Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,



Hasonló dokumentumok
Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Bodó Beáta - MATEMATIKA II 1

AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok A síkban 16 db általános helyzetű pont hány egyenest határoz meg?

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Azaz 56 7 = 49 darab 8 jegyű szám készíthető a megadott számjegyekből.

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és

Matematika B4 II. gyakorlat

0,9268. Valószín ségszámítás és matematikai statisztika NGB_MA001_3, NGB_MA002_3 zárthelyi dolgozat

Klasszikus valószínűségszámítás

Gyakorlat. Szokol Patricia. September 24, 2018

Valószínűségszámítás feladatok

3. Mennyi annak a valószínűsége, hogy egy dobókockával kétszer egymás után dobva, egyszer páros, egyszer páratlan számot dobunk?

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Környezet statisztika

Ajánlott szakmai jellegű feladatok

Felte teles való szí nű se g

Valószín ségszámítás és statisztika

Matematika érettségi emelt 2008 október. x 2 0. nem megoldás. 9 x

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be.

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

Valószínűségszámítási feladatok (emelt szint)

Klasszikus valószínűségi mező megoldás

Valószínűségszámítás és statisztika

1. tétel. Valószínűségszámítás vizsga Frissült: január 19. Valószínűségi mező, véletlen tömegjelenség.

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

4 ÉVFOLYAMOS FELVÉTELI EREDMÉNYEK

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2?

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

A sztochasztika alapjai. Szorgalmi feladatok tavaszi szemeszter

PRÓBAÉRETTSÉGI VIZSGA

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

SOROZATOK (SZÁMTANI SOROZAT)

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

MATEMATIKA HETI 5 ÓRA. IDŐPONT: június 8.

8. GYAKORLÓ FELADATSOR MEGOLDÁSA. (b) amelyiknek mindegyik számjegye különböző, valamint a második számjegy a 2-es?

(6/1) Valószínűségszámítás

Készítette: Fegyverneki Sándor

NEVEZETES FOLYTONOS ELOSZLÁSOK

Valószínűség számítás

EMELT SZINTŰ ÍRÁSBELI VIZSGA

Gyakorló feladatok a 2. dolgozathoz

Feladatok és megoldások a 9. hétre. 1. Egy szabályos kockával dobunk. Mennyi a valószínűsége, hogy 6-ost dobunk, ha tudjuk, hogy:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Matematika PRÉ megoldókulcs január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT

Valószínűségszámítás és Statisztika I. zh november MEGOLDÁS

Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44.

11. Sorozatok. I. Nulladik ZH-ban láttuk:

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0, = 0, = 0, Mo.: 32 = 0,25

MATEMATIKA HETI 3 ÓRA. IDŐPONT : 2009 június 8.

JELENTÉS. Középiskolát végzett diákok helyzete

VALÓSZÍNŰSÉGSZÁMÍTÁS ÖSSZEFOGLALÓ FELADATOK

10. GYAKORLÓ FELADATSOR MEGOLDÁSA

KÉSZÍTSÜNK ÁBRÁT évfolyam

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

TELJES VALÓSZÍNŰSÉG TÉTELE ÉS BAYES-TÉTEL

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2

Matematika érettségi emelt 2013 május 7. 4 x 3 4. x 3. nincs megoldása

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József

Ismétlés nélküli kombináció

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb.

Matematika A4 II. gyakorlat megoldás

1. Egy italautomatában hétféle rostos üdítő kapható. Hányféle sorrendben vehet Anna a rostos üdítőkből három különbözőt?

3. Egy szabályos dobókockával háromszor dobunk egymás után. Legyen A az az esemény, hogy

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József

Érettségi feladatok: Szöveges feladatok

Gráfelmélet Megoldások

Oktatási azonosító Vizsga idıpontja Vizsga típusa Tantárgy Elért pontszám

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

1. Halmazok, számhalmazok, alapműveletek

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI május EMELT SZINT. 240 perc

EMELT SZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

A MatLap 2011/10. számában megjelent A logikai táblázat módszere című cikk feladatainak a megoldása

Érettségi feladatok: Halmazok, logika

3. gyakorlat. 1. Független események. Matematika A4 Vetier András kurzusa február 27.

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Számelmélet Megoldások

MATEMATIKA HETI 5 ÓRA. IDŐPONT: Június 4.

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József

NEMZETKÖZI KÖZGAZDASÁGTAN Nemzetközi tényezőáramlás

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

Érettségi feladatok: Sorozatok

Matematika A3 Valószínűségszámítás, 3. és 4. gyakorlat 2013/14. tavaszi félév

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Színes érettségi feladatsorok matematikából középszint írásbeli

Matematika kisérettségi I. rész 45 perc NÉV:...

1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos?

Átírás:

// KURZUS: Matematika II. MODUL: Valószínűség-számítás 22. lecke: A teljes valószínűség tétele és a Bayes-tétel Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 4.7. fejezet Elméleti összefoglaló A B 1, B 2,..., B n események teljes eseményrendszert alkotnak, ha B 1 + B 2 +...+ B n =Ω és B i B j =Ø, ha i j ( i=1, 2,...,n; j=1, 2,..., n ). [Másképpen P( B 1 )+...+P( B n )=1 és P( B i B j )=0 ] A teljes valószínűség tétele Ha a B 1, B 2,..., B n események teljes eseményrendszert alkotnak, és P( B i ) 0 ( i=1, 2,...,n ), akkor tetszőleges A esemény valószínűségére érvényes a következő: P( A )=P( A B 1 ) P( B 1 )+P( A B 2 ) P( B 2 )+...+P( A B n ) P( B n )= i=1 n P( A B i ) P( B i ). A Bayes-tétel Ha a B 1, B 2,..., B n események teljes eseményrendszert alkotnak, és P( B i ) 0 ( i=1, 2,...,n ), továbbá A tetszőleges olyan esemény, amelyre P( A ) 0, akkor P( B i A )= P( A B i ) P( B i ) j=1 n P( A B j ) P( B j ). Kidolgozott feladatok 22.1. Egy gyárban 4 gépsoron ugyanazt a terméket készítik. Az elsőn készült darabok 5%-a, a másodikon készültek 8%-a, a harmadikon és negyediken készültek 10%-a hibás. A gépek az összes termelésnek rendre 40, 30, 20, 10 százalékát adják. Mekkora annak a valószínűsége, hogy egy véletlenszerűen kiválasztott termék hibás? A: a választott termék hibás B1: a választott termék az 1. gépen készült B2: a választott termék a 2. gépen készült B3: a választott termék a 3. gépen készült B4: a választott termék a 4. gépen készült A B1, B2, B3, B4 események teljes eseményteret alkotnak, hisz egymást kizáróak és összegük a biztos esemény (egy munkadarab csak egy gépen készül). coedu.sze.hu/print.php4?print_items= 1/9

A feladat szerint P( B 1 )=0,4, P( B 2 )=0,3, P( B 3 )=0,3 és P( B 4 )=0,1. Mi lehet P( A B 1 )? Ez annak az eseménynek a valószínűsége, hogy a termék hibás, feltéve, hogy az 1. gépen készült. Mivel az 1. gép 5%-ban termel selejtet, ezért P( A B 1 )=0,05. Hasonlóan P( A B 2 )=0,08, P( A B 3 )=0,1 és P( A B 4 )=0,1. Így felírhatjuk a teljes valószínűség tételét: P( A )= i=1 4 P( A B i ) P( B i )= P( A B 1 ) P( B 1 )+P( A B 2 ) P( B 2 )+P( A B 3 ) P( B 3 )+P( A B 4 ) P( B 4 )= 0,05 0,4+0,08 0,3+0,1 0,2+0,1 0,1=0,074 Tehát a véletlenszerűen kiválasztott termék 0,074 valószínűséggel hibás. 22.2. Eltévedtünk a piacon. A közelünkben négy ruhaárus, egy újságos és két virágárus van. A távolkeleti ruhákat menedzselők 0,6 valószínűséggel tudják megmondani a helyes irányt, a virágárus nénik 0,7 valószínűséggel, Józsi bácsi, az újságos szinte biztosan, 0,95 valószínűséggel. Mekkora a valószínűsége, hogy helyes útbaigazítást kapunk, ha a közülük véletlenszerűen kérdezünk meg valakit? A: jó útra térítenek B1: valamelyik ruhaárustól kérdezünk B2: valamelyik virágárustól kérdezünk B3: Józsi bácsit kérdezzük Összesen 4+2+1=7 árus van a környéken. Annak a valószínűsége, hogy ruhaárust választunk: P( B 1 )= 4 7 ; hogy virágárust választunk P( B 2 )= 2 7 ; hogy Józsi bácsit választjuk P( B 3 )= 1 7. A feladat szövege szerint annak a valószínűsége, hogy helyes útbaigazítást kapunk feltéve, hogy ruhaárustól kérdezünk: P( A B 1 )=0,6. A többi: P( A B 2 )=0,7 és P( A B 3 )=0,95. Írjuk fel a teljes valószínűség tételét: P( A )=P( A B 1 ) P( B 1 )+P( A B 2 ) P( B 2 )+P( A B 3 ) P( B 3 )= 0,6 4 7 +0,7 2 7 +0,95 1 7 = 4,75 7 0,678 Vagyis 0,678 valószínűséggel kapunk helyes útmutatást. 22.3. Egy rekeszben (20 üveg) fele-fele arányban van barna és világos sör. Az üvegeket véletlenszerűen választva elkezdjük pusztítani a készletet. Mi a valószínűsége, hogy a harmadik kivett üveg barna nedűt tartalmaz? A: a 3. üvegben barna sör van B1: a 3. sör előtt 10 világos és 8 barna sör van a rekeszben B2: a 3. sör előtt 9 világos és 9 barna sör van a rekeszben B3: a 3. sör előtt 8 világos és 10 barna sör van a rekeszben C1: elsőre világos sört választunk C2: másodikra világos sört választunk C 1 : elsőre barna sört választunk C 2 : másodikra barna sört választunk coedu.sze.hu/print.php4?print_items= 2/9

B1, B2, B3 teljes eseményrendszert alkotnak. Fejezzük ki ezeket C1 és C2-vel! P( B 1 )=P( C 1 C 2 )=P( C 2 C 1 ) P( C 1 )= 9 19 10 20 = 9 38 P( B 2 )=P( C 1 C 2 + C 1 C 2 )=P( C 1 C 2 )+P( C 1 C 2 )=P( C 2 C 1 ) P( C 1 )+P( C 1 C 2 ) P( C 2 )= 10 19 10 20 + 10 19 10 20 = 20 38 P( B 3 )=P( C 1 C 2 )=P( C 2 C 1 ) P( C 1 )= 9 19 10 20 = 9 38 P( A B 1 )= 8 18, P( A B 2 )= 9 18, P( A B 3 )= 10 18 P( A )= i=1 3 P( A B i ) P( B i )= 8 18 9 38 + 9 18 20 38 + 10 18 9 38 = 8+20+10 76 = 1 2 (Megjegyzés: Az eredmény nem meglepő, ha belegondolunk.) 22.4. Egy évfolyamon a lányok 0,7, a fiúk 0,6 valószínűséggel vizsgáznak sikeresen egy bizonyos tárgyból. Mi lehet az évfolyam százalékos összetétele, ha tudjuk, hogy az évfolyam 63%-a vizsgázik sikeresen? A: sikeresen vizsgázik egy hallgató P( A )=0,63 B1: egy véletlenszerűen választott hallgató lány P( B 1 )=p B2: egy véletlenszerűen választott hallgató fiú P( B 2 )=1 p P( A B 1 )=0,7 P( A B 1 )=0,7 A teljes valószínűség tételét alkalmazva: P( A )=P( A B 1 ) p+p( A B 2 ) ( 1 p ) 0,63=0,7 p+0,6 ( 1 p ) 0,03=0,1 p p=0,3 1 p=0,7 Vagyis az évfolyam 30%-a lány, 70%-a pedig fiú. 22.5. Egy üzemben 3 gépsor gyártja ugyanazt a terméket. Az első a termékek 30%-át, a második az 50%-át, a harmadik a 20%-át adja. Az elsőn készült termékek 5%-a, a másodikon készültek 7%-a, a harmadikon készültek 3%-a selejt. Mekkora annak a valószínűsége, hogy egy véletlenszerűen kiválasztott selejtes termék az első gépsoron készült? A: a termék selejtes B1: a termék az 1. gépsorral készült B2: a termék a 2. gépsorral készült B3: a termék a 3. gépsorral készült Így a feladatban megadott valószínűségek: P( B 1 )=0,3, P( B 2 )=0,5, P( B 3 )=0,2. P( A B 1 )=0,05, P( A B 2 )=0,07, P( A B 3 )=0,03. Ezekre alkalmazva a Bayes-tételt: P( B 1 A )= P( A B 1 ) P( B 1 ) i=1 3 P( A B i ) P( B i ) = 0,05 0,3 0,05 0,3+0,07 0,5+0,03 0,2 = 0,015 0,015+0,035+0,006 = 0,015 0,056 = 15 56 0,268. Tehát 0,268 a valószínűsége, hogy egy véletlenszerűen kiválasztott selejtes termék az első coedu.sze.hu/print.php4?print_items= 3/9

gépsoron készült. 22.6. Egy gyárban készült termékek 70%-a másodosztályú, 30%-a első osztályú. A termékek minősítésekor a következő hibát követik el: első osztályú terméket 5% valószínűséggel minősítenek másodosztályúnak, másodosztályú terméket 2% valószínűséggel minősítenek első osztályúvá. Mi a valószínűsége annak, hogy egy első osztályúnak minősített termék valóban első osztályú? B1: a termék első osztályú B2: a termék másodosztályú A: a terméket első osztályúnak minősítik A valószínűségek: P( B 1 )=0,3 P( B 2 )=0,7 P( A B 1 )=1 0,05=0,95 P( A B 2 )=0,02 Ezekkel a Bayes-tétel: P( B 1 A )= P( A B 1 ) P( B 1 ) P( A B 1 ) P( B 1 )+P( A B 2 ) P( B 2 ) = 0,95 0,3 0,95 0,3+0,02 0,7 = 285 299 0,953. Tehát 0,953 a valószínűsége annak, hogy egy első osztályúnak minősített termék valóban első osztályú. 22.7. Négy doboz mindegyikében 4 golyó van, melyek közül rendre 1, 2, 3, 4 piros. Kiválasztunk egy dobozt és abból visszatevéssel háromszor húzunk. Azt találjuk, hogy mindhárom kihúzott golyó piros. Mi a valószínűsége, hogy a dobozban levő golyók közül éppen kettő volt piros? A: mindhárom kihúzott golyó piros. B1: az 1. dobozt választjuk P( B 1 )= 1 4 B2: a 2. dobozt választjuk P( B 2 )= 1 4 B3: a 3. dobozt választjuk P( B 3 )= 1 4 B4: a 4. dobozt választjuk P( B 4 )= 1 4 Az 1. dobozban 1 db piros golyó van, a 2.-ban 2, a 3.-ban 3, a 4.-ben pedig 4. Annak a valószínűsége, hogy egy húzásra az 1. dobozból piros golyót húzunk: 1 4. Annak a valószínűsége, hogy egy húzásra a 2. dobozból piros golyót húzunk: 2 4. Annak a valószínűsége, hogy egy húzásra a 3. dobozból piros golyót húzunk: 3 4. Annak a valószínűsége, hogy egy húzásra a 4. dobozból piros golyót húzunk: 4 4. Annak a valószínűsége, hogy háromszor egymás után húzva piros golyót húzunk: coedu.sze.hu/print.php4?print_items= 4/9

az 1. dobozból: ( 1 4 ) 3 =P( A B 1 ) ; a 2. dobozból: ( 2 4 ) 3 =P( A B 2 ) ; a 3. dobozból: ( 3 4 ) 3 =P( A B 3 ) ; a 4. dobozból: ( 4 4 ) 3 =P( A B 4 ). Ezekkel a Bayes-tétel: P( B 2 A )= P( A B 2 ) P( B 2 ) i=1 4 P( A B i ) P( B i ) = 8 64 1 4 1 64 1 4 + 8 64 1 4 + 27 64 1 4 + 64 64 1 4 = 8 1+8+27+64 = 8 100 =0,08. Tehát 0,08 a valószínűsége, hogy a dobozban levő golyók közül éppen kettő volt piros. 22.8. Labdarúgó edzésen jártunk. Tudjuk, hogy a résztvevő 20 játékos közül a csatárok (5 fő) 0,9 valószínűséggel, a középpályások (7 fő) 0,8, a védők (6 fő) 0,75, a kapusok (2 fő) 0,7 valószínűséggel lövik be a büntetőt. Látunk egy játékost, aki kihagyja a büntetőjét. Mi a valószínűsége, hogy ő csatár? A: a játékos kihagyja a büntetőt. B1: a véletlenszerűen választott játékos csatár, P( B 1 )= 5 20 =0,25 B2: a véletlenszerűen választott játékos középpályás, P( B 2 )= 7 20 =0,35 B3: a véletlenszerűen választott játékos védő, P( B 3 )= 6 20 =0,3 B4: a véletlenszerűen választott játékos kapus, P( B 4 )= 2 20 =0,1 P( A B 1 )=1 P( belövi B 1 )=1 0,9=0,1 Hasonlóan: P( A B 2 )=1 0,8=0,2, P( A B 3 )=1 0,75=0,25, P( A B 4 )=1 0,7=0,3. Alkalmazzuk a Bayes-tételt: P( B 1 A )= P( A B 1 ) i=1 4 P( A B i ) P( B i ) = 0,1 0,25 0,1 0,25+0,2 0,35+0,25 0,3+0,3 0,1 = 1 8 =0,125 Tehát az ismeretlen játékos 0,125 valószínűséggel csatár. 22.9. Egy kereskedő négy beszállítótól kap árut. Az első a teljes áru mennyiségének a felét, a másodiktól a negyedét, a harmadiktól és a negyediktől egyaránt a nyolcadát szerzi be. Tapasztalata szerint a legnagyobb szállítótól kapott áru 60%-a első osztályú, a többi másodosztályú. A másodiknál ez az arány 50-50%, a maradék kettőnél 40-60%. A készletéből választott áru mekkora valószínűséggel lesz első osztályú? B1: az árut az első szállító hozta B2: az árut a 2. szállító hozta B3: az árut a 3. szállító hozta coedu.sze.hu/print.php4?print_items= 5/9

B4: az árut a 4. szállító hozta A: a választott áru első osztályú A feladat szövege szerint az első szállító a teljes mennyiség felét adja, tehát annak a valószínűsége, hogy egy véletlenszerűen választott áru tőle származik: P( B 1 )=0,5. Hasonlóan: P( B 2 )=0,25, P( B 3 )=P( B 4 )=0,125. Az elsőtől kapott áru 60%-a első osztályú, a többi másodosztályú. Vagyis feltéve, hogy egy áru az 1. szállítótól származik, az 0,6 valószínűséggel első osztályú. Tehát: P( A B 1 )=0,6. Hasonlóan a többire: P( A B 2 )=0,5, P( A B 3 )=0,4, P( A B 4 )=0,4. Most már felírhatjuk a teljes valószínűség tételét: P( A )= i=1 4 P( A B i ) P( B i )=0,6 0,5+0,5 0,25+0,4 0,125+0,4 0,125=0,525. Tehát a kereskedőtől vett áru 0,525 valószínűséggel első osztályú. 22.10. Az előbb említett kereskedő a reklamációk miatt szeretné kideríteni, hogy egy véletlenszerűen választott másodosztályú áru mekkora valószínűséggel származik az egyes beszállítóktól. Segítsünk neki! Megoldás: A kérdés az, mi annak a valószínűsége, hogy az áru az 1. (2., 3., 4.) szállítótól származik, feltéve, hogy másodosztályú. Használjuk fel az előző példa jelöléseit. Mivel csak első és másodosztályú áru fordul elő, ezért A jelöli azt az eseményt, hogy az áru másodosztályú. Ezek szerint a következő valószínűségeket kell meghatározni: P( B 1 A ), P( B 2 A ), P( B 3 A ), P( B 4 A ). Az előző példából ismertek az alábbi valószínűségek: P( B 1 )=0,5, P( B 2 )=0,25, P( B 3 )=0,125, P( B 4 )=0,125, P( A )=0,525, tehát P( A )=1 P( A )=0,475. Mivel mindenki csak első vagy másodosztályú árut hoz, ezért P( A B 1 )=1 P( A B 1 )=0,4, P( A B 2 )=1 P( A B 2 )=0,5, P( A B 3 )=1 P( A B 3 )=0,6, P( A B 4 )=1 P( A B 4 )=0,6. Most már minden adott a Bayes-tétel alkalmazásához: P( B 1 A )= P( A B 1 ) P( B 1 ) i=1 4 P( A B i ) P( B i ) = 0,4 0,5 0,4 0,5+0,5 0,25+0,6 0,125+0,6 0,125 = 0,2 0,475 =0,421 P( B 2 A )= P( A B 2 ) P( B 2 ) i=1 4 P( A B i ) P( B i ) = 0,5 0,25 0,475 = 0,125 0,475 =0,263 P( B 3 A )= P( A B 3 ) P( B 3 ) i=1 4 P( A B i ) P( B i ) = 0,6 0,125 0,475 = 0,075 0,475 =0,158 P( B 4 A )= P( A B 4 ) P( B 4 ) i=1 4 P( A B i ) P( B i ) = 0,6 0,125 0,475 = 0,075 0,475 =0,158 Ellenőrző feladatok 1. feladat coedu.sze.hu/print.php4?print_items= 6/9

Egy középiskolában 4 érettségiző osztály van. Az egyikben a tanulók negyede, a másikban fele, a harmadikban és a negyedikben ötöde vizsgázott jelesre matematikából. Minden osztályba ugyanannyian járnak. Mennyi a valószínűsége, hogy egy véletlenszerűen választott érettségiző diák jelesre vizsgázott? 0,2432 0,2500 0,2174 0,2875 2. feladat Egy üzemben 3 munkás szortírozza az elkészült termékeket. Az egyik 0,05 valószínűséggel hibázik a minősítéskor, a második és a harmadik rendre 0,03, illetve 0,02 valószínűséggel. Egy óra alatt az első átlagosan 28, a második 36, a harmadik 42 terméket vizsgál meg. Ha az üzem termékei közül véletlenszerűen választunk egyet, akkor mi a valószínűsége, hogy az hibás minősítést kapott? 0,033 0,031 0,106 0,096 3. feladat Egy városban a keresőképes lakosság 28%-a rendelkezik diplomával. A munkanélküliek aránya a diplomások között 5,3%, a többiek között 7,8%. Ha véletlenszerűen kiválasztunk egy embert, mekkora a valószínűsége, hogy ő munkanélküli? 0,0632 0,0655 0,0710 coedu.sze.hu/print.php4?print_items= 7/9

0,0682 4. feladat Az előző feladatban szereplő városban találkoztunk egy emberrel. Megtudtuk, hogy nincs munkája. Mi a valószínűsége, hogy rendelkezik diplomával? 0,234 0,838 0,280 0,209 5. feladat Egy nemzetközi kézilabda-kupában a legjobb nyolc közé 1 magyar, 2 spanyol, 2 német, 2 orosz és 1 szlovén csapat jutott, vaksorsolással (kiemelés nélkül) párosítják őket. A magyar csapat spanyol ellenféllel szemben 0,2, némettel szemben 0,5, orosszal szemben 0,45, a szlovénnal szemben pedig 0,7 valószínűséggel szerepel sikeresen. Mi a valószínűsége, hogy továbbjut a magyar gárda? 0,428 0,462 0,264 0,356 6. feladat Feltéve, hogy a fenti magyar csapat továbbjutott, mi a valószínűsége, hogy orosz ellenfelet ejtett ki? 0,300 0,450 0,225 coedu.sze.hu/print.php4?print_items= 8/9

0,150 7. feladat Feltéve, hogy nem jutott tovább a magyar csapat, mi a valószínűsége, hogy papíron nála erősebbtől kapott ki? 0,924 0,675 0,462 0,337 coedu.sze.hu/print.php4?print_items= 9/9