Valószínűségszámítási feladatok (emelt szint)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Valószínűségszámítási feladatok (emelt szint)"

Átírás

1 Valószínűségszámítási feladatok (emelt szint) Klasszikus valószínűség 1. Véletlenszerűen felírunk egy hatjegyű számot a 0, 1, 2, 3, 4, 5 számjegyek felhasználásával, melyekben minden számjegy csak egyszer fordul elő. Mennyi a valószínűsége, hogy 5-tel osztható számot írtunk fel? (0,36) 2. Ha tíz könyvet helyezünk el tetszőleges sorrendben egy könyvespolcon, és három könyvet előre megjelölünk, akkor mi a valószínűsége annak, hogy az elhelyezés során a megjelölt könyvek egymás mellé kerülnek? (0,067) 3. Egy vendéglő egyik asztalánál 10 vendég ül. Összesen rendelnek 3 üveg sört, 4 tésztát és 3 kávét. (Minden vendég csak egy tételt rendel és a sörök, tészták, stb. teljesen egyformák.) A pincér emlékszik arra, hogy miből mennyit kell hoznia, de teljesen elfelejtette, hogy mit, kinek kell adnia. Találomra szétosztja, amit hozott. Mennyi annak a valószínűsége, hogy mindenki azt kapja, amit kért? (0,000238) 4. Öt házaspár érkezik egy étterembe. Véletlenszerűen leülnek egy hosszú asztal mellé. Menynyi a valószínűsége, hogy a) azonos neműek nem kerülnek egymás mellé, (0,00794) b) a házaspárok egymás mellett ülnek? (0,001058) 5. Magyarországon egy rendszámtábla 3 betűből és utána 3 számjegyből áll. Egy rendszámtábla elkészítéséhez 26 betűt és 10 számjegyet használhatunk fel. (A 0-val kezdő számhármasokat is megengedjük, de 000-ás rendszám nincs). Mennyi a valószínűsége, hogy egy rendszámtáblán minden betű és minden számjegy különböző? (0,6397) 6. Egyszerre dobunk 6 szabályos dobókockával. Mi a valószínűsége annak, hogy legalább két dobókockával azonos pontszámot dobunk? (0,985) 7. Egy szabályos dobókockával háromszor dobunk egymás után. A kapott eredményeket egymás mellé írva egy háromjegyű számot kapunk. Mennyi a valószínűsége, hogy az előbbiekben kapott háromjegyű számban van legalább két azonos számjegy? (0,4444) alma közül 10 férges. Mennyi a valószínűsége, hogy válogatás nélkül 5 almát kivéve, közöttük a) pontosan 2 férges alma lesz, (0,0702) b) lesz férges alma? (0,4162) 9. Egy csomag magyar kártyát jól összekeverünk. Mennyi annak a valószínűsége, hogy a 4 ász egymás után helyezkedik el? (0,0008) 10. Egy dobozban 4 piros golyó van. Legalább hány fehér golyót kell a dobozba helyeznünk ahhoz, hogy ezután találomra húzva belőle egy golyót, az 0,9-nél nagyobb valószínűséggel fehér legyen? (37) 11. Egy urnában 10 golyó van, pirosak és kékek. A piros golyó húzásának valószínűsége 0,3. Hozzáteszünk még 10 golyót, pirosakat és kékeket. Hány kék és hány piros golyó legyen ezek között, hogy egy kék golyó kihúzásának a valószínűsége pontosan 0,5 legyen? (3 kék és 7 piros)

2 12. Öt különböző egyenesszakasz hossza rendre 1, 3, 5, 7, 9 egység. Határozza meg annak a valószínűségét, hogy véletlenszerűen kiválasztva közülük hármat, a kiválasztott szakaszokból háromszög szerkeszthető! (0,3) R Egy sugarú kör alakú céltábla eltalálása biztos esemény. Mekkora lehet a céltábla legbelső körének sugara, hogy az ezen kívüli találat valószínűsége legfeljebb 0,1 legyen, egyenletes eloszlást feltételezve? ( ) r 1, Egy pénzérmét 10-szer egymás után feldobunk. Ha fejet kapunk, azt F-fel, ha írást, azt I- vel jelöljük. Mennyi annak a valószínűsége, hogy az F és I betűknek ez a 10 elemű sorozata tartalmaz két azonos betűt egymás után? (0,998) 15. Egy dobozban 5 korong van, amelyeken az 1, 2, 3, 4, 5 számjegyek közül egy-egy szerepel. Három korongot húzunk ki egymás után úgy, hogy a kihúzottat az új húzás előtt visszateszszük a dobozba. Mi a valószínűsége annak, hogy a három korongról leolvasott számjegyek összege 10 lesz? (0,144) láda áruból, amely közül 15 láda I. osztályú, 5 pedig II. osztályú terméket tartalmaz, véletlenszerűen választunk 5 ládát. Mennyi a valószínűsége, hogy a választott ládák között a) pontosan 3 I. osztályú árut tartalmazó láda lesz, (0,2935) b) lesz II. osztályú terméket tartalmazó láda? (0,8063) 17. Dobjunk fel egy szabályos dobókockát háromszor egymás után. Vizsgáljuk a dobott számok összegét. Mennyi a valószínűsége, hogy a) a dobott számok összege 15, (0,0463) b) a dobott számok összege legalább 15, (0,0926) c) a dobott számok összege legfeljebb 15? (0,9537) Feltételes valószínűség 18. Ejtőernyős ugrást hajtanak végre 1500 m 2 -es területre. Sikeres az ugrása annak, aki a terepen kijelölt 10 m oldalú négyzeten belül ér földet. Különdíjat kap az, aki a négyzet közepén megrajzolt 2 m sugarú körbe érkezik. Mennyi a valószínűsége annak, hogy egy sikeres ugrást végrehajtó ejtőernyős különdíjat is kap, ha a négyzeten belül a leérkezés bármely helyre egyenlő esélyű? (0,13) 19. Egy urnában 5 fehér és 5 piros golyó van. Kétszer fehéret húztunk. Mi a valószínűsége, hogy harmadikra is fehéret húzunk? (0,375) 20. Ha nagyon sok kétgyerekes család közül kiválasztunk véletlenszerűen egyet, és megtudjuk, hogy legalább az egyik gyermek lány, mennyi a valószínűsége, hogy van fiú is a családban? A feladatban a születések sorrendjére is legyünk tekintettel! (0,667) 21. Egy dobókockát kétszer feldobunk. Mi a valószínűsége, hogy a dobott számok összege 7 lesz, feltéve, hogy az első dobás eredménye páros? (0,1667) 22. Két kockával dobunk. Mekkora a valószínűsége, hogy az egyik kockával 6-ost dobunk, feltéve, hogy a dobott számok összege 8? (0,4) 23. Három kockával dobunk. Mekkora a valószínűsége, hogy az egyik kockával 6-ost dobunk, feltéve, hogy a dobott számok összege 15? (0,9)

3 24. Három kockát feldobunk. Feltéve, hogy a dobott számok között nincs két egyforma, mennyi a valószínűsége, hogy legalább az egyiken 6-os van? (0,5) 25. Egy csomag magyar kártyából kihúzunk két lapot egymás után, visszatevés nélkül. Mi a valószínűsége, hogy mindkét lap piros lesz, feltéve, hogy az első húzás piros? (0,2258) 26. Egy iskolába 260 ember jár, 230 tanuló és 30 tanár. Egyszer egy influenzajárvány tört ki köztük. Az orvos az alábbi táblázatot készítette: a) Véletlenszerűen kihúzunk egy kartont. Mi a valószínűsége, hogy: i) fiúé? ii) betegé? iii) beteg fiúé? (0,423; 0,385; 0,192) b) Előzetesen a fiúk, lányok és tanárok kartonjait külön fiókokba gyűjtötték. Ha a lányokéból húzunk, mi a valószínűsége annak, hogy beteg lányt húztunk? (0,33) c) Az orvos szorgos asszisztense egy kupacba kidobálta a fiókokból az összes olyan kartont, amely betegé volt. Ezekből véletlenszerűen húzva egyet, mi a valószínűsége annak, hogy tanár az illető? (0,1) d) Ha kettőt húzok ugyanebből a beteg-kupacból egymás után, mi a valószínűsége, hogy az első fiú lesz, a második lány? És hogy mindkettő fiú lesz? (0,202; 0,247) Várható érték 27. Egy dobozban 3 fehér és 2 piros golyó van. Kiválasztunk találomra egyszerre 3 golyót. Legyen a valószínűségi változó értéke a mintában szereplő fehér golyók száma. Adjuk meg és ábrázoljuk a valószínűségi változó valószínűség eloszlását! ( 1 0, 3; 2 0, 6 és 3 0,1 ) ,,,. Számítsuk ki ξ várható értékét és szórását! ( 0, Egy ξ valószínűségi változó lehetséges értékei -1, 0, 1, 2. Az ezekhez tartozó valószínűségek 12 D 0, ) 9428 E és 29. Legyen X egy szabályos dobókockával dobott szám. Mennyi lesz X várható értéke és szórása? ( 3, 5 D 1, ) E és Feldobunk két szabályos dobókockát. A ξ valószínűségi változó jelentse a dobott számok összegét. Határozza meg a ξ valószínűségi változó várható értékét és szórását! ( E 7 és D 2, ) Három egyforma kalap alatt egy-egy 100, 1000, 5000 Ft-os bankjegy van elhelyezve, mint nyeremény. Ha egy kalapot választunk, akkor határozzuk meg a nyeremény várható értékét és szórását! ( 2033, 33 D 2129, ) E és Albert és Béla egy szabályos dobókockával játszanak. Albert minden dobás után annyi forintot fizet Bélának, amennyit dobtak, Béla pedig minden dobáskor 3 Ft-ot fizet Albertnek. Kinek előnyösebb a játék? (Albert -0,5, Béla 0,5)

4 33. Kati és Pali egy szabályos dobókockával játszanak. Kati akkor nyer, ha 2-est, 3-ast, 5-öst vagy 6-ost dobnak, Pali pedig akkor, ha 1-est vagy 4-est dobnak. Ha Kati nyer, akkor Pali fizet neki 3 forintot, ha Pali nyer, akkor Kati fizet neki 4 forintot. Kinek előnyösebb a játék? (Kati 0,667, Pali -0,667) 34. Egy adott időszak alatt egy biztosítótársaság az ügyfelei 30%-ának 1000Ft-ot, 22%-ának 5000Ft-ot, 8%-ának 10000Ft-ot fizet ki, a többieknek semmit. Milyen összegű legyen a E -nál több) biztosítási díj, hogy a biztosító gazdaságosan működjön? ( Egy biztosító öt napos síelésre speciális biztosítást ajánl, melyet 1000 Ft-ért lehet megkötni. A biztosító halálesetre 4 millió forintot fizet, fej- vagy gerincsérülésre 2 milliót, végtagsérülésre 500 ezer forintot, poggyászban esett kárra 200 ezer forintot. A biztosító szakemberei szerint a haláleset valószínűsége 0,005%, a fej- vagy gerincsérülésé 0,01%, a végtagsérülésé 0,1%, a poggyászban esett káré pedig 0,01%. Mennyi a biztosító nyereségének várható ér- E, így 80 Ft a nyereség) téke egy biztosításon? ( Az ábrán látható játékautomata pályáján egy golyó gurul lefelé. Minden akadálynál ugyanakkora valószínűséggel megy jobbra vagy balra, ezért minden út egyformán valószínű. A pályán 4 szinten vannak akadályok, és a végén 5 rekeszbe érkezhet a golyó. Egy golyó elindításáért 20 Ft-ot kell fizetni, és minden rekeszhez odaírtuk, hogy a játékos mennyit nyer, ha odaér a golyó. Mennyi a játékos nyereségének várható értéke? (Megoldás: Az egyes útvonalak számát a Pascal háromszög megfelelő értékei adják, így 1, 4, 6, 4, 1 a rekeszekbe vezető utak E 18, ) száma. Innen 75 Teljes valószínűség tétel, Bayes-tétel 37. Egy egyetemi vizsgán az A szakos hallgatók 60%-a, a B szakos hallgatók 75%-a, a C szakos hallgatók 85%-a vizsgázik sikeresen. Az A szakos hallgatók az évfolyam 40%-át, a B szakos hallgatók az évfolyam 35%-át teszik ki. Mennyi a valószínűsége annak, hogy egy véletlenszerűen kiválasztott hallgatónak nem sikerült a vizsgája? (0,285) 38. Három gyárban TV-képcsöveket gyártanak. Az első gyár adja a teljes mennyiség negyedét, a második az egész 45%-át, a maradékot a harmadik gyárban készítették. Egy vizsgálat során kiderült, hogy az előírt működési óraszámot az első gyárban gyártott képcsövek 15%- a, a másodikban gyártottak 30%-a, a harmadikban gyártottak 25%-a éri csak el. Mennyi a valószínűsége, hogy a teljes mennyiségből egy találomra kiválasztott képcső az előírt ideig működik? (0,2475) 39. Egy műhelyben három műszakban gyártanak azonos terméket. Egy napon az összes gyártott termékből az első műszakban 40%, a második és harmadik műszakban 30-30% készült. Az első műszakban 2%, a másodikban 3%, a harmadikban 5% hibás áru készült. A három műszakban elkészült teljes mennyiségből véletlenszerűen kiválasztunk egy darabot. Mennyi a valószínűsége, hogy hibás? Ha hibás, mennyi a valószínűsége, hogy a II. műszakban gyártották ezt a terméket? (0,032; 0,281) 40. Egy gazda három helyen termelt almát, 2t, 3t és 5t mennyiségben. Az egyes helyeken termelt almáknak rendre 30, 20 illetve 5%-a férges. Az almákat ömlesztve tárolja. Mi a valószínűsége, hogy

5 a) ha egy almát véletlenszerűen kiválasztunk, az nem férges, (0,855) b) ha a kiválasztott alma nem férges, akkor az a második helyről származott? (0,281) 41. Egy gyárban három gép gyártja a csavarokat. A termékek 25%-át az A gép,35%-át a B gép, 40%-át a C gép gyártja. Az A gép 5%-ban, a B gép 4%-ban, a C gép pedig 2%-ban termel selejtet. Ha egy találomra kiválasztott csavar selejtes, mennyi a valószínűsége, hogy azt a C gép gyártotta? (0,23) 42. Egy bizonyos fajta vetőmag összetételének vizsgálatakor megállapították, hogy négyféle magot tartalmaz, mégpedig 50% az I-es fajtából, 30% a II-esből, 15% a III-asból és 5% a IV-esből tevődik össze. Annak valószínűsége, hogy egy I-es típusú magból legalább 50 szemet tartalmazó kalász fejlődik 0.2. Ugyanez a valószínűség a többi fajtánál rendre 0.5, 0.4 és a) Mekkora valószínűséggel fejlődik egy véletlenszerűen kiválasztott magból legalább 50 szemet tartalmazó kalász? (0,3125) b) Feltéve, hogy a magot elvetve a kalász 50 szemnél kevesebbet tartalmazott, milyen valószínűséggel tartozik az I-es típusba? (0,5819) 43. Egy gyárban a termékek 90%-a felel meg a súlyszabványnak. A súlyszabványnak megfelelő gyártmányok 80%-a megy át az alakpróbán, a súlyszabványnak nem megfelelő termékek 75%-a bukik meg az alakpróbán. a) A termékek mekkora hányada felel meg mindkét szabványnak? Mekkora hányad megy át az alakpróbán és bukik meg a súlypróbán? (0,72; 0,025) b) Véletlenszerűen kiválasztva egy gyártmányt mekkora valószínűséggel bukik meg az alakpróbán? (0,255) Hipergeometrikus eloszlás, binomiális eloszlás 44. Egy reklámjátékon a söröskupakok 5%-a nyer. Mi a valószínűsége, hogy egy láda (20 üveg) sört véve legalább egy kupakkal nyerünk? Mennyi lesz két láda sör esetén a nyerő kupakok várható száma és szórása? (0,6415; 2; 1,378) 45. Egy halfajtánál bizonyos rendellenesség előfordulásának valószínűsége 0,2. A halastóból 10 halat egyenként megvizsgálunk, majd rögtön visszadobunk. Mi a valószínűsége, hogy legalább 9 hal esetén észlelhető a rendellenesség? (4, ) 46. Tengeri halakat egy tengeralattjáró ablakából figyelünk meg. A tenger ezen részén a halak 20%-a tartozik egy bizonyos fajhoz. A megfigyelési idő alatt 10 hal úszik el az ablak előtt. Mi a valószínűsége, hogy ezek közül a) pontosan 3 a kiválasztott fajhoz tartozik, (0,2013) b) legfeljebb 9 tartozik a kiválasztott fajhoz? (0,9999) 47. Egy kutyafajtánál bizonyos anyagcsere rendellenesség megjelenésének valószínűsége 0,1. Tíz kölyköt egyenként kiválasztunk, majd megvizsgálás után visszaengedünk. Mi a valószínűsége, hogy ebben a tízelemű mintában legfeljebb egy kölyöknél tapasztalunk rendellenességet? (0,7361) 48. Egy vadászterületen, ahol az őzek egy része valamilyen betegségben szenved, egy bizonyos idő alatt 10 állatot sikerült megfogni és megvizsgálni. Annak a valószínűsége, hogy mind a 10 egészséges Mi a valószínűsége, hogy a megvizsgáltak fele beteg? A megvizsgáltak között várhatóan hány egészséges és hány beteg van? (1, ; 1; 9)

6 49. Egy gyümölcsösben minden második alma férges. Mi a valószínűsége, hogy 10 almát véletlenszerűen összeszedve, több mint 75%-a férges? A kiválasztott almák között várhatóan hány lesz férges, és mennyi a szórás? (0,05469; 5; 1,58) 50. Egy bizonyos területen a madarak 25%-a védett fajhoz tartozik. 10 madarat megfigyelve, mi a valószínűsége, hogy közöttük éppen 2 védett lesz? Mennyi a megfigyelt madarak között a védettek várható értéke és szórása? (0,2816; 2,5; 1,3693) 51. Egy holtágban a halak 60%-a méreten aluli. Ezeket rögtön vissza kell dobni. Egy horgász 10 halat fogott. Mi a valószínűsége, hogy a) ezek közül 2 hazavihető, (0,1209) b) ezek közül legalább 2 hazavihető? (0,9536) c) Várhatóan hány vihető haza? (4) 52. Egy összejövetelen 200 tombolát adtak el és 20 különböző díj volt. Valaki 10 tombolát vett. Mi a valószínűsége, hogy a) pontosan egy nyereményt nyer, (0,3974) b) legalább egy nyereményt nyer? (0,6602) c) Várhatóan hány díjat nyer? (1) 53. Egy tombolajátékon várhatóan minden ötödik jegy nyer. Hány jegyet vegyünk ahhoz, hogy nyereményeink számának várható értéke 2 legyen? Ha összesen 1000 jegyet adtak el, akkor mi a valószínűsége, hogy pontosan 2 nyereményünk lesz? Mennyi a szórás? (10; 0,3035; 1,2592) 54. Egy raktárban 1000 üveg bort tárolnak, ebből bizonyos idő elteltével 10% fogyaszthatatlanná válik. Találomra kiválasztva 20 üveg bort elszállítás céljára, mi a valószínűsége, hogy ezek között legfeljebb két fogyaszthatatlan lesz? (0,6772) 55. Egy fiatal fán 30 alma termett, ezek közül 10 férges. Válogatás nélkül leszedünk 5-öt. Mi a valószínűsége, hogy a) ezek közül 2 férges, a többi nem, (0,3600) b) legalább 1 férges? (0,8912) c) Mennyi lesz 12 alma között a férgesek várható értéke? (4) 56. Egy raktárban 1000 db lejárt szavatossági idejű konzerv van. Egy véletlenszerűen kiválasztott 10 elemű mintában várhatóan 1 konzerv fogyaszthatatlan. Mi a valószínűsége, hogy a mintában legalább 1 fogyasztható van? (0,6531) dió között mennyi rossz belül, ha egy 10 elemű mintában várhatóan 2 a rossz? Mi a valószínűsége, hogy a 10 elemű mintában nem lesz 8-nál több rossz? Mennyi a mintában a rossz diók számának szórása? (20; 0,9999; 1,2060) 58. Egy tálon 100 szem cseresznye van, közülük 20 férges. Találomra kiválasztunk 10 szemet és eltesszük uzsonnára. Mi a valószínűsége, hogy ezek között legalább egy férges? Mennyi lesz 10 szem között a férgesek várható értéke és szórása? (0,905; 2; 1,206) 59. Egy dinnyeárus 100 dinnyéje közül 20 ehetetlen. Két dinnyét veszünk. Mi a valószínűsége, hogy a) mind a kettő ehetetlen, (0,038) b) mind a kettő ehető? (0,638)

Klasszikus valószínűségszámítás

Klasszikus valószínűségszámítás Klasszikus valószínűségi mező 1) Egy építőanyag raktárba vasúton és teherautón szállítanak árut. Legyen az A esemény az, amikor egy napon vasúti szállítás van, B esemény jelentse azt, hogy teherautón van

Részletesebben

Valószínűségszámítás feladatok

Valószínűségszámítás feladatok Valószínűségszámítás feladatok Klasszikus valószínűség./ Eg csomag magar kártát jól összekeverünk. Menni annak a valószínűsége, hog a ász egmás után helezkedik el?./ 00 alma közül 0 férges. Menni a valószínűsége,

Részletesebben

AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg?

AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg? KOMBINATORIKA FELADATSOR 1 1. Hányféleképpen rendezhető egy sorba egy óvodás csoport ha 9 lány és 6 fiú van és a lányokat mindig előre akarjuk állítani? 2. Hány 6-jegyű telefonszám van ahol mind 35-tel

Részletesebben

Bodó Beáta - MATEMATIKA II 1

Bodó Beáta - MATEMATIKA II 1 Bodó Beáta - MATEMATIKA II 1 FELTÉTELES VALÓSZÍNŰSÉG, FÜGGETLENSÉG 1. Legyen P (A) = 0, 7; P (B) = 0, 6 és P (A B) = 0, 5. Határozza meg a következő valószínűségeket! (a) B,V P (A B) 0, 8333 (b) B,V P

Részletesebben

Matematika B4 II. gyakorlat

Matematika B4 II. gyakorlat Matematika B II. gyakorlat 00. február.. Bevezető kérdések. Feldobunk egy kockát és egy érmét. Ábrázoljuk az eseményteret! Legyenek adottak az alábbi események: -ast dobunk, -est dobunk, fejet dobunk,

Részletesebben

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és Feladatok 2 zh-ra 205 április 3 Eseményalgebra Feladat Az A és B eseményekr l tudjuk, hogy P (A) = 0, 7, P (B) = 0, 4 és P (A B) = 0, 5 Határozza meg az A B esemény valószín ségét! P (A B) = 0, 2 2 Feladat

Részletesebben

Gyakorlat. Szokol Patricia. September 24, 2018

Gyakorlat. Szokol Patricia. September 24, 2018 Gyakorlat (Geometriai valószínűség, feltételes valószínűség) September 24, 2018 Geometriai valószínűség 1 Az A és B helységet 5 km hosszú telefonvezeték köti össze. A vezeték valahol meghibásodik. A meghibásodás

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

Azaz 56 7 = 49 darab 8 jegyű szám készíthető a megadott számjegyekből.

Azaz 56 7 = 49 darab 8 jegyű szám készíthető a megadott számjegyekből. 1 Kombináció, variáció, permutáció 1. Hányféleképpen rakhatunk be 6 levelet 1 rekeszbe, ha a levelek között nem teszünk különbséget és egy rekeszbe maximum egy levelet teszünk? Mivel egy rekeszbe legfeljebb

Részletesebben

Klasszikus valószínűségi mező megoldás

Klasszikus valószínűségi mező megoldás Klasszikus valószínűségi mező megoldás Ha egy Kísérletnek csak véges sok kimenetele lehet, és az egyes kimeneteleknek, vagyis az elemi eseményeknek azonos a valószínűségük, akkor a kísérelttel kapcsolatos

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 22. lecke: A teljes valószínűség tétele és a Bayes-tétel Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

Valószínűség számítás

Valószínűség számítás Valószínűség számítás 1. Mennyi annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2. Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor mekkora

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját! 1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz

Részletesebben

Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév 1. Kombinatorikus módszer ismétlés nélküli ismétléses permutáció k 1!k 2!...k r! n futó beérkezésének sorrendje n golyót ennyiféleképpen

Részletesebben

(6/1) Valószínűségszámítás

(6/1) Valószínűségszámítás (6/1) Valószínűségszámítás 1) Mekkora annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2) Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor

Részletesebben

Feladatok és megoldások a 9. hétre. 1. Egy szabályos kockával dobunk. Mennyi a valószínűsége, hogy 6-ost dobunk, ha tudjuk, hogy:

Feladatok és megoldások a 9. hétre. 1. Egy szabályos kockával dobunk. Mennyi a valószínűsége, hogy 6-ost dobunk, ha tudjuk, hogy: Feladatok és megoldások a 9. hétre Építőkari Matematika A3 1. Egy szabályos kockával dobunk. Mennyi a valószínűsége, hogy 6-ost dobunk, ha tudjuk, hogy: párosat dobunk? legalább 3-ast dobunk? legfeljebb

Részletesebben

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2?

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2? HIPERGEO. BINOM. POISSON 4.1. Egy üzletben 100-an vásárolnak, közülük 80-an rendelkeznek bankkártyával. A pénztárnál 10-en állnak sorba, mi a valószínűsége, hogy 7-nek lesz bankkártyája? 4.2. Egy üzletben

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

Számelmélet Megoldások

Számelmélet Megoldások Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben 1 feladatsor 1 Egy dobozban 20 fehér golyó van Egy szabályos dobókockával dobunk, majd a következ t tesszük: ha a dobott szám 1,2 vagy 3, akkor tíz golyót cserélünk ki pirosra; ha a dobott szám 4 vagy

Részletesebben

Ismétlés nélküli kombináció

Ismétlés nélküli kombináció Ismétlés nélküli kombináció Hányféleképpen lehet n különböz elembl kiválasztani k elemet úgy, hogy a sorrend nem számít, és minden elemet csak egyszer választhatunk? 0. Egy 1 fs csoportban hányféleképpen

Részletesebben

1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos?

1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos? Valószínűségszámítás, földtudomány alapszak, 2015/2016. őszi félév 1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos? 2. Két tizenhárom fős vízilabdacsapat mérkőzik

Részletesebben

3. Egy szabályos dobókockával háromszor dobunk egymás után. Legyen A az az esemény, hogy

3. Egy szabályos dobókockával háromszor dobunk egymás után. Legyen A az az esemény, hogy Valószínűségszámítás. zárthelyi dolgozat 009. október 5.. Egy osztályba 3-an járnak. Minden fizikaórán a a többi órától függetlenül a tanár kisorsol egy felelőt, véletlenszerűen, egyenletesen, azaz mindig

Részletesebben

A sztochasztika alapjai. Szorgalmi feladatok tavaszi szemeszter

A sztochasztika alapjai. Szorgalmi feladatok tavaszi szemeszter A sztochasztika alapjai Szorgalmi feladatok 2011. tavaszi szemeszter 1. feladat Feldobunk egy kockát és egy pénzérmét. Írjuk fel az eseményteret! 2. feladat Egy kockát ötször egymás után feldobunk. Jelöljük

Részletesebben

3. Mennyi annak a valószínűsége, hogy egy dobókockával kétszer egymás után dobva, egyszer páros, egyszer páratlan számot dobunk?

3. Mennyi annak a valószínűsége, hogy egy dobókockával kétszer egymás után dobva, egyszer páros, egyszer páratlan számot dobunk? Valószínűségszámítás, gráfok, statisztika 1. Egy 660 fős iskola tanulóinak 60%-a lány. A lány tanulók 25%-a a 12. évfolyamra jár. Egy tetszőleges tanulót választva az iskola tanulói közül, mennyi a valószínűsége,

Részletesebben

KOMBINATORIKA Permutáció

KOMBINATORIKA Permutáció Permutáció 1) Három tanuló, András, Gábor és Miklós együtt megy iskolába. Hányféle sorrendben léphetik át az iskola küszöbét? Írja fel a lehetséges sorrendeket! 2) Hány különböző négyjegyű számot alkothatunk

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

2. A ξ valószín ségi változó s r ségfüggvénye a következ : c f(x) =

2. A ξ valószín ségi változó s r ségfüggvénye a következ : c f(x) = 1 Egy dobozban hat fehér golyó van Egy szabályos dobókockával dobunk, majd annyi piros golyót teszünk a dobozba, amennyit dobtunk Ezután véletlenszer en húzunk egy golyót a dobozból (a) Mi a valószín sége,

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok VALÓSZÍNŰSÉGSZÁMÍTÁS MSc Órai Feladatok 1. Feladat (Diszkrét eloszlás) Ketten kosárlabdáznak. Az A játékos 0,4 a B játékos 0,3 valószínűséggel dob kosarat. A dobást A kezdi és felváltva dobnak egymás után.

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

Valószínűségszámítás

Valószínűségszámítás 1. Kombinatorika Valószínűségszámítás 2004.03.01. Készítette: Dr. Toledo Rodolfo 1.1. Tétel. Ha n darab különböző elemet az összes lehetséges módon sorba rendezünk, akkor ezt n! := n (n 1) (n 2) 2 1-féle

Részletesebben

7! (7 2)! = 7! 5! = 7 6 5! 5 = = ből 4 elem A lehetőségek száma megegyezik az 5 elem negyedosztályú variációjának számával:

7! (7 2)! = 7! 5! = 7 6 5! 5 = = ből 4 elem A lehetőségek száma megegyezik az 5 elem negyedosztályú variációjának számával: Kombinatorika Variáció - megoldások 1. Hány kétjegyű szám képezhető a 2, 3, 5, 6, 7, 8, 9 számjegyekből. ha minden számjegyet csak egyszer használhatunk fel? A lehetőségek száma annyi, mint amennyi 7 elem

Részletesebben

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Szűk elméleti összefoglaló Valószínűségi változó: egy függvény, ami az eseményteret a valós számok halmazára tudja vetíteni. A val.

Részletesebben

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához

Részletesebben

Környezet statisztika

Környezet statisztika Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)

Részletesebben

0,9268. Valószín ségszámítás és matematikai statisztika NGB_MA001_3, NGB_MA002_3 zárthelyi dolgozat

0,9268. Valószín ségszámítás és matematikai statisztika NGB_MA001_3, NGB_MA002_3 zárthelyi dolgozat A 1. A feln ttkorú munkaképes lakosság 24%-a beszél legalább egy idegen nyelvet, 76%-a nem beszél idegen nyelven. Az idegen nyelvet beszél k 2,5%-a, az idegen nyelvet nem beszél k 10%-a munkanélküli. Véletlenszer

Részletesebben

törtet, ha a 1. Az egyszerűsített alak: 2 pont

törtet, ha a 1. Az egyszerűsített alak: 2 pont 1. Egyszerűsítse az 3 2 a + a a + 1 törtet, ha a 1. Az egyszerűsített alak: 2. Milyen számjegy állhat az X helyén, ha a négyjegyű 361 X szám 6-tal osztható? X = 3. Minden szekrény barna. Válassza ki az

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

Érettségi feladatok: Sorozatok

Érettségi feladatok: Sorozatok Érettségi feladatok: Sorozatok 2005. május 10. 8. Egy mértani sorozat első tagja 8, hányadosa 2. Számítsa ki a sorozat ötödik tagját! 14. Egy számtani sorozat második tagja 17, harmadik tagja 21. a) Mekkora

Részletesebben

Gyakorló feladatok valószínűségszámításból végeredményekkel. a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli

Gyakorló feladatok valószínűségszámításból végeredményekkel. a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli Gyakorló feladatok valószínűségszámításból végeredményekkel a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli Mutassuk meg, hogy tetszőleges A és B eseményekre PA B PA+PB. Mutassuk

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA május 3. MINISZTÉRIUM NEMZETI ERFORRÁS május 3. 8:00. Idtartam: 135 perc

MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA május 3. MINISZTÉRIUM NEMZETI ERFORRÁS május 3. 8:00. Idtartam: 135 perc a feladat sorszáma maximális elért összesen II./A rész 13. 12 14. 12 15. 12 II./B rész 17 17 m nem választott feladat ÖSSZESEN 70 maximális elért I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum

Részletesebben

Matematika érettségi emelt 2008 október. x 2 0. nem megoldás. 9 x

Matematika érettségi emelt 2008 október. x 2 0. nem megoldás. 9 x Matematika érettségi emelt 8 október ( ) lg( 8) 8 8 nem megoldás lg( 8) 8 9 ] ; [ ] ; [, M {;} Matematika érettségi emelt 8 október 6 I. eset II. eset ;[ ] 5 5 6 ;[ ], [ [; 5 5 6 [ [; 4, {;} M Matematika

Részletesebben

Valószínűségszámítás feladatok

Valószínűségszámítás feladatok Valószínűségszámítás feladato A FELADATOK MEGOLDÁSAI A 0. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínűsége, hogy mindegyine ugyanaz az oldala erül felülre?. Két dobóocát

Részletesebben

Felte teles való szí nű se g

Felte teles való szí nű se g Felte teles való szí nű se g Szűk elméleti összefoglaló 1. P(A B) = P(AB) P(B) 2. 0 P(A B) 1 3. P(A A) = 1 4. P(A ) = 0 5. egymást kizáró események esetén: P( A I B) = P(A i B). A és B események függetlenek,

Részletesebben

a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli

a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli Gyakorló feladatok valószínűségszámításból végeredményekkel a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli. Igaz-e, hogy tetszőleges A, B és C eseményekre teljesül a A B \ C =

Részletesebben

æ A GYAKORLAT (* feladatok nem kötelezőek)

æ A GYAKORLAT (* feladatok nem kötelezőek) æ A3 6-7. GYAKORLAT (* feladatok nem kötelezőek) 1. Az 1,2,4,5,7 számkártyák mindegyikének felhasználásával hány különböző 5- jegyű szám készíthető? 2. A 0,2,4,5,7 számkártyák mindegyikének felhasználásával

Részletesebben

Kombinatorika gyakorló feladatok

Kombinatorika gyakorló feladatok Kombinatorika gyakorló feladatok Egyszerűbb gyakorló feladatok 1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? P = 3 2 1 = 6. 3 2. Hány különböző négyjegyű számot

Részletesebben

Matematika A4 II. gyakorlat megoldás

Matematika A4 II. gyakorlat megoldás Matematika A4 II. gyakorlat megoldás 1. Feltételes valószínűség Vizsgálhatjuk egy A esemény bekövetkezésének valószínűségét úgy is, hogy tudjuk, hogy egy másik B esemény már bekövetkezett. Például ha a

Részletesebben

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete? 1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás

Részletesebben

Kombinatorika. I. típus: Hányféleképpen lehet sorba rendezni n különböző elemet úgy, hogy a sorrend számít? (Ismétlés nélküli permutáció)

Kombinatorika. I. típus: Hányféleképpen lehet sorba rendezni n különböző elemet úgy, hogy a sorrend számít? (Ismétlés nélküli permutáció) Kombinatorika Az első n pozitív egész szám szorzatát n faktoriálisnak nevezzük és n! jellel jelöljük: n! := 1 2 3 4... (n 1) n 0! := 1 1! := 1 I. típus: Hányféleképpen lehet sorba rendezni n különböző

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

X. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük:

X. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük: 1. Az a @ b matematikai műveletet a következőképpen értelmezzük: @ a a b b, feltéve, hogy a 0. a Melyik állítás igaz a P és Q mennyiségekre? P = ((2 @ 1) @ (1 @ 2)) Q = ((7 @ 8) @ (8 @ 7)) A) P > Q B)

Részletesebben

12. Kombinatorika, valószínűségszámítás

12. Kombinatorika, valószínűségszámítás I. Nulladik ZH-ban láttuk: 12. Kombinatorika, valószínűségszámítás 1. Bornemissza Gergely elfelejtette a lőporraktár négy számjegyes pinkódját. Csak arra emlékszik, hogy vagy 1552 volt, vagy a számjegyek

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA 2014. január 18.

PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. Matematika KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2014. január 18. I. Időtartam: 45 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

Részletesebben

P (A) = i. P (A B i )P (B i ) P (B k A) = P (A B k)p (B k ) P (A) i P (A B i)p (B i )

P (A) = i. P (A B i )P (B i ) P (B k A) = P (A B k)p (B k ) P (A) i P (A B i)p (B i ) 6. A láncszabály, a teljes valószínűség tétele és Bayes-tétel Egy (Ω, A, P ) valószín ségi mez n értelmezett A 1,..., A n A események metszetének valószín sége felírható feltételes valószín ségek segítségével

Részletesebben

Matematika A4 I. gyakorlat megoldás

Matematika A4 I. gyakorlat megoldás Matematika A I. gyakorlat megoldás 1. Kombinatorikus módszer ismétlés nélküli ismétléses permutáció n! n! k 1!k 2!...k r! n futó beérkezésének sorrendje n golyót ennyiféleképpen állíthatunk sorba, ha k

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

Matematika A3 Valószínűségszámítás, 3. és 4. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 3. és 4. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 3. és 4. gyakorlat 2013/14. tavaszi félév 1. Várható érték 1. Egy dobozban 6 cédula van, rajtuk pedig a következő számok: (a) 1, 2, 3, 4, 5, 6; (b) 1, 2, 6, 6, 6, 6;

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

GEOMETRIAI VALÓSZÍNŰSÉGEK

GEOMETRIAI VALÓSZÍNŰSÉGEK GEOMETRIAI VALÓSZÍNŰSÉGEK 1. Feladat. Egy lavina területet betemetett egy síelésre gyakran használt térségben. Bence az nap síelni ment, és még nem jelentkezett, így a mentésére sietnek. Mi az esélye,

Részletesebben

Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2

Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2 Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű

Részletesebben

} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =

} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x = . Az { a n } számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! a = 26 2. Az A és B halmazokról tudjuk, hogy A B = {;2;3;4;5;6}, A \ B = {;4} és A B = {2;5}. Sorolja fel

Részletesebben

1.4 Hányféleképpen rakhatunk sorba 12 könyvet, ha 3 bizonyos könyvet egymás mellé akarunk rakni és

1.4 Hányféleképpen rakhatunk sorba 12 könyvet, ha 3 bizonyos könyvet egymás mellé akarunk rakni és Valószínűségszámítás és statisztika feladatok 1 Kombinatorika 2011/12. tanév, I. félév 1.1 Hányféleképpen lehet a sakktáblán 8 bástyát elhelyezni úgy, hogy egyik se üsse a másikat? Mennyi lesz az eredmény,

Részletesebben

MATEMATIKA 11. osztály I. KOMBINATORIKA

MATEMATIKA 11. osztály I. KOMBINATORIKA MATEMATIKA 11. osztály I. KOMBINATORIKA Kombinatorika I s m é t l é s n é l k ü l i p e r m u t á c i ó 1. Öt diák (A, B, C, D, E) elmegy moziba, és egymás mellé kapnak jegyeket. a) Hányféle sorrendben

Részletesebben

1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be.

1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be. IX. ESEMÉNYEK, VALÓSZÍNŰSÉG IX.1. Események, a valószínűség bevezetése 1. A kísérlet naiv fogalma. Kísérlet nek nevezzük egy olyan jelenség előidézését vagy megfigyelését, amelynek kimenetelét az általunk

Részletesebben

8. OSZTÁLY ; ; ; 1; 3; ; ;.

8. OSZTÁLY ; ; ; 1; 3; ; ;. BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat

Részletesebben

A sztochasztika alapjai. Szorgalmi feladatok tavaszi szemeszter

A sztochasztika alapjai. Szorgalmi feladatok tavaszi szemeszter A sztochasztika alapjai Szorgalmi feladatok 2011. tavaszi szemeszter 1. feladat Egy kockával dobva mi a dobott szám eloszlásfüggvénye, várható értéke, szórása? 2. feladat Egy marketingakció keretében egy

Részletesebben

1. melléklet: A tanárokkal készített interjúk főbb kérdései

1. melléklet: A tanárokkal készített interjúk főbb kérdései 12. Mellékletek 1. melléklet: A tanárokkal készített interjúk főbb kérdései 1. Mikor tanít számelméletet és hány órában? (Pl. 9. osztályban a nevezetes azonosságok után 4 órában.) 2. Milyen könyvet használnak

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

3. gyakorlat. 1. Független események. Matematika A4 Vetier András kurzusa február 27.

3. gyakorlat. 1. Független események. Matematika A4 Vetier András kurzusa február 27. 3. gyakorlat Matematika A4 Vetier András kurzusa 2009. február 27. 1. Független események Az A és B események akkor és csak akkor függetlenek,ha az alábbbi négy egyenlőség teljesül: P(A B) = P(A)P(B) P(A

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof Dr Závoti József Matematika III 3 MA3-3 modul A valószínűségszámítás elemei SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999

Részletesebben

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. : A valószínűségszámítás elemei Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

IV. Vályi Gyula Emlékverseny november 7-9.

IV. Vályi Gyula Emlékverseny november 7-9. IV. Vályi Gyula Emlékverseny 997. november 7-9. VII. osztály LOGIKAI VERSENY:. A triciklitolvajokat a rendőrök biciklin üldözik. Összesen tíz kereken gurulnak. Hány triciklit loptak el. (A) (B) 2 (C) 3

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Az alábbi kísérletek közül melyek tekinthetőek valószínűségi kísérleteknek? A: Feldobunk egy érmét. B: Leejtünk egy i. e. 6. századi kínai vázát. C: Eldobunk egy hatoldalú dobókockát. D:

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

Ajánlott szakmai jellegű feladatok

Ajánlott szakmai jellegű feladatok Ajánlott szakmai jellegű feladatok A feladatok szakmai jellegűek, alkalmazásuk mindenképpen a tanulók motiválását szolgálja. Segít abban, hogy a tanulók a tanultak alkalmazhatóságát meglássák. Értsék meg,

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály 5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet

Részletesebben

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat! 1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat! G H = H \ G = 2. Ha 1 kg szalámi ára 2800 Ft, akkor hány

Részletesebben

1. Név:... Neptun Kód:... Feladat: Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt

1. Név:... Neptun Kód:... Feladat: Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt 1. Név:......................... Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt a gyártmányt készítik. Egy gyártmány összeszerelési ideje normális eloszlású valószín½uségi változó

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

ÁLTALÁNOS STATISZTIKA

ÁLTALÁNOS STATISZTIKA Berzsenyi Dániel Főiskola ÁLTALÁNOS STATISZTIKA Műszaki menedzser alapszak Példatár Dr. Kövesi János Tóth Zsuzsanna Eszter 2006 1 Valószínűségszámítási tételek, feltételes valószínűség, események függetlensége

Részletesebben

Megoldások 4. osztály

Megoldások 4. osztály Brenyó Mihály Pontszerző Matematikaverseny Megyei döntő 2015. február 14. Megoldások 4. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől,

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

XI.5. LÉGY TE A TANÁR! A feladatsor jellemzői

XI.5. LÉGY TE A TANÁR! A feladatsor jellemzői XI.5. LÉGY TE A TANÁR! Tárgy, téma A feladatsor jellemzői Algebrai, geometriai, kombinatorikai és valószínűségszámítási tipikus gondolkodási hibák, buktatók. Előzmények Mérlegelv, másodfokú egyenletek

Részletesebben

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019. 8. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK 1. Bizonyítsd be, hogy 019 db egymást követő pozitív egész szám közül mindig kiválasztható 19 db úgy, hogy az összegük

Részletesebben

Eseményalgebra, kombinatorika

Eseményalgebra, kombinatorika Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek

Részletesebben

I. RÉSZ. 1. Írja fel annak az egyenesnek az egyenletét, amelyik áthalad az A(5;-3) és B(7;4) pontokon!

I. RÉSZ. 1. Írja fel annak az egyenesnek az egyenletét, amelyik áthalad az A(5;-3) és B(7;4) pontokon! Név: Osztály: Próba érettségi feladatsor 2013 április 16 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? 15 darab ilyen szám van. 5 = 5+0+0 = 4+1+0 = 3+2+0 = 3+1+1=2+2+1 A keresett számok: 500, 401, 410, 104, 140, 302, 320,203,

Részletesebben

1. Feladatsor. I. rész

1. Feladatsor. I. rész . feladatsor. Feladatsor I. rész. Mely x valós számokra lesz ebben a sorrendben a cos x, a sinx és a tg x egy mértani sorozat három egymást követő tagja?... (). Egy rombusz egyik átlója 0 cm, beírható

Részletesebben

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,

Részletesebben