Mitől megbízható a tudás?

Hasonló dokumentumok
A tapasztalat és az elmélet viszonya

4. Mitől (nem) megbízható a tudás?

4. Mitől (nem) megbízható a tudás?

Mitől megbízható a tudás?

A tapasztalat és az elmélet viszonya

A tapasztalat és az elmélet viszonya

A tapasztalat és az elmélet viszonya

Mitől megbízható a tudás?

Mitől (nem) megbízható a tudás?

3. Az indukció szerepe

ÉRVELÉSTECHNIKA-LOGIKA GYAKORLÓ FELADATOK, 1. ZH

Bizonyítási módszerek ÉV ELEJI FELADATOK

Arisztotelesz Kr.e. 350 körül írta logikai műveit, melyek egyrésze elveszett, a többit 300 évvel később

Pszichológiatörténet. Aczél Balázs 2011

Érveléstechnika 6. A Racionális vita eszközei

Szocio- lingvisztikai alapismeretek

A matematikai logika alapjai

Érveléstechnika-logika 4. Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u fsz. 2.

Szociolingvisztikai. alapismeretek

LOGIKA ÉS ÉRVELÉSTECHNIKA

Tartalomjegyzék. Pragmatikai és logikai alapok. Első rész A könyv célja, használata 1.2 Elméleti keretek: pragmatika és logika

A logikai következmény

A világtörvény keresése

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

Készítette: Bruder Júlia

Speciális relativitás

LOGIKA ÉS ÉRVELÉSTECHNIKA

Menet. A konfirmáció Hempel paradoxonai. Hempel véleménye a konformációs paradoxonokról

TUDOMÁNYOS MÓDSZERTAN ÉS ÉRVELÉSTECHNIKA

egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-

Arról, ami nincs A nemlétezés elméletei. 8. Nemlétezőkre vonatkozó mondatok november 4.

Predikátumkalkulus. 1. Bevezet. 2. Predikátumkalkulus, formalizálás. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák.

Az eredeti tézis szerint a fizikában (különösen az elméleti fizikában) soha

Érveléstechnika-logika 7. Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u fsz. 2.

Érveléstechnika-logika 6. óra

A demarkáció-probléma a tudományfilozófiában

ESSZÉÍRÁS június

Igazolás és cáfolás a tudományban

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR

Pszichológia a Tudomány Világában

ELTE TáTK Közgazdaságtudományi Tanszék ESSZÉÍRÁS. Készítette: Reich Orsolya. Szakmai felelős: Wessely Anna június

Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u fsz. 2. Érveléstechnika-logika 9. Induktív érvek, analógiás érvek

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Osztályozóvizsga követelményei

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

Fizika óra. Érdekes-e a fizika? Vagy mégsem? A fizikusok számára ez nem kérdés, ők biztosan nem unatkoznak.

Matematikai logika és halmazelmélet

GYAKORLATI FILOZÓFIA FILOZÓFIA TANÉV II. ELŐADÁS SZEPT. 18.

KOVÁCS BÉLA, MATEMATIKA I.

Követelmény a 6. évfolyamon félévkor matematikából

Egy mozgástani feladat

Matematika. 1. évfolyam. I. félév

32. A Knuth-Morris-Pratt algoritmus

Kijelentéslogika, ítéletkalkulus

Szerző: Sztárayné Kézdy Éva Lektor: Fokasz Nikosz TÁMOP A/1-11/ INFORMÁCIÓ - TUDÁS ÉRVÉNYESÜLÉS

Az informatika logikai alapjai

A demarkációprobléma a tudományfilozófiában. Tudomány, tudományellenesség, áltudomány BME Filozófia és Tudománytörténet Tanszék

Érvelés, tárgyalás, meggyőzés

Oktatási Hivatal FILOZÓFIA. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny első forduló. Javítási-értékelési útmutató

p-érték, hipotézistesztelés, és ellentmondásaik

Legyen képes egyszerű megfigyelési, mérési folyamatok megtervezésére, tudományos ismeretek megszerzéséhez célzott kísérletek elvégzésére.

Kijelentéslogika, ítéletkalkulus

A fejlesztés várt eredményei a 1. évfolyam végén

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

TUDOMÁNYOS MÓDSZERTAN

Tudományfilozófia. A demarkáció problémája

Érvelési és meggyőzési készségek 4. óra

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

(Természetesen, nem lesz ilyen sok kérdés feladva a vizsgán!) Hogy szól a relativitási elv a lehető legjobb megfogalmazásban?

LOGIKA ÉS ÉRVELÉSTECHNIKA

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

Predikátumkalkulus. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. Vizsgáljuk meg a következ két kijelentést.

Óravázlat- kémia: 4. fejezet 1. óra

p-érték, hipotézistesztelés, és ellentmondásaik

ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)

* Pl. szeretjük előre tudni kik lesznek ott a buliban, vagy mikor ér véget

Logika és informatikai alkalmazásai

Matematika. 1. osztály. 2. osztály

TUDOMÁNYOS MÓDSZERTAN

Mérés és modellezés 1

Elemi matematika szakkör

Méréselmélet MI BSc 1

Követelmény a 7. évfolyamon félévkor matematikából

Logika és informatikai alkalmazásai

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

Arról, ami nincs A nemlétezés elméletei. 11. A semmi semmít december 2.

A matematika nyelvér l bevezetés

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

Módszertani dilemmák a statisztikában 40 éve alakult a Jövőkutatási Bizottság

Adatbázisok elmélete 12. előadás

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

Biomatematika 2 Orvosi biometria

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

A relativitáselmélet története

Míg a kérdıíves felérés elsısorban kvantitatív (statisztikai) elemzésre alkalmas adatokat szolgáltat, a terepkutatásból ezzel szemben inkább

A kreativitás szerepe a kutatói pályán

Kora modern kori csillagászat. Johannes Kepler ( ) A Világ Harmóniája

y ij = µ + α i + e ij

Átírás:

Mitől megbízható a tudás?

Ha... a múlt nem jelent szabályt a jövőre nézve, akkor minden tapasztalat haszontalan, és semmire sem következtethetünk. David Hume (1711-1776), filozófus Az induktív következtetés az egyetlen általunk ismert mód arra, hogy alapvetően új tudás jelenjen meg a világban. Ronald Aylmer Fisher (1890-1962), statisztikus

Helyett...

A tapasztalat és az elmélet viszonya A mai óra kérdése: Mi a magyarázata annak, hogy tapasztalatilag jól alátámasztott, sokáig, már régóta hatékonyan használt elméleteinkről egyszer csak kiderül, hogy nem írják le helyesen, pontosan a valóságot? Vizsgáljuk meg ezt a kérdést az Opera kísérlet segítségével (A nagy port kavart bejelentés: 2011. szept. közepén. Tegyük fel, hogy még az adott héten vagyunk) Függetlenül attól, hogy sikerül-e reprodukálni később Függetlenül attól, hogy milyen konzekvenciája lesz később a fizikai elméletekre Függetlenül attól, hogy később milyen konszenzus alakul ki körülötte

A fénysebesség Einstein relativitáselmélete szerint az a maximális sebesség amivel bármi haladhat a téridőben A relativitáselméletet számos kísérlettel bizonyították Napfogyatkozások vizsgálata, Eddington (bár erről vannak viták), mások Radarvisszaverődések eltolódása a Merkúrról és a Vénuszról Előrejelzések robusztussá tették Vörös eltolódás Gravitációs lencse

A fénysebesség a kultúra része Még a szcifikben sem szokás átlépni, helyette van a hipertér

Következmények, ha az Opera kísérlet nem hibás A csapos azt mondja: Bocs, haver, nem szolgálunk ki neutrínókat. A neutrínó bemegy a bárba. Megcserélődhet az ok és az okozat sorrendje, mint a fenti viccben a felvezetés és a poén? (egy twitter üzenet adaptációja a bejelentés estéjéről) Hat az anyag és az energia viszonyára? Hat az információátvitel elméleti határára?

Reakciók a bejelentéssel kapcsolatban A publikált adatok alapján az eltérés jelentős, ugyanakkor kicsit korai lenne még következtetéseket levonni. Véleményem szerint mindenképpen érdemes megnézni, a mérési hibák mennyire valósak. Ha ezeket például alábecsülték, az eltérés már nem szignifikáns. - Dr. Siklér Ferenc Amíg egy másik csoport nem ellenőrzi, addig ez nem valóságosabb, mint egy repülő szőnyeg - Prof. Drew Baden Nem hiszem, hogy valaha is ki kellene dobni Einstein elméletét, mert működik. Legfeljebb néhol további magyarázatot kell fűzni hozzá - Dr. Alan Kostolecky

Reakciók a bejelentéssel kapcsolatban Professor Jim Al-Khalili twitter üzenete

Reakciók a bejelentéssel kapcsolatban A MINOS kísérlet is észlelt korábban a fénysebességnél gyorsabb neutrínókat, ezt publikálták is, de a különbséget a nagyobb bizonytalanság miatt nem ítélték statisztikusan jelentősnek" - Horváth Dezső, a Debreceni Egyetem professzora (index.hu)

Update: 2012 február 24. Két lehetséges mérési hiba is felmerült Egy üvegszálas optikai adattovábbító kábel hibája, ami ha beigazolódik megmagyarázza a mért eltérést a várt értéktől, a fénysebességtől. Egy oszcillátor hibája, ami órajelet ad az egyik részecskedetektornak. De itt a hiba olyan irányú, hogy ha beigazolódik, az azt jelenti, hogy még gyorsabbak a neutrínók a mértnél!

A tapasztalat és az elmélet viszonya Hogyan lehet, hogy a bizonyított tudásunk (pl. a fénysebességgel kapcsolatban) elromlik? Hogy ezt megértsük, meg kell megvizsgálnunk azt a módszert, amivel az elméletek jelentős részét létrehozzák.

Mi az indukció?

A véges tapasztalat kiterjesztése Folytassuk a következő sort: (Milyen szabályszerűséggel ragadható meg az alábbi számsor?) 1, 2, 3, 4

A probléma szemléltetése Folytassuk a következő sort: (Milyen szabályszerűséggel ragadható meg az alábbi számsor?) 1, 2, 3, 4 5, 6, 7, 8, 9 1, 2, 3, 4, 1... 3, 2, 1, 2, 3, 4, 3, 2, 1, 2 4, 3, 2, 1, 0, 1, 2, 3, 4 11, 12, 13, 14, 21 10, 20, 30, 40, 100, 200 5, 6, 7, 8, 9, A,B, C, D, E,F, 10 5, 6, 7, 8, 9, 10, A, B, C

A probléma kibontása Válaszkísérletek: 1. Mivel sorozatról volt szó, amely számokból áll, ezért itt egy számsorozatról van szó, azaz egy matematikai sorozattal állunk szemben, ahol a differencia d=1. 2. A legegyszerűbben leírható, megragadható szabályszerűség az igazi megfejtés, az a kitüntetett. (lásd: Lex Parsimoniae, Occam borotva. William Of Ockham 1285-1349)

A probléma kibontása Ellenvetések: Ad 1. Eredetileg szó sem volt számsorozatról, legfeljebb sorról, még ha számok sorozatát is látjuk! Ha számsorozatként értelmezzük, akkor az a mi értelmezésünk, mi vetítjük rá, hogy matematikai sorozatként kezelhessük, de hogy ez van-e valóságban, valóban így fogja-e természeti vagy társas világ folytatni a sort, arra nincs garanciánk. Ad 2. Hogyan ragadható meg az egyszerűség? Hogyan számszerűsíthető? A legkevesebb betűvel leírható? A legrövidebb programmal generálható? Mi van, ha a program hosszabb, mint a magyar nyelv szerinti leírás? Mit értsünk bele a programba? A teljes nyelvet? A felhasznált szimbólumokat?

A probléma kibontása Ellenvetések: Akárhogy is, az egyszerűség értékelhetősége kívül van az eredeti számsoron/ adatsoron. Az eredeti számsor/adatsor önmagában nem tartalmaz arra vonatkozó információt, hogy a legegyszerűbbet kell választanunk, hogy az lenne az igazi megfejtés. Az elvileg lehetséges sor-folytatások között nincs önmagában kitüntetett ha kitüntetjük valamelyiket, akkor a kitüntetés szempontját mi tesszük hozzá, legfeljebb hallgatólagosan (implicite), anélkül, hogy tudatában lennénk e mozzanatnak.

A probléma szemléltetése Tegyük fel, hogy a középkori Kárpát-medence lakói vagyunk, és már számos madarat láttunk, amelynek mind voltak szárnyai, és ez idáig mind tudott repülni, struccal (vagy lusta túzokkal) pedig portyázásaink során még nem találkoztunk. Kérdés: hogyan általánosítsunk, és hogyan fogalmazzuk meg tapasztalatainkat? a) Minden madár repül. b) Minden Kárpát-medencében élő madár repül. c) Minden ilyen-és-ilyen körülmények (és itt a körülmények részletes specifikációja következik) között élő madár rendelkezik repülésre alkalmas szárnnyal és tud repülni.

Az Indukció definíciója Általában véve minden olyan következtetésfajtát indukciónak tekintünk, amely megfigyelések, empirikus adatok vagy kísérleti eredmények véges halmazából valamilyen, a dolgok viselkedésére vonatkozó általános konklúzióra, egyetemes igazságra próbál jutni. Az induktív következtetések közé sorolható fontosabb következtetés-típusok (v.ö. magyarázat óra): Induktív általánosítás Oksági összefüggést (törvényszerűséget) megállapító következtetések Analógiás következtetések

Induktív általánosítás Tulajdonképpen az, amit a hétköznapokban általánosítás -nak nevezünk. Ez az indukció egyik legegyszerűbb esete, amikor megadjuk, felsoroljuk az indukció alapját képező egyedeket, adatokat, listázzuk a megfigyelési állításokat, kísérleti eredményeket. Ezért hívják enumeratív, azaz a felsorolásos indukciónak. Az indukció (azaz az általánosítás, mint eljárás) eredménye az általánosítás, mint állítás, amely lehet: univerzális állítás, vagy statisztikai általánosítás. v.ö. magyarázat óra: D-N magyarázat és induktív statisztikus magyarázat

Mi a baj logikailag az induktív következtetéssel? Lehet-e az induktív következtetés logikailag helyes? A válaszhoz szükségünk van a logikailag helyes következtetés fogalmára: A logikailag helyes következtetésben a premisszák igazsága teljes mértékben garantálja, / kétséget kizáróan megalapozza, / szükségszerűen maga után vonja a konklúzió igazságát.

Tekintsük a következő N premisszás következtetést: Formai oldal Tartalmi oldal (Premisszák) (P1) Ez (a t1-kor megfigyelt élőlény) hattyú1, és fehér. (P2) Ez (a t2-kor megfigyelt élőlény) hattyú2, és fehér. (P3) Ez (a t3-kor megfigyelt élőlény) hattyú3, és fehér. (Pn) Ez (a tn-kor megfigyelt élőlény) hattyún, és fehér. Igaz Igaz Igaz Igaz (Konklúzió) (K) Minden hattyú fehér. Nagyon valószínű

Lehet-e ez logikailag helyes következtetés? Nyilván nem, hiszen a következtetés formai oldalára koncentrálva, ha a premisszákat igaznak feltételezzük, vagy azok ténylegesen is igazak lennének, akkor sem lehetne a konklúzió igazságát kétséget kizáró módon igaznak tekinteni, azaz lehetséges, hogy a premisszák mind igazak, miközben a konklúzió hamis! vagyis az induktív következtetések definíciószerűen nem lehetnek deduktívak!!

Miért nincs ismeretbővítő ereje a logikailag helyes következtetésnek? A logikai helyesség definíciójából következik, hogy az ilyen következtetések nem lehetnek információbővítők: azaz a konklúzióban foglalt ismeret a premisszákban foglalt ismeretekhez képest nem eredményez új, valódi, tartalmas információt. A premisszák csak akkor képesek teljes mértékben megalapozni, szükségszerűen garantálni, kétséget kizáróan maguk után vonni a konklúzió igazságát, ha a konklúzió nem lépi túl a premisszákban foglalt, esetleg rejtett ismereteket, információkat. Azaz: a konklúzió legfeljebb annyit, vagy kevesebbet mondhat, mint ami a premisszákban rejlik, többet nem.

Miért nincs ismeretbővítő ereje a logikailag helyes következtetésnek? A logika egy olyan mókuskerék vagy szőlőprés, ami kitapossa a premisszákban már implicite benne rejlő információkat, de a világról azon túl nem tudunk meg semmit, mint amit a premisszákba foglalva már eleve is tudtunk. A logikailag helyes következtetések nem információbővítők Az információbővítő következtetések pedig nem lehetnek logikailag helyes következtetések!

Miért nincs ismeretbővítő ereje a logikailag helyes következtetésnek? A világ (legyen az akár a fizikai, akár a társas világ) leírását megkísérlő elméletekhez nem juthatunk el logikailag helyes következtetések révén, amihez eljuthatunk a logika segítségével, az a világot már valahogyan leíró elméletekből (amelyhez valahogy el kellett jutni) következő tautológia!

Mi a baj logikailag az induktív következtetéssel? nem minősíthetnénk következtetésnek az induktív következtetéseket, ha a logikailag helyességet / deduktivitást elvárjuk a következtetésektől. pedig a fentihez hasonló induktív következtetéseket a hétköznapok során, vagy a tudományos életben gyakorta alkalmazzuk és egyik alapja az intellektuálismegismerései tevékenységünknek. A következtetés fogalmát nem azonosítjuk logikailag helyes következtetés fogalmával, hanem az előbbit tekintjük összefoglaló fogalomnak, amelynek a logikailag helyes következtetések csupán az egyik altípusa, és az iméntihez hasonló induktív következtetés pedig egy másik, különálló altípusa.

Indukció a mindennapi életben és a tudományban Véges számú empirikus adatból következtetünk egyetemes igazságra, általános elméletre megfigyelések véges halmazából általános konklúzióra jutunk a tapasztalati tudomány sokszor így működik: egyedi állításokból, megfigyelésekből, vagy kísérletek eredményeiből, egyetemes állításokra következtetünk Newton: minden testre igaz, h. a testek a tömegükkel arányosan és a köztük lévő távolság négyzetével fordított arányban vonzzák egymást de így működnek a mindennapi állításaink is: minden alkalommal, ha megvágod magad, vérezni fogsz Nem tudunk és nem is akarunk lemondani arról, hogy indukáljunk.

Tankönyvek példái Vermes Miklós, Fizika II, Jedlik oktatási stúdió, Budapest, 2002. Lényegében minden összefüggés univerzális érvényűnek látszik, pl.: 8. oldal.: a Mágneses Culomb törvény (lásd a Magyarázat és megértés órát) tapasztalat szerint két mágneses pólus között ható erő egyenesen arányos a pólusok erősségével és fordítottan arányos távolságuk négyzetével 62.old.: Az áram mágneses hatásának mennyiségi törvénye: Az áram és a mágneses tér közötti erő egyenesen arányos az áram erősségével, a mágneses tér indukciójával, és a vezetőnek a térben fekvő hosszával Ezek univerzális állítások, amelyekre indukció során jutottak. A tapasztalat szerint kifejezés is jelzi ezt.

Tankönyvek példái Ugyanígy másutt, pl.: Ginsztler, Hidasi, Dévényi: Alkalmazott anyagtudomány, Műegyetemi kiadó, 2005. Pl. 66.old.: Az üvegnek és más amorf szerkezetű kerámiáknak a hővezető képessége mindig sokkal kisebb, mint a kristályos kerámiáké, minthogy a fononok szóródása sokkal hatékonyabb a rendezetlen szerkezetekben. Ez univerzális állítás, amely egyben oksági magyarázattal is szolgál. Ettől még ugyanúgy igaz rá, hogy induktív általánosítás eredménye.

Tankönyvek példái Andorka Rudolf, Bevezetés a szociológiába, Osiris kiadó, Budapest, 2006. 248. old. A strukurális tényezők hatását hangsúlyozó elméletek arra mutatnak rá, hogy a gazdaságilag nem fejlődő társadalmakban a társadalmi-foglalkozási struktúra változatlan marad, ezért nincs arra lehetőség, hogy a kedvezőtlen helyzetű osztályok, rétegek, rendek tagjai a struktúraváltozás következtében növekvő osztályokban, rétegekben, rendekben megnyíló új pozíciókba tömegesen bejussanak.

Tankönyvek példái Az előző példa folytatása Figyeljük meg, hogy szemben a fizikakönyvvel itt nem direkt kijelentésről van szó, hanem elméletek arra mutatnak rá és egyben statisztikai jellegű is az állítás, számok nélkül. Ez a kijelentés induktív általánosítás eredménye, (tehát bizonyos társadalmakról szerzett tapasztalatok segítségével megfogalmazott) ennek eldöntése további ismereteket igényelne az elmélet keletkezéséről (Lehet egy modell következménye, vagy spekulatív is) Emlékeztető: a humán és társadalomtudományok másfajta problémákkal szembesülnek, mint a természettudományok (Lásd az Előrejelzés óra végén!)

Tankönyvek példái Veszprémi Tamás, Általános kémia, Akadémiai kiadó, Budapest, 2008. 113.oldal: Gázok állapotjelzői, nevezetesen a nyomás és a hőmérséklet közötti összefüggést először Robert Boyle írta le 1662ben. Eszerint valamely adott gázmennyiségre állandó hőmérsékleten a gáz nyomása fordítottan arányos a térfogatával Ugyancsak induktív általánosítás eredménye

Tankönyvek példái Dr. Béda Gyula, Szilárdságtan, Műegyetemi kiadó, Budapest 1996. 123. oldal.: Huber-Mises-Hencky elmélet: Az alakítható anyagoknál kísérleti úton megfigyelték, hogy igen nagy hidrosztatikus nyomás esetében sem jön létre károsodás. A méretezésnél tehát a térfogat változást jelentő alakváltozási munka nem játszik szerepet

Tankönyvek példái Lásd még Hal R. Varian, Mikroökonómia középfokon, Akadémiai kiadó, 2008. 632.old. (az átváltási költségekről) Az óvatos fogyasztók természetesen megpróbálják a bezártsági helyzetet elkerülni, legalábbis keményen alkusznak azért, hogy a bezártságért megfelelő kompenzációban részesüljenek. Még abban az esetben is, ha a fogyasztók gyenge alkupozícióban vannak, a rendszerek eladóinak versenye az induló beszerzés árát lefelé fogja szorítani, hiszen a bezárt fogyasztók csak ezután jelentenek jövedelemforrást

Tankönyvek példái (folyt.) Ez univerzális megfogalmazású állítás, amely Lehet empirikus jellegű, indukció során létrejött Lehet a racionális fogyasztói viselkedés feltételezése

Az indukció egyik alesete: az analógiás következtetés

Analógiás következtetés P1) Egy autó valakinek a tulajdona P2) Az autó elkötése lopás P3) A művészeti alkotás a művész tulajdona. K1) A Zene letöltése lopás

Analógiás következtetés A kutyapiszok szennyezi a köztereket, és az utcán maradt kutyapiszok veszélyes betegségeket terjeszthet. A kutyapiszkot a kutya gazdájának el kell távolítania az utcáról. Az gépjárművek szennyezik a városok levegőjét, a levegőben lévő égéstermékek veszélyes betegségeket okozhatnak. Ezért a gépjárművek okozta légszennnyeződést a gépjárművek tulajdonosainak el kell távolítaniuk a levegőből.

Az analógia szerkezete Premisszák: 1. X rendelkezik a T tulajdonsággal. 2. Y rendelkezik a T tulajdonsággal. 3. X rendelkezik az S tulajdonsággal. Következtetés: Y rendelkezik az S tulajdonsággal. Az analógia hárompremisszás következtetés. Ebből két premissza azt mondja ki, hogy a két tárgy rendelkezik ugyanazzal a tulajdonsággal, vagyis a két tárgy hasonló. Elegendő-e a 3. premissza a helyes következtetéshez?

Az analógia szerkezete Premisszák: 1. X rendelkezik a T tulajdonsággal. 2. Y rendelkezik a T tulajdonsággal. 3. X pontosan ezért rendelkezik az S tulajdonsággal, mert T tulajdonságú Következtetés: Y rendelkezik az S tulajdonsággal. Az analógia annyival több, mint a felsorolásos indukció, hogy láthatóvá (és kritizálhatóvá) teszi, hogy mi alapján terjesztettük ki a tapasztalatokat az ismeretlenre.

Vita az indukcióról Miért működik? Miért nem működik?

Miért van jogunk indukcióval élni? Örökké fennáll a természeti szabályszerűség? Mi zárja ki, hogy megváltozzék? Eddig beváltak az induktív általánosítások, de miért válnának be a jövőben is? David Hume: az hogy eddig együtt járt az ok és az okozat, az csak együtt járás, nem szükségszerű, lehet másképp is, csak mi vetítjük bele, hogy így kell lennie Valóban: Egy ilyen elmélet bármikor hamisnak bizonyulhat, jöhet egy fekete hattyú Semmi sem gyorsabb a fénynél Minden villamos sárga Lakatlan szigeten egyedül indukálom, hogy eddig minden nap élve ébredtem fel, biztos ezután is mindig így lesz A nap minden nap felkel, nyilván örökké ezt fogja tenni Minden báránynak van apja és anyja (de aztán klónozás...) Minden embernek van apja és anyja (...)

Hogyan alapozható meg az indukció? Érvek az indukció mellett és ellen Pro1: Meg kell fogalmaznunk egy induktív elvet, amely felhatalmaz E: Bármilyen A-ra és B-re, ha N db A a megfigyelések szerint B, akkor minden AB Kontra1:Igen ám, de az indukció elve maga is egyetemes igazság, hogyan jutottunk el hozzá az egyedi esetekből? Ez nem analitikus állítás, nem logikai igazság, amelynek igazságát a jelentése biztosítja (pl minden agglegény nőtlen férfi), hanem tapasztalati, (amelynek tagadása nem önellentmondás) amelyet empirikus bizonyítékokkal kell alátámasztani: és egy induktív érveléssel,

Hogyan alapozható meg az indukció? Érvek az indukció mellett és ellen Kontra1(folyt.):De ez vagy körbenforgáshoz vezet (vagyis feltesszük a bizonyítandó bizonyítottságát), vagy végtelen regresszushoz (az induktív elvet induktív érveléssel kell alátámasztanunk, amit induktív érveléssel kell alátámasztanunk )

Érvek az indukció mellett és ellen Pro2:A természet uniformitásának elve: eddig így működött, ezután is nyilván így fog, nem változik meg a természet menete Kontra2: Igen ám, de ez maga is múltbeli véges eseményre alapoz, eddig fenn állt a szabályszerűség, mi biztosítja, hogy ezután is fennáll? 1882 Russell(1872-1970): Az hogy a múltbeli jövő a múltbeli múlthoz képest a várakozásoknak megfelelően alakult nem segít abban, hogy megtudjuk, vajon a jövőbeli jövő a jövőbeli múlthoz képest is a várakozásoknak megfelelően alakul-e, azaz nem igazolható a kiterjesztés 1950

Érvek az indukció mellett és ellen Pro4: Megbízhatóságon alapuló érv: az az érvelés megbízható amelyik igaz premisszákból helyes konklúziót állít elő (nem = deduktíve érvényes), pl. X ember tehát X fiatalabb 200 évesnél nem deduktíve érvényes, mert logikailag lehetséges az ellentéte, de ténylegesen soha nem hamis, ha Y hal Y nem tud biciklizni ha Z fényes csillag akkor Z-nek van gravitációs mezője ilyen értelemben az indukciók megbízhatóaknak bizonyulnak, megőrzi az igazságot ezt nem támadja az indukció kritikája, mert a Pro4-ben elismerik a logikai hibát, és nem is követelik meg a helyességet bevallottan elromolhat valamikor a törvény, de addig azért használják.

Érvek az indukció mellett és ellen Kontra4: nem csak a logikai helyesség hiányzik, hanem az indukció egyenesen megbízhatatlan: a múltban rengeteg olyan induktíve alátámasztott elmélet volt a ptolemaioszi csillagászattól a newtoni fizikáig, amely későbbi bizonyítékok alapján hamisnak bizonyult Az elméletek előbb-utóbb elromlanak mondják Kontra4-ben hiszen ez eddig is így volt. Átfogalmazva: a múltban véges számú esetben megfigyelhettük, hogy az indukcióval kapott elméletek elromlanak tehát ez mindig így lesz. Csakhogy ez az érv is indukción alapul! (ez az ún. pesszimista metaindukció)

Falszifikáció

Sir Karl Popper: az indukció helyett falszifikáció Válasszuk szét a felfedezés logikáját és az igazolás logikáját! A tudományos tevékenység első szakaszát, az elméletalkotást nem lehet és nem is kell logikailag elemezni, minden felfedezésben van valami irracionális mozzanat Hogy hogyan lett a megfigyelésekből elmélet, nem érdekes, ez pszichologizmus, megismerés-pszichológia, foglalkozzon ezzel a tudománytörténet Az, hogy miként jutott valakinek valami új az eszébe legyen az zenei téma, drámai konfliktus vagy éppen tudományos elmélet -, empirikus pszichológia és nem megismerés-logikai kérdés. Popper: A tudományos kutatás logikája ami a logika területére tartozik, az a már meglévő elmélet racionális rekonstrukciója és vizsgálata

Az indukció helyett falszifikáció Ellenőrzési eljárás: a kész elméletet összevetjük a tapasztalattal Az ellenőrzés deduktív módszertana mondja Popper Az új elgondolásból logikai levezetés segítségével következményeket nyerünk. ez deduktív eljárás: az elmélet gyakorlati következményeit nézzük, és összevetjük a tapasztalattal, ha megcáfolja, akkor falszifikálta és elvetettük az elméletet Mi van, ha alátámasztja? Pl. a Mars pozícióinak mérési adatai igazolják azt a Kepler-törvényt, mely szerint a bolygók ellipszis alakú pályán mozognak: valóban egy ellipszist rajzolnak ki

Korroboráció Ha összhangban van a megfigyelés az elmélettel, akkor sem verifikálta, nem igazolta véglegesen, csak korroborálta, csupán azt mondjuk, h. az elmélet megállta a helyét, az elmélet átmenetileg túljutott az ellenőrzésen, nem találtunk okot arra, hogy elvessük.

Korroboráció Összhangban van vele: Ha H akkor E Cáfolja: Ha H akkor E Nem E Tehát nem H E Tehát H H=hipotézis, E=Evidencia (tapasztalat) NEM modus ponens (az ilyen formájú érvelés logikailag hibás, a hiba az ún. következmény állítása ) modus tollens Ez tehát a elmélettesztelésnél úgy tűnik megbízhatóbban működik

A falszifikáció megoldás a demarkáció problémájára? Popper saját falszifikációs módszertanát megoldásnak tartotta a demarkáció problémájára Demarkáció (elhatárolás, megkülönböztetés): Hogyan tudnánk megkülönböztetni egymástól az egyetemen gyakorolt tudományt és a tévében pálcával jósoló mágusdoktort anélkül, hogy a fürdővízzel kiöntenénk a gyereket és esetleg más, nem az európai tudomány területére tartozó, de értékes hagyományt is elítélnénk? Falszifikálhatóság a demarkáció kritériuma: a kókler sarlatán kibújik az alól, hogy felkínálja magát a tapasztalati ellenőrzésre, a tisztességes tudomány nem. Az utóbbi bár nincsen bebizonyítva véglegesen legalább falszifikálható.

Mi nem tudományos? Ami olyan formájú, hogy nem lehet megcáfolni, vagyis minden lehetséges tapasztalat igazolja. Popper a következő példákat tekinti a legjellemzőbbnek marxi történelemelmélet: elvileg tett jóslatokat, de amikor ezek nem jöttek be, akkor a követők módosították az elméletet, és nem vetették el asztrológia: Előrejelzései oly homályosak, hogy aligha tévednek: cáfolhatatlanná válnak pszichoanalízis: bármilyen viselkedést meg tud magyarázni, semmi sem mond neki ellent Ezzel szemben a relativitáselmélet: bátor előrejelzéseket tesz, melyek megcáfolhatnák

Popper akkor tekint egy rendszert tapasztalatinak, ha tapasztalatilag ellenőrizhető, a komoly tudomány hajlandó a tapasztalat ítélőszéke elé járulni, és felkínálni magát a falszifikációnak (ez persze nem jelenti, hogy falszifikálódik is egyúttal) Mivel egy rendszer soha sem verifikálható végérvényesen, a falszifikációt tesszük a demarkáció kritériumává. Egy tapasztalati-tudományos rendszernek alkalmasnak kell lennie arra, hogy a tapasztalat megcáfolja. így elhatárolható a tapasztalati tudománytól az asztrológia, de a pszichoanalízis és a Marxizmus is, ezért magasabb rendű a tud. minden babonánál, az áltudomány kibújik a falszifikáció alól

Összefoglalás Az indukció logikailag nem helyes következtetés, mégis egyfolytában élünk vele felsorolásos indukció oksági következtetés analógiás következtetés Ha nem használnánk, akkor nem tudnánk új ismereteket gyártani a világról az észleléssel Így viszont a helyességet nem tudjuk logikai bizonyítással ellenőrizni A falszifikáció egy megoldási lehetőség De ez is problémás