattyúval hasznosított megújuló energiáról Kézikönyv a hőszivattyúval hasznosított megújuló energiáról 5

A helyi primer hőnyerési adottságok hatékonysági értékelése szabja meg, hogy melyiket választjuk például a szondás, a vízkutas, a horizontális kollektoros, stb. megoldások közül. Villamos hajtású hőszivattyú Energetikai szempontból akkor tekinthető előnyösnek a hőszivattyús rendszer, ha a jóságfoka magasabb, mint a villamos energia megtermelése és szállítása során adódó hatékonyság. A magyarországi villamosenergia-termelési hálózat adottságait figyelembe véve erőművi hatásfoknak 32,3%-ot és hálózati veszteségként 10%-ot figyelembe véve (energiagazdálkodási statisztikai évkönyv adat; Rajnai szerk., 2006): SPFkrit,en 3,44 Azaz az SPFkrit,en értéknél (Seasonal Performance Factor: éves munkaszám) jobb hatásfokkal működő hőszivattyús rendszerek tekinthetők energetikailag hatékony rendszernek. Földgáztüzeléses abszorpciós hőszivattyú A hőmérséklet-emelést végezheti kompresszor (kompresszoros hőszivattyúk) vagy termokémiai reakció (abszorpciós hőszivattyúk). Jelezzük, hogy a gázmotoros hajtásnak a villamos hajtáshoz képest az a lényeges előnye, hogy a gázmotor hulladékhője helyben jelenik meg, és hasznosíthatjuk is a hőszivattyú hőtermelésével összekapcsolva. (Büki, 2007.) A direkt földgázos tüzelésű abszorpciós hőszivattyú hűtő vagy fűtő módban tud működni, egyes típusai egyidejűleg tudnak fűteni és hűteni. Alkalmazásával jelentősen csökkenthető a primer energiafelhasználás és a CO 2 -kibocsátás. A leggazdaságosabb földgáztüzeléses hőtermelő rendszer energetikai besorolása A+++. Jól kiegészíthető kazános rendszerekkel, így csökkentve a beruházás költségeit, de nem jelentősen rontva a hatékonyságot. Ezen berendezések az ammóniát, mint hűtőközeget, a vizet, mint abszorbert használják a 2. ábrán látható módon kialakított abszorpciós körfolyamatban. Gázellátás Kiforraló Kondenzátor Hőszolgáltatás pl. fűtés, HMV A földgáztüzeléses abszorpciós hőszivattyúban a körfolyamatot nem mechanikus (kompresszor) energia tartja működésben, hanem bevitt hőenergia, amit gáztüzeléssel biztosítunk. Tehát a földgáztüzeléses hőszivattyú egy kazán és egy abszorpciós hűtőgép kombinációja, amely egyaránt alkalmas fűtésre és hűtésre is, egyes típusai akár egyidejűleg is. A fentiek értelmében a földgázos abszorpciós hőszivattyúkban nincsen kompresszor, és viszonylag kevés mozgó alkatrészt tartalmaz, ezért kevesebb rezgéssel és zajjal jár a működése. A relatív egyszerű felépítése miatt karbantartási igénye szerénynek mondható. Megállapítható, hogy a földgáz, mint energiahordozó fontos szerepet játszhat a fenntartható fejlődés során a megújuló energiaforrásokkal kiegészítve. A földgáztüzelésű abszorpciós hőszivattyú ennek a folyamatnak lehet egyik fontos készüléke, amely alternatív választási lehetőséget biztosít azon beruházóknak, akik a környezettudatos döntéselőkészítési folyamatban a villamos hőszivattyúk mellett más hatékony hőszivattyús megoldást keresnek. Ezen berendezések hozzájárulhatnak a primerenergia-hatékonyság növeléséhez, az üvegházhatást okozó gázok kibocsátásának csökkentéséhez, és jó példáját mutatja, hogy miként lehet a megújuló energiaforrásokat földgáz alapon hasznosítani (Lukácsi, 2009). 3 HATÉKONYSÁG A hőszivattyús rendszer elektromos energiát, áramot igényel, ez jelenti a munkát. Hatékonyságát az ún. teljesítmény tényezővel (COP=Coefficient of performance) jellemezhetjük, ez a hőszivattyú leadott fűtőteljesítményének és effektív teljesítményfelvételének az aránya: COP = Qhsz Ahol Qhsz : hőszivattyú által leadott pillanatnyi hőteljesítmény (kw) Phsz : hőszivattyú által felvett pillanatnyi elektromos teljesítmény (kw) A hőszivattyús folyamatok jól leírhatók termodinamikai módszerekkel. A hőszivatytyúval elvont hő és leadott fűtési hő termodinamikai átlaghőmérsékletét bemutat- Phsz Expanziós szelep Oldatszivattyú Expanziós szelep Abszorber Elpárologtató Hőforrás pl. napenergia 3. ábra: Abszorpciós sűrítésű hőszivattyú elvi vázlata (Komlós et al, 2009 nyomán) 4. ábra: A hőszivattyú munkája T-S diagramban ábrázolva 6 Kézikönyv a hőszivattyúval hasznosított megújuló energiáról Kézikönyv a hőszivattyúval hasznosított megújuló energiáról 7

hatjuk az ún. T-S (hőmérséklet-entrópia) diagramon keresztül (4. ábra). Az átlaghőmérséklet, a bemenő magasabb és az alacsonyabb kimenő hőmérsékletből adódik. Praktikusan az átlaghőmérsékletet a logaritmus középhőmérséklet adja. A COP érték az év folyamán változhat a hőforrás hőmérsékletének és a fűtési előremenő hőmérséklet változásával, ezért pontosabb képet ad a hőszivattyú teljesítményéről az egy évre vonatkozó energiaszám (SPF = Seasonal Performance Factor: éves munkaszám): SPF = QhszH Wel Ahol QhszH: hőszivattyús rendszer által leadott éves hőmennyiség (kwh) Wel: hőszivattyús rendszer által felvett éves elektromos energia (kwh) Az SPF értéket befolyásoló tényezők közé tartozik többek közt a hőszivattyú terhelési állapota, a kompresszor teljesítmény szabályozás esetén részterhelés és a bekapcsolások száma, valamint a keringető szivattyú helyes kiválasztása. 4 PRIMER HŐFORRÁSOK A természetben megtalálhatóak nem megújuló, mint például a kőszén, kőolaj, földgáz és a megújuló energia források, mint a biomassza, vízienergia, szél, napsugárzás ún. primer energiahordozók. Ezek többségét nem közvetlenül használjuk fel. A hasznos, szekunder energiahordozóvá (pl. koksz, benzin, diesel, elektromos áram) történő átalakítás veszteségekkel jár. A veszteség nagysága az átalakítás mértékétől és az alkalmazott technológiától függ. A primer hő származhat a talaj hőjéből, a levegő hőjéből, illetve a talajvízből. Kiválasztásánál alapvető szempont, hogy a legmagasabb hőmérsékleti szintű hőforrás használatával biztosítható a legjobb teljesítménytényező. Talaj/föld: ha a hőforrás a talaj, akkor két megoldás a leggyakoribb. Egyik a talajkollektoros rendszer (5. ábra), melyben több száz méter (a szükséges teljesítménytől függő hosszúságú) speciális kemény PVC köpennyel ellátott rézcsöveket, vagy polietilén csöveket fektetnek le 1-2 méter mélységben. Hátránya, hogy nagy felületen (a fűtött alapterület 1,5-3-szorosán) kell földmunkát végezni a telken, a csövek lefektetésekor. Hatékonysága főleg a talaj hővezetésétől, nedvességtartalmától, és az esetleges talajvíztől függ (Tóth, 2008). Ez a megoldás elsősorban a napenergiát hasznosítja, mivel ilyen mélységben a talaj hőmérséklete elsősorban a levegő hőmérsékletétől (és a kivett hőmennyiségtől) függ. A talajhő kinyerésének másik módja a talajszonda (5. ábra), amikor vertikálisan helyeznek el egy U-alakú szondát egy fúrólyukban. Mindkettő zárt rendszer, azaz a munkaközeg egy zárt körben cirkulál. A különbség az előzőhöz képest az, hogy a szonda a Föld belső hőjét hasznosítja. Míg a kollektor teljesítménye nagyban függ az időjárástól, addig a szondáé attól független (Csernóczki, 2009). További előnye, hogy a telket a fúrás pontszerűsége miatt csak a szondák nyomvonalában kell felásni. 5. ábra: Talajkollektoros és talajszondás rendszer (www.hgd.hu) Masszív abszorber: gyakorlatilag egy beton (vagy tégla) falat jelent a föld alatt (pl. résfal) vagy felett, és a betonlemezben műanyag csőkígyót helyeznek el. Külön e célra épített szoborszerű elemek, vagy támfalak, homlokzati betonfelületek is felhasználhatóak. (A beton hővezetése nem túl jó, az agyagénál rosszabb, vagy azonos.) Segít a levegő, talaj, esővíz hőjének átvételében, a napsugárzást közvetlen is hasznosíthatja (www.passzivhazak.hu). Víz: a víz hőjének kinyerése történhet nyitott vagy zárt rendszerrel. - Nyitott: a talajvizet termelőkutakból búvárszivattyúval termelik, majd használat után egy másik, ún. nyeletőkútba (6. ábra), felszíni vízbe (tóba, folyóba) vezetik, vagy dréncsöveken át a földbe szivárogtatják. Környezetvédelmi, ökológiai szempontból az az előnyös, ha a kitermelt vizet ugyanabba a rétegbe juttatják vissza, ahonnan kivették. A beruházási költség és a hatásfok nagyban függ a vízadó réteg mélységétől. Versenyképessége csak a felszín közeli rétegekkel van, de a vízminőség és a szűrőzés komoly kockázatot jelent, melyet előre próba kutakkal tesztelni kell. - Zárt: felszíni vizekbe körkörösen helyeznek el kollektor-csöveket, amikben hőhordozó közeget keringetnek. Működési elve megegyezik a talajkollektoréval. 6. ábra: Vízkútpáros rendszer elemei 8 Kézikönyv a hőszivattyúval hasznosított megújuló energiáról Kézikönyv a hőszivattyúval hasznosított megújuló energiáról 9

Levegő: a külső levegőt ventillátorokkal szívják be, aminek hőjét a hőszivattyú hasznosítja (7. ábra). Hátránya, hogy a levegő hőmérséklete nem állandó, az időjárás függvénye, így a rendszer hatékonysága tág határok között változó. További problémát jelenthet a ventillátorok által keltett zaj is, ezért elhelyezésére külön figyelni kell. Viszont átmeneti időben jó hatékonysággal üzemel, sőt beruházási költsége ennek a megoldásnak a legalacsonyabb, és a levegő, mint hőforrás mindenhol rendelkezésre áll (Tóth, 2008). 7. ábra: Levegős hőszivattyús rendszer Hulladékhő: ilyen jellegű hőforrásként felhasználható például a gyógyfürdők elhasznált termálvize, vagy a szennyvíz. Utóbbira magyarországi példa a szekszárdi húskombinát, ahol a 22 C-os szennyvíz a hőforrás, míg az előbbire a harkányi gyógyfürdő, melynek 32-35 C-os elfolyó vizét használják fel két egyenként 1100 kw-os hőszivattyúval (Mádlné Szőnyi, 2006). A 8. ábrán a különböző hőforrásokból táplálkozó hőszivattyúk COP értékét hasonlította össze egy svájci cég: látható, hogy a vizes (nyitott vízkút-páros) rendszerek a legnagyobb hatásfokúak, aztán a földhőszondás, majd végül a levegős hőszivattyúk COP értéke a legalacsonyabb (Csernóczki, 2009). Az értékek csak tájékoztató trendek, mert minden hőszivattyú az alkalmazott munkaközegtől és a kompresszortól függően más-más COP értéket eredményez. 5 SZEKUNDER HŐLEADÓK A felületi padló-, fal és mennyezetfűtés kialakítása illeszthető leginkább az alacsony előremenő hőmérsékletű rendszerekhez, hiszen a felületi hőmérséklet felső határt szab a méretezési hőfoklépcsőnek. A gázkazános rendszerek esetében egy keverő szelep segítségével lehet megoldani a padlófűtési körök előremenő hőmérsékletének csökkentését. Hőszivattyús alkalmazás esetén a fűtővíz egy az egyben ráengedhető a kialakított körökre és megfelelően fognak működni. A sugárzó hőérzet nyújtotta komfort sokkal kedvezőbb, mint a radiátoros konvektív hőleadással működő hőleadók esetében. A hűtés is megoldható ezzel a fajta hőleadóval, ugyancsak sugárzó hőérzetet nyújtva. A bekerülési költsége jellemzően magasabb, mint a többi hőleadó esetében és fontos motívum, hogy a pontos méretezés ez esetben semmi képpen sem hanyagolható el. A hidraulika, a körök kialakítása és az ezzel kapcsolatos szempontok nagyon fontosak a megfelelő működés elérésének érdekében. A korszerű felületfűtő/-hűtő rendszerek elterjedése elsősorban a nyugat-európai kutatások eredményeinek köszönhető, amelyek a régi elveket korszerű anyagokkal, szerelési megoldásokkal, a hidraulikai beszabályozás és a korszerű szabályozás megoldásával az energiatakarékos üzemeltetést jó hőérzet biztosításával oldották meg. A felületi mezőkön kívül még a Fan-coil-os rendszerek is illeszthetőek az alacsony előremenő hőmérséklettel üzemelő hőszivattyúkhoz, de a felületfűtésnél magasabb előremenő hőmérséklettel. Ez esetben ugyanis a hőleadó hőcserélő részét egy ventilátor fújja, hogy a konvekciós hőáramlás meginduljon. Mindkét megoldás alkalmas mind fűtési, mind hűtési igények ellátására. Mérési eredmények (CH WP Test Center) középérték, szórás 8. ábra: A hőszivattyúk hatásfokának összehasonlítása (Swiss Heat Pump Test Center, 2008) 9. ábra: Felületfűtés 10 Kézikönyv a hőszivattyúval hasznosított megújuló energiáról Kézikönyv a hőszivattyúval hasznosított megújuló energiáról 11

A felületfűtési rendszerek - padló-, fal- és mennyezetfűtés és hűtés - a felületek alacsony hőmérsékletének és a hőmérséklet egyenletes eloszlásának köszönhetően a sugárzással leadott energiával kellemes és komfortos hőérzetet biztosítva fűtenek és hűtenek. A hagyományos fűtési rendszerekkel szemben felületfűtésnél az ember és a helyiséget körülvevő felületek között sugárzási egyensúly alakul ki, így optimális komfortérzet érhető el. A felületfűtési rendszereknél a sugárzással leadott energia miatt jóval kellemesebb hőérzet érhető el lényegesen alacsonyabb helyiséghőmérsékletnél. A helyiséghőmérséklet 1-2 C-kal csökkenthető, ami éves szinten 3-6% energia-megtakarítást jelent. A felületfűtési/hűtési rendszerek ideálisan kombinálhatók hőszivatytyúkkal. Emellett a felületfűtési rendszerek hűtésre is használhatók, így egy rendszer segítségével, a különálló fűtő- és hűtő rendszerekhez képest alacsonyabb beruházási költséget érhetünk el. A felületfűtési- és hűtési rendszerek szinte minden épülettípusnál és felhasználási területen alkalmazhatók. Alapvetően a felületfűtő/hűtő hőleadó rendszereket két nagyobb csoportba sorolhatjuk kivitelezési szempontból: nedves fektetésű rendszerek (aljzatban, vakolatban) száraz fektetésű rendszerek (gipszkartonos rendszer) A két rendszer között az a különbség, hogy a nedves fektetésű rendszerek esetében a beépítendő csövek a helyszínen nedves technológiás vakolással kerülnek beépítésre, míg a száraz fektetésnél a hőleadó csövek már eleve előre gyártott panelekben kerülnek a helyszínen beépítésre (vakolás nem szükséges). Azt követően, hogy a megrendelő a felületi hőleadók mellett döntött egy fontos szempont van, amit nem szabad figyelmen kívül hagyni: A felületfűtés/hűtési rendszer nem egyenlő egy radiátoros rendszerrel! A radiátoros rendszerrel ellentétben itt a hőleadó felületek pontos, szakszerű méretezése elengedhetetlen. Az alacsony előremenő fűtési hőmérsékletből kifolyólag nagy aránnyal kerülnek megújuló energiával üzemelő rendszerek integrálásra primer oldali hőtermelő rendszerként. A hidraulikai méretezés pontos elvégzése és a méretezési paraméterek figyelembe vételével kialakított fűtési-hűtési terv az alapja az optimálisan üzemeltethető rendszernek. Csak a tervezés mellett méretezésen alapuló döntés esetén lehetünk biztosak abban, hogy felületi hőleadó/felvevő rendszerünk megfelelően fog működni, alacsony üzemeltetési költségekkel (Mottl, 2006). 6 RENDSZERSZEMLÉLET A hőszivattyús rendszerek hatékonyságának, a helyi körülményeknek, a legmegfelelőbb kiválasztásnak az alapja a rendszerszemlélet. Ez alatt azt értjük, hogy a primer energiaforrás kiválasztása és méretezése ugyanolyan fontos, mint magának a hőszivattyúnak a kiválasztása, és további kiemelt szempont a szekunder oldali fűtési rendszerhez való illesztése. Tehát ha körültekintően akarunk eljárni egy hőszivattyús rendszer kiválasztásában, akkor az alábbi lépéseket kell végrehajtani: Primer hőforrás lehetőségek számbavétele geológus, hidrogeológus szakember véleménye alapján. Döntést kell hozni, hogy a fúrási körülmények alkalmasak e földszonda-fúráshoz, vagy talajvíz és rétegvíz áll rendelkezésre, mint hőforrás. Amennyiben egyik sem, akkor választhatjuk a környezeti levegőt, vagy szerencsés esetben valamilyen hulladékenergia hőtartalmát. Ezeket a lehetőségeket már szakember közreműködésével lehet tervezési szintre fejleszteni, mely alapot ad a hőszivattyú kiválasztásához. Magának a hőszivattyúnak a kiválasztása az előzetesen kalkulált vagy tervezővel ténylegesen méretezett hőszükségleten alapul. Fontos szempont, hogy csak fűtésre vagy fűtés-hűtésre választunk hőszivattyút. Továbbá tudni kell, hogy a primer hőforrás és a szekunder fűtési rendszer hőfokszintje (mindkét oldalon előremenő és visszatérő hőmérsékletek mekkorák). Mindezek alapján választhatunk víz-víz, levegő-víz, vagy levegő-levegő hőszivattyút. Külön épületgépészeti tervezői feladat az ingatlan fűtési rendszerének megtervezése, és illesztése a hőszivattyúhoz. Ezért általános javaslat, hogy hőszivattyús rendszerhez lehetőleg alacsony hőmérsékleten működő felületfűtéseket (padló-, fal-, mennyezetfűtés), vagy fan-coil rendszereket, ritkábban nagy felületű lapradiátorokat alkalmazzunk. A hőszivattyús rendszer lehetőséget ad automatikus vezérlés alkalmazására, ezért a rendszerek tervezésébe javasolt bevonni automatizálási szakembereket. Ezzel megvalósulhat, hogy az ingatlanok épületfelügyeleti rendszeréhez kapcsolhatjuk a hőszivattyút, valamint a monitoring adatok gyűjtése is lehetségessé válik. Mindezek tehát azt igazolják, hogy a hőszivattyús rendszerek hatékony összeállításához több szakterület egyidejű együttműködése szükséges. 7 GAZDASÁGOSSÁG Köztudott, hogy egy hőszivattyús rendszer gazdaságosságát nagyon sok szempont befolyásolja, a teljesség igénye nélkül: tervezési, méretezési, modellezési, kivitelezési, üzemeltetési körülmények, továbbá az ingatlan használójának szokásai és nem utolsó sorban a mindenkori primer energiahordozók áraránya. A kisteljesítményű rendszerek árait különösen befolyásolja az egyre növekvő árverseny a vállalkozók között. Egyes becslések szerint több száz fúrási vállalkozó van a piacon, akiknek döntő többsége minden minőségi ellenőrzés nélkül tevékenykedik. A földhő szonda fúrási árak a 2.600.-Ft/métertől kezdődnek, különösen alföldi területen. A szondák sok esetben ellenőrzés nélkül garázsokban, műhelyekben, vagy a helyszínen vannak fúziósan összesütve. (Ekkor a szondaárak 400.- Ft/métertől kezdődnek a garanciális gyári termékek 1000.- Ft/méter árához képest.) Kemény kőzeteknél a fúrási és szonda költségek elérhetik összesen a 10.000.- Ft/ métert például az előírt PE-XA típusú szonda esetében. Tehát ebből látszik, hogy a telepítési költségek tág határok között mozognak. Ezért a beruházási költség vizsgálathoz egy teljesítményarányos átlagot vettünk figyelembe a kis teljesítményű, 30 kw alatti rendszerekre. Ez alapján a 15 db-os családi házas mintából: 331.111 Ft/kW nettó +Áfa költség adódik. A gazdaságosság másik komoly befolyásoló tényezője a mindenkori gázár mellett az igényelt H vagy a GEO tarifa a hőszivattyúhoz. A mai A1 tarifa: 48.50Ft/kWh árához képest a két kedvezményes tarifa 32 Ft/kWh körüli árával lehet számolni. 12 Kézikönyv a hőszivattyúval hasznosított megújuló energiáról Kézikönyv a hőszivattyúval hasznosított megújuló energiáról 13

Gazdaságossági számítás módszere Milyen esetben gazdaságilag hatékony a hőszivattyús rendszer? Ez a kérdés határozható meg a legkevésbé egzakt módon. Az SPFkrit,gazd gazdasági megtérülést biztosító érték erősen függ a hőszivattyús technológia fajtájától (levegős, talajszondás, vízkutas, talajkollektoros, energiacölöpös, stb.), a felhasználás jellegétől (folyamatos vagy szakaszos, fűtés, hűtés vagy mindkettő együtt stb.), a telepítés jellegétől (új építés vagy régi rendszer felújítása, kiváltása, átépítése), a tőkeelvárásoktól, az energiaárak változásától stb.. Ezen paraméterek konkrét ismeretében állapítható csak meg, hogy egy adott hőszivattyús beruházás gazdaságilag hatékonynak tekinthető-e. A szakirodalom a nyári-téli folyamatos üzemű földhőszivattyúk esetén az SPFkrit,gazd értéket 4,0-re becsüli. Meg kell jegyezni, hogy megfelelő támogatási struktúra kialakulása esetén, az egyébként energetikailag és környezetvédelmileg hatékony beruházás pályázati hozzájárulással gazdaságilag is jobban megtérülővé tehető, azaz az SPFkrit,gazd érték támogatás esetén csökken. A különböző hatékonyságokat szemlélteti a 10. ábrán látható diagram: 0,6 vizsgálni egy új beruházás, vagy egy régi rendszer felújításának esetét. A problémát a hagyományos gázrendszer valós értékének a megállapítása jelenti. Sok esetben például nem veszik figyelembe a gázbekötés, vagy a kéményépítés és éves ellenőrzés költségét és a hűtéshez számolni kell kiegészítő split kímával stb. Másik oldalról a fűtési-hűtési üzemeltetési költségek hiteles vizsgálata is alapvető. A gázfűtés magashőmérsékletű fűtési rendszere és a hőszivattyús alacsonyhőmérsékletű, döntően felületfűtés eltérő üzemeltetési módot igényel. Tehát a felhasználó szokásaitól is függ a költségmegtakarítás mértéke. Reálisan az mondható, hogy a mai árak mellett egy hőszivattyús rendszer kis teljesítmény esetén támogatás nélkül 9 év alatt térül meg, ha nő a teljesítmény, akkor a csökkenő fajlagos költség miatt ez a szám csökken 6-7 évre. Ha a rendszer kap pályázati támogatást, akkor a megtérülési idő lecsökkenhet 4-5 évre is (1., 2. táblázat). A következő táblázatban bemutatunk egy gazdasági számítást, melyben 15,6 kw aktív fűtés és HMV készítés mellett, 8,5 kw passzív hűtés esetén látható az új talajszondás hőszivattyús rendszer beruházási költsége és megtérülési ideje. A számításokat elvégeztük pályázati támogatás esetére is. Az eredményekből látható, hogy a beruházási fajlagos költség bruttó: 413.862. Ft/ kw és a megtérülési idő: 8,96 év, ha nincs támogatás és 30% támogatással a megtérülési idő: 4,23 év. Fajlagos CO 2 kibocsátás [kgco 2 /kwh] 0,5 0,4 0,3 0,2 0,1 0 0 1 2 3 4 5 6 7 8 9 10 SPF tényező értéke 10. ábra: A szén-dioxid emisszió függése az SPF tényezőtől és a kapcsolat a hatékonysággal (Komlós, 2007) A sötétkék görbe jelzi a hőszivattyús rendszer CO 2 -kibocsátását, ami az SPF érték javulásával fordított arányban csökken. Rózsaszín és sárga színnel, szaggatott vonallal van jelölve a hagyományos- és a kondenzációs gázkazán CO 2 -kibocsátása. Ezen egyenesek és a hőszivattyú görbéjének metszéspontjai mutatják a környezetvédelmileg előnyös hőszivattyús rendszer SPF határértékét. Megtérülési idő számításának módszere A hőszivattyús rendszer megtérülési idejét a beruházási többletköltség és a hőszivattyús energia költség megtakarítás hányadosa adja. Tehát előbb a beruházási többletköltséget kell számítani a hagyományos gázrendszerhez képest. Itt külön kell Gázkazán, HMV, folyadékhűtő, kialakítása a szükséges engedéllyel, gázbevezetéssel, kéményépítéssel Gazdaságossági számítás Fűtés/Hűtés: 15,6/8,5 kw, pályázati támogatás nélkül Hagyományos rendszer Hőszivattyús rendszer 2 100 000 Ft + Áfa Hőszivattyús rendszer telepítése, fűtés, HMV és hűtés kőközpontig 1. táblázat: Gazdasági számítás kis rendszerre támogatás nélkül 5 165 000 Ft + Áfa Összesen nettó 2 100 000 Ft + Áfa Összesen nettó 5 165 000 Ft + Áfa Összesen bruttó 2 625 000 Ft Összesen bruttó 6 456 250 Ft Éves fűtési költség Gázár Alapdíj 127 Ft/Nm 3 3305,08 Nm 3 419 746 Ft 50 400 Ft 12 000 Ft 31,56 Ft/kWh 7020,00 kwh 221 551 Ft 25 825 Ft Összes költség 482 146 Ft Összes költség 247 376 Ft Éves hűtési költség Összes költség Többlet ráfordítás Éves megtakarítás Megtérülési idő 14 Kézikönyv a hőszivattyúval hasznosított megújuló energiáról Kézikönyv a hőszivattyúval hasznosított megújuló energiáról 15 50 Ft/kWh 4080 kwh 204 000 Ft 25 825 Ft 229 825 Ft Összes költség Megtérülési idő 31,56 Ft/kWh 360 kwh 11 362 Ft 25 825 Ft 37 187 Ft 3 831 250 Ft 427 408 Ft 8,96 év

Gázkazán, HMV, folyadékhűtő, kialakítása a szükséges engedéllyel, gázbevezetéssel, kéményépítéssel Gazdaságossági számítás Fűtés/Hűtés/HMV: 15,6/8,5 kw, pályázati támogatással Hagyományos rendszer Hőszivattyús rendszer 2 100 000 Ft + Áfa Hőszivattyús rendszer telepítése, fűtés, HMV és hűtés kőközpontig 5 165 000 Ft + Áfa Összesen nettó 2 100 000 Ft + Áfa Összesen nettó 5 165 000 Ft + Áfa Összesen bruttó 2 625 000 Ft Összesen bruttó 6 456 250 Ft Éves fűtési költség Gázár Alapdíj 127 Ft/Nm 3 3705,10 Nm 3 470 548 Ft 50 400 Ft 12 000 Ft 31,56 Ft/kWh 7991,02 kwh 252 196 Ft 25 825 Ft Összes költség 532 948 Ft Összes költség 278 021 Ft Éves hűtési költség Összes költség Többlet ráfordítás Éves megtakarítás Támogatás, 30% Megtérülési idő 50 Ft/kWh 4080 kwh 204 000 Ft 25 825 Ft 229 825 Ft Összes költség Megtérülési idő 31,56 Ft/kWh 360 kwh 11 362 Ft 25 825 Ft 37 187 Ft 3 831 250 Ft 447 565 Ft 1 936 875 Ft 4,23 év Gázkazán, folyadékhűtő, kialakítása a szükséges engedéllyel, gázbevezetéssel, kéményépítéssel Gazdaságossági számítás Fűtés/Hűtés: kw, a hőszivattyús rendszer pályázati támogatással Hagyományos rendszer Hőszivattyús rendszer 30 000 000 Ft + Áfa Hőszivattyús primer rendszer telepítése, fűtés és hűtés kőközpontig 103 000 000 Ft + Áfa Összesen nettó 30 000 000 Ft + Áfa Összesen nettó 103 000 000 Ft + Áfa Összesen bruttó 37 500 000 Ft Összesen bruttó 128 750 000 Ft Éves fűtési költség Gázár 102 Ft/Nm 3 109745,7627 Nm 3 11 194 068 Ft 720 000 Ft 20,00 Ft/kWh 233100 kwh 4 662 000 Ft 515 000 Ft Összes költség 11 914 068 Ft Összes költség 5 177 000 Ft Éves hűtési költség Összes költség Többlet ráfordítás Éves megtakarítás Támogatás, 50% Megtérülési idő 44 Ft/kWh 192000 kwh 8 448 000 Ft 515 000 Ft 8 963 000 Ft Összes költség Megtérülési idő 20,00 Ft/kWh 96000 kwh 1 920 000 Ft 515 000 Ft 2 435 000 Ft 91 250 000 Ft 13 265 068 Ft 51 500 000 Ft 3,00 év 2. táblázat: Gazdasági számítás kis rendszerre pályázati támogatással 3. táblázat: Gazdasági számítás nagy rendszerre 50% pályázati támogatással A nagy rendszereknél lényeges szempont, hogy a beruházó a villamos energiát mennyiért kapja a szolgáltatótól. Nagyteljesítményű földhő szondás rendszereknél szinte minden esetben a H vagy GEO tarifánál jobb áraik vannak, de ezt üzleti titokként kezelik. Ezért az elvégzett számításokban egy valószínűsített 20 Ft/kWh árral számoltunk. A számításokat itt is elvégeztük pályázati támogatás nélkül és támogatással. A gazdasági és megtérülési számítást egy átlagos teljesítményre végeztük el (619 kw). Következtetésképpen elmondható, hogy a fajlagos költség 168.012 Ft/kW + ÁFA = 210.015 Ft/kW nagy teljesítményű BHE rendszereknél, a megtérülés idő támogatás nélkül: 4,95 év, 50%-os támogatással 3 év (3. táblázat), 85%-os támogatással 0,28 évre csökken. Környezetvédelmi szerep, CO 2 megtakarítás Manapság egy energetikai rendszer hasznosságának értékelésénél figyelembe kell venni a környezetvédelmi hatást, amiben a klímavédelem és a lokális környezetvédelem, a helyi levegőszennyezés csökkentése (NOx, CO, por, SO 2, PAH, stb.) kiemelkedő szempontoknak számítanak. Rybach László (2008) is felhívja a figyelmet arra, hogy a hőszivattyúk használatával csökkenthetjük energiatermelésünk helyi környezetkárosító hatásait, továbbá segíthetik elérni az Európai Unió 2020-as célkitűzéseit. Ezek a következők: 20%-kal kell csökkenteni a primer energiafogyasztást, 20%-nak kell lennie a megújulók részarányának, és az 1990-es évhez képest 20%-kal kell mérsékelni az üvegházgázok kibocsátását. Az Európai Hőszivattyú Szövetség EPHA (European Heat Pump Association) tanulmánya szerint ez akkor lehetséges, ha 2020-ig beüzemelnek 70 millió új hőszivattyút Európában. A későbbiekben ez 230 Mt CO 2 kibocsátás elkerülését eredményezné évente. A számtalan előny mellett ugyanakkor az egész folyamatot, rendszert kell vizsgálnunk. A hőszivattyú működése elektromos energiát igényel, amit számos technológiával állítanak elő világszerte. Ezek között vannak olyanok, amelyek kevesebb CO 2 -ot emittálnak (például a vízenergia), és vannak, amelyek többet (például a széntüzelésű erőművek). A különböző országokban ezeknek a megoldásoknak a keveréke létezik, amelyek egy átlagos CO 2 -kibocsátás értéket adnak termelt kwh-ként. Ennek EU-s átlaga 0,486 kg CO 2 /kwh (Nowak, 2008), de országonként igen eltérő. Ezen kívül számolni kell a határokon keresztül történő CO 2 - importtal és exporttal is, amiről azonban nem áll elég statisztikai anyag a rendelkezésünkre. Maga a hőszivattyú nem igényel fosszilis tüzelőanyagokat, nem használ égési folyamatokat a hő előállításához, és így nem okoz légszennyezést. De mint említettük, az áramtermelés okozhat, ha ezt például fosszilis erőforrásokból nyerjük. Viszont egy jól tervezett rendszer teljesítménytényezője fűtési módban elérheti COP=4,0 értéket, 16 Kézikönyv a hőszivattyúval hasznosított megújuló energiáról Kézikönyv a hőszivattyúval hasznosított megújuló energiáról 17

ami azt jelenti, hogy 75%-kal kevesebb szénhidrogén elégetését igényli az elektromos fűtéshez képest. Tehát lehetővé teszi a megtakarítást, és a CO 2 -kibocsátás csökkentését (Csernóczki, 2009). 8 HŐSZIVATTYÚ MONITORING A hőszivattyús rendszerek hatékonyságának, gazdaságosságának és környezetvédelmi előnyeinek bemutatásához nélkülözhetetlen a rendszerek monitoringozása. Ez alatt értjük a primer hőnyerő oldal működési körülményeinek ellenőrzését és a szekunder fűtési-hűtési kör ellenőrzését is. A monitoring rendszer főbb feladatai: hőmérséklet-viszonyok (külső hőmérséklet, primer földhő/talaj/felszín alatti víz hőmérsékleti változások regisztrálása, szekunder fűtő-hűtő rendszer hőmérsékleti adatainak gyűjtése), tömegáramok mérése, primer oldal glikolozás töménységének ellenőrzése, primer és szekunder oldali szivattyúk és a hőszivattyú villamos energia fogyasztás mérése, a teljes hőszivattyús rendszer hőmennyiség mérése. Ezeknek a méréseknek egy integrált automatika rendszerhez kell kapcsolódni, mely kontaktusban van az épületfelügyeleti rendszerrel. Végeredményben biztosítani kell a hiteles szezonális fűtési-hűtési hatékonyság számításához az adatokat. Ezzel biztosítható, hogy a beruházó hiteles tájékoztatást kapjon a hőszivattyús rendszer elvárt színvonalú működéséről. További szempont a monitoring rendszerekkel szemben, hogy az EU pályázati kiírások feltételeinek megfelelően igazolni tudja a hőszivattyús rendszer hatékony működését a szerződéses elvárásoknak megfelelően. 11. ábra: Futura projekt kútjainak elhelyezkedése (T termelő kút, Ny nyeletőkút, M monitorint kút) 9 PROJEKTPÉLDÁK MINTA ÉRTÉKŰ HAZAI GYAKORLATOK Vízkutas hőszivattyús rendszer Futura Interaktív Természettudományi Bemutató Központ, Mosonmagyaróvár Mosonmagyaróvár Város Önkormányzata a FUTURA - Az egykori mosoni gabonaraktár turisztikai hasznosítása című pályázat (NYDOP-2.1.1./B-09-2f-2010-0001) keretében az országban egyedülálló projekt megvalósításba kezdett. A létesítmény tervezett hőszivattyús hűtési-fűtési rendszere a felszín alatti víz energetikai hasznosítását végzi 2 db fúrt kútpár segítségével. A terület földtani adottságaira jellemző, hogy holocén és pleisztocén kavicsos, homokos helyenként agyagos rétegek váltják egymást. A kvarter képződmények alatt felső-pannon korú kavics, homokos kavics és homok rétegek települnek többszáz méteres vastagságban. A hőszivattyús rendszerrel ellátott épület hőigénye 250 kw fűtésben, és 200 kw hűtésben, amihez a szükséges vízigény 30 m 3 /h (300 m 3 /nap). A projekt keretében összesen 8 db 15 m mély vízkút létesült: 2 db termelőkút, 2 db nyeletőkút és 4 db monitoring kút a vízszint-változás, a hőmérsékletváltozás és a vezetőképesség-változás nyomon követésére. A fűtési/hűtési hőveszteség/hőnyereség ellátására 2 db Aermec gyártmányú 129 kw névleges teljesítményű hőszivattyú került beépítésre. A hőszivattyú primer elpárologtató oldalán tehát 2 db 15 m-es vízkútból (termelőkutak) búvárszivattyú segítségével nyerik a szükséges vízmennyiséget, és a 12-14 C-os víz hője egy leválasztó hőcserélőn keresztül hasznosul. A hőcserélőn keringtetett vizet 2 db 15 m-es visszasajtoló kútba gravitációsan nyeletik el. A kút oldalon a tervezett vízmennyiség 15 m 3 /h termelő kutanként. A primer oldali töltési vezetékre vízóra kerül kiépítésre a szükséges utántöltési mennyiségek jegyzőkönyvezési lehetőségének a biztosításához. Az épületen kívül a vízszintes (KPE csövek) vezetékek a végleges terepszinttől számított kb. 1,4 m-es mélységű földárok rendszerben vannak vezetve. A kiépített csővezetékeket ill. a teljes hálózatot nyomáspróbázni kellett 5 bar nyomáson 24 órán keresztül. 18 Kézikönyv a hőszivattyúval hasznosított megújuló energiáról Kézikönyv a hőszivattyúval hasznosított megújuló energiáról 19

13. ábra: Pápai családi ház és a hőszivattyús gépház 12. ábra: A Futura projekt épületei Talajszondás hőszivattyús rendszer Családi ház talajszondás hőszivattyús rendszere Az esettanulmányként bemutatott hőszivattyús beruházás Pápán található, és egy családi ház fűtési, hűtési és használati melegvíz igényét látja el. A Bányakapitányságon történt engedélyezési eljárás lefolytatása után, a bányakapitánysági létesítési engedély birtokában, a hőszivattyús projektet az engedélyes megpályáztatta a Nemzeti Energiatakarékossági Program keretében. A tulajdonos megnyerte a pályázati öszszeget, elkezdődött a szekunder (épületen belüli hőleadó) oldal, majd pedig a primer (földtani hőnyerő) oldal tervezése, modellezése, kivitelezése. A kapott adatok alapján az épületben a téli hőveszteség 9 kw, a nyári hőnyereség 4,5 kw. A fűtési hőszükséglet ellátására 1 db JUNKERS 9 kw névleges teljesítményű hőszivattyú lett beépítve, mely a használati melegvíz-igényt is ellátja. A hőszivattyú időjárásfüggő szabályozóval rendelkezik. A hőszivattyúk primer elpárologtató oldalán 2 db 80 m mély egymástól 7 m távolságban lévő talajszondából nyerik ki a szükséges hőt. Azaz 2 db furatot mélyítettek, ezekbe pedig egy-egy 40x3,7 mm átmérőjű KPE csőből U-hurkot telepítettek. A primer oldali csőhurkokat feltöltötték a közvetítő közeggel, mely etilénglikol alapú fagyálló hőhordozó anyag, és ezt keringtetik. A szondahurkokat speciális bentonitos zaggyal vették körbe a fúrólyukban. A szondák az épületben található osztó-gyűjtőhöz csatlakoznak, melytől 28 mm átmérőjű rézcsövön jut el a hőhordozó közeg a hőszivattyúig. A használati melegvizet a hőszivattyú egy 200 l-es tartályban készíti. A hőszivattyú primer és szekunder oldalán a szükséges tömegáramot és emelőmagasságot, a hőszivattyúba beépített keringető szivattyúk biztosítják. A kiépített fűtési csővezetékeket nyomáspróba alá kellett helyezni, amivel azt vizsgálták, hogy nem sérültek e meg a csövek. Ez a bányakapitánysági engedélyben is előírt követelmény. Sikeres nyomáspróba esetén történhetett meg csak a hőszivatytyúra való rákötés. A téli üzem vége illetve kezdete a beállított külső hőmérséklet függvényében történik. A szekunder oldalon padló, fal, mennyezet fűtés-hűtés található. Levegős hőszivattyús rendszer Családi ház levegős hőszivattyús rendszere A Budapest, III. kerületében újonnan épülő családi házban levegős hőszivattyús rendszer látja el a fűtést, hűtést, valamint a használati melegvíz készítést látjuk el az épületben. A tervező által kiszámolt hőveszteség 22 kw volt, így a folyamatosan változó igények és az üzembiztonság miatt 2 db 11 kw-os Mitsubishi Electric Zubadan levegős hőszivattyúra esett a választás (14. ábra). A Mitsubishi Zubadan PUHZ-HRP100YHA2 háromfázisú inverteres levegős hőszivattyú, mely -15 C külső hőmérséklet mellett is 100%-osan biztosítja a 11 kw-os teljesítményt. A primer hőszivattyús rendszer részei: kültéri egység, beltéri egység, vezérlő egység. A beltéri egység egy rozsdamentes SWEP típusú 50 lemezes R410a/víz hőcserélő, mely 16mm-es vegytisztított lágy rézcsővel csatlakozik a kültéri egységhez. A primer oldalon a megfelelő hőátadást R410a hűtőköri gáz biztosítja. A hűtőköri szabályzásról a hőszivattyúhoz tartozó PAC-IF031B-E típusú vezérlő egység gondoskodik. A két hőszivattyú indítását az igényeknek megfelelően épületautomatika irányítja és felügyeli. A Megrendelő kérésére a hőszivattyú mellett kiegészítő fűtésként gázkazános rendszer is lett telepítve. 20 Kézikönyv a hőszivattyúval hasznosított megújuló energiáról Kézikönyv a hőszivattyúval hasznosított megújuló energiáról 21

14. ábra: Budapest III. kerületi családi ház levegős hőszivattyús rendszere MINTA ÉRTÉKŰ NEMZETKÖZI GYAKORLATOK A GEO.POWER projekt megvalósítása során több példa értékű nemzetközi beruházás került azonosításra, melyek: Minta értékű beruházás megnevezése: Avenue Center Helyszín: Reading, Egyesült Királyság Projekt jellege: Középület korszerűsítés Az Avenue Centre egy többfunkciós középület, ahol a hőigény ellátására hőszivattyús rendszert telepítettek. Az épületnek nagy a hőigénye, de a hőszivattyús rendszer környezetbaráttá és energia-hatékonnyá tette a létesítményt. A primer hőtermelés ellátására egy vízkutas hőszivatytyús rendszert kombináltak talajszondákkal, amely rendszernek így alacsony az üzemeltetési költsége, 15. ábra: Avenue Center épülete alacsony a karbantartási igénye és alacsony CO 2 - kibocsátással jár, lokális fosszilis forrásból származó károsanyag-kibocsátás nélkül. A rendszer a fűtés mellett nyáron a hűtést is ellátja. A területen 70-80 m mély szondákat létesítettek. A szondák két hőszivattyúhoz csatlakoznak, amelyek kitermelik a talajból, illetve cirkuláltatják az épület fűtési rendszeré- ben a hőt. A GSHP rendszernek nagyobb a hatásfoka, ha kis hőmérsékletkülönbséggel dolgozik, és a legjobban padlófűtéssel-hűtéssel alkalmazható, mint ahogy ez az Avenue Centre-nél is megvalósult. Meg kell jegyezni, hogy a Reading-i helyszínen a talajvízszint magasan található, mindemellett relatíve nem magas az átlag hőmérséklet a szondák mélységében, és a területen a levegő átlaghőmérséklete 2 és 21 C között ingadozik. Minta értékű beruházás megnevezése: Arlanda repülőtér Helyszín: Stockholm, Svédország Projekt jellege: Repülőtér épületei, kifutópálya A stockholmi Arlanda Repülőtér hűtését és fűtését egy vízadó réteg látja el. A rendszer 2009 nyara óta üzemel. A repülőtér összes épületének hűtési energiája, beleértve a terminálokat is, a vízadó rétegből származik. Az Arlanda ellátásához annyi energiára van szükség, mint egy 25.000 fős városnak. A területe olyan nagy, mintha 100 futballpálya hűtését és fűtését kellene megoldani. Nyáron, a vízadó réteg látja el hűtési energiával a 16. ábra: Arlanda repülőtér stockholmi Arlanda épületeit, egyidejűleg hőt tárol. A tél folyamán a tárolt hőt használják hó és jégmentesítésre, valamint az épületek szellőztető rendszerének előfűtésére. A vízadó réteg révén a repülőtér éves villamos energia fogyasztása 4 GWh-ra fog csökkenni (nem szükséges a jövőben elektromos hűtőgépek üzemeltetése), a távfűtési energia igény 15 GWh-ra csökken, tehát éves szinten az energiafelhasználás 19 GWh lesz. A rendszer hatékonysága világszínvonalú. Az SPF értéke 100-hoz közeli. Minta értékű beruházás megnevezése: Üvegház energiaellátása Helyszín: Hoogstraten, Belgium (Antwerpen közelében) Projekt jellege: Üvegház Az 1,3 hektáros üvegház növénytermesztésre szolgál, ahol egy innovatív hőszivattyús rendszer került telepítésre. A rendszer fűtési energiáját a 824 kw összes teljesítményű hőszivattyúval biztosítják, mely talajvizet használ hőforrásként, úgynevezett ATES [Aquifer Thermal Energy Storage] tároló rendszerben. 140 méter mélységű talajvíz kútpár került kialakításra, egymástól 200 méter távolságban. Az üzemi térfogatáram 80 m 3 /h, 17. ábra: Üvegház az éves megmozgatott vízmennyiség 170.000 m 3. A megvalósított rendszer szezonális fűtési hatásfoka (SPF) 5. A hűtés szezonális hatásfoka az un. aktív és passzív hűtési időszakok átlagaként 18, ami rendkívül jó értéknek számít, köszönhetően az ATES rendszernek. Az alacsony költségű geotermikus hűtés lehetőséget ad az üvegházak zárva tartásra ameddig csak lehetséges, így biztosítva a CO 2 trágyázást a nyári időszakban. A hőszivattyús technológia következtében a rendszerrel 22 TJ primer energia lett megtakarítva. Ez 1619 tonna CO 2 kibocsátás csökkenéssel egyenértékű, ami megfelel kb. 180 családi ház éves CO 2 kibocsátásának. A bemutatott megoldás Magyarországon is jól megvalósítható. 22 Kézikönyv a hőszivattyúval hasznosított megújuló energiáról Kézikönyv a hőszivattyúval hasznosított megújuló energiáról 23

IRODALOMJEGYZÉK EUROPEAN RENEWABLE ENERGY COUNCIL EREC (2010): Renewable Energy in Europe Markets, Trends and Technologies MAGYARORSZÁG MEGÚJULÓ ENERGIA HASZNOSÍTÁSI CSELEKVÉSI TERVE 2010-2020 NEMZETI ENERGIASTRATÉGIA 2030 NEMZETI KÖRNYEZETVÉDELMI ÉS ENERGIA KÖZPONT NONPROFIT KFT. KUJBUS A., GEOTERMIA EXPRESSZ KFT. (2012): Akcióterv az alacsony entalpiájú geotermikus energia felhasználásnak népszerűsítésére 2020-ig Magyarországon BÜKI G. (2007): Kapcsolt energiatermelés. Műegyetemi Kiadó CSERNÓCZKI ZS. (2009): Egy talajszondás hőszivattyúrendszer fenntarthatóságának vizsgálata, Eötvös Loránd Tudományegyetem, Természettudományi Kar, Általános és Alkalmazott Földtani Tanszék HOLICS L. (1998): Fizika összefoglaló, TypoTex Elektronikus Kiadó Kft., Budapest, 333., 336., 341. p KOMLÓS F., FODOR Z., KAPROS Z., VASZIL L. (2007): Csináljuk jól! Hőszivattyúzás, Energiahatékonysági sorozat, 6., 13-14., 45-47., 49. p KOMLÓS F., FODOR Z., KAPROS Z., VAJDA J., VASZIL L. (2009): Hőszivattyús rendszerek, Heller László születésének centenáriumára LUKÁCSI P. (2009): Földgáztüzelésű abszorpciós hőszivattyúk, Magyar Épületgépészet, LVIII. évfolyam, 2009/7-8. szám MÁDLNÉ SZŐNYI J. (2006): A geotermikus energia Készletek, kutatás, hasznosítás, Grafon Kiadó, Nagykovácsi, 23.p. MOTTL G. (2006): REHAU felületfűtő-hűtő rendszerekről tervezőknek, kivitelezőknek, építtetőknek NOWAK, T. (2008): Reaching the Kyoto targets by a wide introduction of ground-source heat pumps. Proceedings 9th IEA Heat Pump Conference, Zurich RAJNAI A. (szerk., 2006): Energiagazdálkodási Statisztikai Évkönyv 2006, Energiahatékonysági, Környezetvédelmi és Energia Információs Ügynökség Kht. RYBACH, L., EUGSTER, W.J., (2002): Sustainability aspects of geothermal heat pumps. In: Proceedings, 27th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California. 50-64. RYBACH, L. (2008): CO2 emission savings by using heat pumps in Europe, Workshop for Decision Makers on Direct Heating Use of Geothermal Resources in Asia, organized by UNU-GTP, TBLRREM and TBGMED, in Tianjin, China, 11-18 May, 2008. TÓTH L. (2008): Geotermikus hőszivattyús rendszerek nemzetközi és hazai elfogadottsága, tervezésük földtani kérdései Diplomamunka, Debreceni Egyetem, Természettudományi Kar, 8., 31-32., 36-44. p AGTT KFT. Megújuló energiaforrások:.http://www.passzivhazak.hu/ 24 Kézikönyv a hőszivattyúval hasznosított megújuló energiáról

Stratégiai szintű geotermikus energiafelhasználás alkalmazásának ösztönzése lakó- és ipari épületek energiaracionalizálása során