* Pl. szeretjük előre tudni kik lesznek ott a buliban, vagy mikor ér véget
|
|
- Adrián Boros
- 6 évvel ezelőtt
- Látták:
Átírás
1 * Pl. szeretjük előre tudni kik lesznek ott a buliban, vagy mikor ér véget egy program. Nehezen viseljük a kiszámíthatatlanságot, t tl á t pl. vasutas sztrájk. ** Pl az MNB a kamatpolitikájával akarja befolyásolni a pénzügyi folyamatokat, és ebben a gazdasági folyamatok ismeretére támaszkodik. VAGY A Köröshegyi völgyhíd építésekor milyen várható széllökéseknek kell ellenállnia a szerkezetnek? (nagyban befolyásolja a költségeket). ***Pl. A meteorológiai tudás alapján készül az előrejelzés, ami alapján alkalmazkodunk kod az időjáráshoz. ****Pl. Ismerem a közlekedési szabályokat (és ezek alapján feltételezem, hogy minden más közlekedő is ismeri, és be is tartja Bizalmi Elv) és ez teszi lehetővé, hogy számíthassak arra, hogy ha nekem zöld van, akkor nem jön belém senki. És csak ezért tud haladni a forgalom. Persze néha belemennek a zöldön áthaladóba. Ez azonban nem azt jelenti, hogy nem lehet előre jelezni, hanem csak azt, hogy az előrejelzések többség nem 100%-os biztonságú. Seite 1 1 Seite 2 2
2 Seite 3 3 Seite 4 4
3 * Az, hogy a magyarázat pusztán a múltban lejátszódott események csoportjai között ött állapít-e meg szabályszerűséget, ű vagy a megállapított tt szabályszerűség kiterjeszthető a jövőre: az egyes magyarázatok esetében konkrétan dönthető és döntendő el. ** Amikor a magyarázatokat, köztük a törvényeket előrejelzésre használjuk, akkor konkrétan is élünk azzal a feltételezéssel, hogy a jövő az előrejelzés szempontjából meghatározó vonatkozásokban hasonlítani fog a múlthoz. ***Nilá Nyilvánvaló, lóhogy vannak olyan szabályszerűségek, ű amelyeket nem tudunk ellenőrzésnek alávetni, mert nem tudjuk előállítani azokat a feltételeket, amelyek az ellenőrzéshez szükségesek. * Később látni fogjuk, hogy ezért fontos, mert a nem-determinisztikus magyarázatok esetén még a megfelelő kezdeti feltételek fennállása esetén sem lehet logikailag helyesen megalapozott az a várakozásunk, hogy az előrejelzett esemény be fog következni! Seite 5 5 Seite 6 6
4 *Az intencionális magyarázat is lehet akár determinisztikus, akár statisztikus ti tik megfogalmazású, attól függően, ő hogy (1) S személy azt hiszi, i hogy V-t elérni K körülmények között mindig, kizárólag stb. a C cselekedet segítségével lehet, vagy (2) S személy azt hiszi, hogy V-t elérni K körülmények között többnyire, általában, rendszerint stb. a C cselekedet segítségével lehet. Seite 7 7 * Használhatjuk a magyarázat helyessége kifejezést is, de ekkor nem keverendő össze a következtetés logikai helyességével, még akkor sem, amikor a magyarázattal kapcsolatos logikai következtetés helyességéről van szó! Előbbi a magyarázat igazságával, valóságnak való megfelelésével és hasonlókkal van kapcsolatban, míg a következtetés logikai helyessége egy formális kritérium, amely a következtetés szerkezetére vonatkozik, és semmi köze a valóságnak való megfeleléshez! ** Tehát: az előrejelzett E esemény bekövetkezése és a kiindulási magyarázat ugyanis nem rendezhető be olyan logikai szerkezetbe (még a most vizsgált determinisztikus magyarázatok esetén sem!!!), amely a kiindulási magyarázat megfelelőségét kétséget kizáróan alátámasztaná. *** Tegyük fel, hogy valaki megfigyelte: erős szabályszerűség, az egyszerűség kedvéért 100%-os korreláció áll fenn az oktató rossz kedve és a kockás ing viselete között, és erre alapozva az alábbi összefüggést állapította meg: Ha az oktatónak rossz a kedve, akkor mindig kockás inget visel. Ha ezek után azt a hírt hallja egyik társától, hogy az oktató ma éppen kockás inget visel, akkor az alábbi következtetés alkotható: (P1) Ha az oktatónak rossz a kedve, akkor mindig kockás inget visel. (P2) Az oktató kockás inget visel. (K) Az oktatónak rossz a kedve. A konklúzióban szereplő állítás igazsága még akkor sem garantált, ha történetesen a P1 és P2 premisszákban szereplő állítások tényleg igazak. Vegyük észre, hogy a P1 nem zárja ki, hogy az oktató más esetben is viseljen kockás inget, csak azt követeli meg, hogy miden olyan esetben, amikor rossz a kedve, akkor kockás inget kell viselnie! Ebből adódik egyrészt, hogy aki a kockás ing viselete alapján következtetne az oktató rossz kedvére, az ún. utótag állítása nevű logikai hibát követne el. Másként: A Ha p, akkor q, és q, tehát p. következtetés nem áll fenn, logikailag helytelen. ****Tehát: az előrejelzett E esemény elmaradása és a kiindulási magyarázat berendezhető olyan logikailag helyes következtetési szerkezetbe, amely a kiindulási magyarázat nem megfelelő lő jellegét kétséget é t kizáróan alátámasztja. tj Tegyük fel, hogy megállapításra került az alábbi 100%-os szabályszerűség: Ha az oktatónak ragyogó kedve van, akkor mindig hawaii mintás inget visel. Ha ezek után a hallgató azt a hírt hallja egyik társától, hogy az oktatónak ma éppen ragyogó kedve van, akkor az alábbi következtetés alkotható: (P1) Ha az oktatónak ragyogó kedve van, akkor hawaii mintás inget visel. (P2) Az oktatónak ragyogó kedve van. Seite 8 (K) Tehát az oktató hawaii mintás inget visel. Az előrejelzett E esemény a hallgatószámáratehátaz hogyaz oktatóhawaii mintás 8
5 A előrejelzés nem teljesülése a következő logikai szerkezettel adható vissza: Ha A, akkor B, és nem-b, tehát nem-a. Ha A, akkor B. ~B } ~ A. (Szokásos elnevezése: modus tollens.) Figyelembe véve, hogy történetesen mégiscsak fennáll, hogy A, ezért arra következtethetünk, hogy nem igaz, hogy ha A, akkor B. Seite 9 9 Seite 10 10
6 Elsőfajú hibának azt tartjuk, hogy ha a hipotézist elutasítjuk, miközben az fennáll. Ha elfogadjuk a hipotézist, de az nem áll fenn, azt másodfajú hibának tartjuk. A modern statisztikai módszerek lehetővé teszik az elsőfajú hiba valószínűségének rögzítését, így tehát ismerhetjük annak a valószínűségét, hogy igaz hipotézist vetünk el. *A 3. példában de szerepel, mégis a rekonstrukcióban és -ként jelenik meg: ennek oka az, hogy a logikai i rekonstrukció k csak bizonyos (előre definiált) fogalmakkal operál, és az élőnyelvi de kötőszó jelentését az és logikai kötőszó (konnektívum) adja leginkább vissza. _TANSZEK/temtan/Matematikai_statisztika_jegyzet.doc forrás: Az elsőfajú hiba valószínűségét p-vel jelölik, tévedési valószínűségnek, vagy szignifikanciaszintnek nevezzük. Ha ugyanis választunk egy p valószínűségi szintet, a hipotézisünk szerint választott statisztikai függvénynek, eloszlásnak meghatározható az ún. kritikus tartománya, ahová az ellenőrzésre szánt - a hipotézis fennállása esetén - minta gyakorisági eloszlása vagy a mintából származtatott statisztikai függvény értéke 1- p valószínűséggel beleesik. Azaz, ha a mintából származtatott statisztikai függvény értéke a kritikus tartományba esik, akkor a nullhipotézist elfogadjuk, ami azt jelenti, hogy az eltérés nem szignifikáns, ellenkező esetben az eltérés jelentősen szignifikáns. Pedagógiai kutatásban a statisztikai döntés valószínűségi szintje általában p = 5%. Ezért gyakori az, hogy a táblázatok nem az eloszlások értékeit tartalmazzák, hanem az ún. kritikus értékeket a szabadságfok függvényében. Ezért a statisztikák gyakori elnevezése: próbastatisztika. Seite Seite 12 12
7 Seite Seite 14 14
8 *Majdnem minden jelentősebb történelmi esemény magyarázata körül megjelentek összeesküvés elméletek, így a Kennedy-gyilkosság, Zrínyi Miklós halála, Teleki Pál öngyilkossága, és természetesen a Világkereskedelmi Központ manhattani ikertornyainak lerombolása kapcsán is. ** Bár összeesküvések, rejtett tervek bizonyára valóban vannak, és ezeket időnként meggyőző módon le is leplezik, összeesküvés-elméleteknek nem e leleplezéseket hívjuk, hanem azokat a magyarázatokat, amelyek immunisak az esetlegesen őket megcáfoló tényekkel szemben. Ha ugyanis valami mégiscsak cáfolni látszana, akkor az nyilván az elterelés része, amellyel az összeesküvést kitervelői meg kívánják védeni a leleplezéstől. *** Bár korántsem olyan könnyű elválasztani a tudományokat az áltudományos elméletektől a falszifikáció módszertana segítségével, egyedi magyarázatok logikai szerkezetének vizsgálatára továbbra is használható Popper megkülönböztetése. ****Más kérdés, hogy magát az összeesküvéselmélet kifejezést is tarthatjuk egy nagy összeesküvés eszközének, amellyel valakik úgy manipulálják a közvéleményt, hogy bizonyos témákat eleve letiltanak, és bizonyos magyarázatokat eleve érvelési hibának minősítenek. Ebben az esetben persze ez a rövid leírás is az összeesküvés része. *****Mennyire valószínű, hogy egy összeesküvés-elmélet igaz? Ez nagyban attól függ, hogy a feltételezett folyamatok mennyire valószínűek. A legtöbb elmélet feltételezi, hogy sok ember úgy vegyen részt az összeesküvésben, hogy ez ne tudódhasson ki ez pl. nem túl valószínű, stb. Seite Seite 16 16
9 A természeti törvény alá tartozó élőlényeket az emberi törvényt betartató bíróság elé idéznek jogi megítélés tárgyává á á tesznek egy természeti ti jelenséget (l. Fehér M. cikke) Seite Seite 18 18
10 * Ha tudom, hogy a meleg levegő mindig felfelé száll, ha ismerem a felhők kialakulásának k lá á k és mozgásának á szabályszerűségeit, ű ha van információm ió arról, hogy a felszín, a föld forgása, a Nap vagy éppen az óceáni áramlatok hogyan befolyásolják az időjárást, akkor jó eséllyel pontos előrejelzést tudok adni arra, hogy holnap milyen idő lesz. Az előrejelzéshez szükség van arra, hogy bizonyos törvényeket ismerjek. Az időjárásra vonatkozóan régebben (és ma is) olyan jóslást is adtak, ami a csontfájáson vagy a fecskék repülési magasságán alapult. Ebben az esetben azonban a jóslás ismét csak a törvényszerűségeknek köszönhetően válhatott valóra. Hiszen a hideg, vagy melegfront közeledte okozhat csontfájást, a légnyomás változása, ebből fakadóan a rovarok repülési magasságának a megváltozása készteti a fecskét arra, hogy alacsonyan repüljön. A horoszkóp vagy a kártyavetés törvényszerűségeket nélkülöző előrejelzése alapján azonban nem tudunk viszonylag pontos előrejelzést tenni a holnapi időjárásra vonatkozóan. Legalábbis egyenlőre. ** Ha kiejtünk k az ablakból egy szöget, akkor egy képlet segítségével é kiszámolhatjuk, hogy öt másodperc múlva pontosan melyik emeletnél fog tartani zuhanása közben. Vagy egy másik, újabb példa: a világűrből a Földre visszatérő, sérült műhold lelövését is természettudományos törvények ismeretében tudják megvalósítani. Ismerni kell többek között a sérült műhold röppályájának adatait, a zuhanás sebességét, a megsemmisítésére kilőtt rakéta sebességét stb. Seite Seite 20 20
11 Korábbi példánkra visszatérve: ebben az esetben a választási előrejelzés nem csak azzal foglalkozna, lk hogy a választók melyik pártra szándékoznak k szavazni az esedékes a választásokon. Hanem azzal is, hogy az adott párt nyerésével kapcsolatos előrejelzések hogyan befolyásolják a választói magatartást. * itt a hagyományos példák: Lorenz, időjárás előrejelzés, számok pontossága * A bemutatott okokról elsősorban Karl Popper szólt tudományos munkáiban. ** Az egyedi esetek alapján nem tudunk törvényeket felállítani, hiszen pontosan ugyanazok az egyedi esetek csak egyetlen egyszer valósulnak meg, és soha nem történik még egyszer ugyanaz. Nem tudjuk megmondani például azt, hogy az alkoholtilalom bevezetésének milyen hatásai vannak. Információnk az ilyen kezdeményezések hatásáról a 30- as évek Amerikájából, az iszlám világból vagy a 80-as évek végének Oroszországából vannak. Eltérő időből és helyszínekről. Ez alapján nem tudunk törvényszerűséget felállítani az alkoholtilalom bevezetésének eredményeivel kapcsolatban. Seite Seite 22 22
12 *** Gondoljunk a választási előrejelzésekre! Ha közvélemény-kutatások informálnak minket arról, hogy az általunk l is támogatni t kívánt párt nyerni fog a következő választásokon, elképzelhető, hogy kisebb lesz a motivációnk a szavazóhelység meglátogatására. Úgyis nyerünk mondjuk magunkban, majd megdöbbenve látjuk az eredményeket, amely szerint a párt a szavazatok kevesebb, mint 50%-át kapta meg. Ez tipikus példája az előrejelzés által befolyásolt jövőbeli cselekedetnek. **** A pszichológia több évtizedes, lassan évszázados kutatómunka után se tud pontos előrejelzést adni az egyéni viselkedésre vonatkozóan. Ennek a tudománynak az előrejelzés érdekében túl sok olyan tényezőt (az egyén múltját, személyiségét, félelmeit, céljait, pillanatnyi hangulatát, kapcsolatát másokkal stb.) kellene figyelembe venni, amire nincs lehetősége. ***** Nem lehetünk biztosak abban, hogy A esemény okozta B eseményt. Pl. a verekedések számának lehet összefüggése a fizetési napokkal, de nem könnyű oksági kapcsolatot felállítani. * A hazai szociológusok például a rendszerváltozást követően egészen napjainkig vitáztak t és vitáznak azon, hogy miért nem tudták a társadalomtudósok előre jelezni a szocialista rendszer összeomlását és a demokrácia megszületését. Egy természettudománynak törvényszerűségei, az ok-okozati kapcsolatok alapján ilyen előrejelzést meg kell tudni hoznia. A szociológia azonban jobb esetben csak valószínűsíteni tud ilyen változásokat. Seite Seite 24 24
13 *Ha megnézzük a két témához adott bevezető gondolatokat és példákat, akkor látszik, hogy az előrejelzés l kapcsán a tudás inkább csak eszközként jelenik meg, míg a megértés/magyarázat esetében világos, hogy a tudás önmagában is érték. **Később, ezekre a kérdésekre még visszatérünk a tudás megbízhatóságával és a realizmus kérdésével kapcsolatban. Seite Seite 26 26
A megismerés másik célja: előrejelzés
Előrejelzés A megismerés másik célja: előrejelzés Miért akarjuk megismerni magunkat és a környezetünket? Előrejelzéseket szeretnénk tenni, mert: szeretünk kiszámítható világban élni céljainknak megfelelően
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
Érveléstechnika 6. A Racionális vita eszközei
Érveléstechnika 6. A Racionális vita eszközei A racionális vita célja és eszközei A racionális vita célja: a helyes álláspont kialakítása (a véleménykülönbség feloldása). A racionális vita eszköze: bizonyítás
Ú ú ö é ö é Ú ú ö ű ö ö ű ö é ö ö é í í Ö ö í í Á Á Ó é ű ü é é ü ú é ü é ű ü é
ö é Ö í é ü Ú ú é Í Ú ú ö é Ö é ü é ü ö ö ö ü ö ö é é ö é é é é é ö ö ö ö é í ü é ü ö ü ü ú é ü Ú ú ö é Ö ö é é Ú ú ö é ö é Ú ú ö ű ö ö ű ö é ö ö é í í Ö ö í í Á Á Ó é ű ü é é ü ú é ü é ű ü é Á Á Ú ú ö
í ű í í í ű ö ü ü ö ú ű ú ö ö í í í ű ö ü ü ö ö ö ö í í í ű ö ü ü ö ü ö í í í ű í ö í ö ö ű í ü ü ö í ö ö ö ü í í ű í ú ö ö ö ü ö ö ú ö ö ö ü ö ö ö ö
ö í ű ü ú ü ü ü ö ü ö ö ö í Ő É ö ö ö ü ö ö í í ö ü í ö ö í í É ö ö ű í Á É É ö ö í ö í í ü ö í É í í í ú ú í ű í í í ű ö ü ü ö ú ű ú ö ö í í í ű ö ü ü ö ö ö ö í í í ű ö ü ü ö ü ö í í í ű í ö í ö ö ű í
É ö É ó Á É ó ü Á Ő Ö ü ö Ö ő ü ö ő Ü ű ő ó ő ó ő ő ő í ö ö ö í ő ü ü ő ü ü ő ö ó ő ő ú ő ő ö ö ő ő ő ú ő ő ü ú
Ő Ö ö Á ö Á Á ó É ö É ó Á É ó ü Á Ő Ö ü ö Ö ő ü ö ő Ü ű ő ó ő ó ő ő ő í ö ö ö í ő ü ü ő ü ü ő ö ó ő ő ú ő ő ö ö ő ő ő ú ő ő ü ú ő ú ő ö Ö ö ö ö ő ú ö ü ő ú ő ö ő ő ö ő ö ó ő ö ö ö ő ó ö ü ö ü ő ű í ű ó
ú ü ú ö ú í ü í ű ö ü ü ú ú ö ú ö íö í ú ü
í ú ü ú ö ú í ü í ű ö ü ü ú ú ö ú ö íö í ú ü ö í ú ú í ü ü í í ö í ö í Ö í ű ü ü ö ú í ű í í ú í ö ö ú í ö ö ö í ü í ö ö í ű ű ö ö ü í í ű ö í í ü ö ü ü ö ö ö ö í í ü ö ö ö ö ü ü í í ű í ö ö ö ú ú í ű
ó ú ó ó ó ó ó ó ó ó ó ó ü ó ü ö ü ó Á Á Ő ű ü ó ó ó Í ó ü ú ü Á Á ű ö ó ó ó ó ö ü
ö Ö Í Ú ú Í ó ú Ó ó Ú ú ö Ö ü ú ó ü ö ö ö ó ö ö ó ó ó ö ó ó ó ó ö ö ö ó ö ü ü ű ö ú ó ü ű ö ó ó ó Ú ú ö ű ö ó ó ú ó ó ó ó ó ó ó ó ó ó ü ó ü ö ü ó Á Á Ő ű ü ó ó ó Í ó ü ú ü Á Á ű ö ó ó ó ó ö ü Ö ö Í ö ű
íő ö Ú ö ö ő í ű í ű í í ű ö í ö Ü ö
ő ö É Á Ő Á Á ő ű ö ő Ü Á ő ű ő ű ő ö ö í ő í ő íő ö Ú ö ö ő í ű í ű í í ű ö í ö Ü ö ő ö ű ö ü ö ö ö ö í Ü ű ö ő ö ő ü í ö ü ő ő ő í Ü í Ú Ü ő ö ő ö ő ű ö ő ő ü ő ő ő Á ő ő ö ö ő ő ő ő ö ő í ő í í ő ő
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Kutatásmódszertan Előrejelzés Kutatásmódszertan
2010.07.23 3. Előrejelzés 10-11-30 1 A megismerés másik célja: előrejelzés Miért akarjuk megismerni magunkat és a környezetünket? Mert előrejelzéseket szeretnénk tenni. Mert szeretünk kiszámítható világban
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Statisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
Szocio- lingvisztikai alapismeretek
Szocio- lingvisztikai alapismeretek 10. A szociolingvisztika kialakulásának okai Hagyományos nyelvészet: A nyelv társadalmi normák strukturált halmaza (invariáns, homogén) Noam Chomsky: A nyelvelmélet
É Á Á Ö Á
É Á Á Ö Á Á É Á Ü ű Á É Ü ű Ú ű ű É É ű ű Á ű ű ű ű ű É ű ű ű Á É É É ű Á É É Á É Á É Ü Ü ű Á Á Á ű Á Á Á Á Á Á Á Á Ü ű Á ű Ü É É Á Á Á É ű ű ű ű ű ű ű ű ű ű ű ű ű Á Á É É ű É ű Ő ű É Ő Á É É ű ű Ú Á
ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú
ő ű ű ő ö ö Á ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú ő ö Á Ó ő ő ü ú ő ő ő ő Á ő ú ű ő ő ő ü ú ő ő ő ő ő ő ő ő ö ü ú ő ő ő ő ű ű ő ő ö ű ü ő ő ő ö ö
ü ö ű ö ű ö Ö ö ú ü Á ü ü ö
ü ö ű ö ű ö Ö ö ú ü Á ü ü ö ö Í ú ö ú Ó ü ö ö ű ü ű ö ü ö Í Í ö ö ű ö ö ű ű Á Á Ő Á Á ú ú É Íö Í Í ö ö Í ö ü ö Í ö ö Í ö ö ö ű Í Í ö Í ű Á É Á ú É ü Á Á É ü Á Á É ü ö ö ö ö ö ö ű ú ö Í ö ö ű ö ö ü ö ö
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó
É ó ú ó ú ó Á ó ó ú ó ó ó ú ó ó ó ó ú ó ó ó ó ó ó ú ó ó ú ó ó ó ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó Ö ó ó ó ó ó ó ó ó ó ó ó ó Ü ó ű ú ú ó ó ó ó ó ó ó É ó É ó É ó ó ó ó ó ó É ó ú ó ó É ó ó ó ó É ó
ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü
ü ü É ű ű É É ű ü ű ü ü ü Á ü ü ü ü ü ű É ü ű É ű ü ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü ü Á ü ü ü ü ü Ú ü ü ű É ü ü ű ü ü ű ü ü ü ü É ü ü ü ü ü ü ü ü É ű ü Á ü ü ü ü ü Á Ö É ü ü ű Ú ü ü ü ű
Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű
Ú ű ű ű ű ű ű ű ű Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű É ű Ú Ú Ú Ú Ú ű Á Ú Ú Ú Ú ű Ú Ú ű É ű Ú Ú Ú Ú Ú Á ű Ó ű Ú É É Ú Ú ű É ű ű ű ű É ű Ő ű Ő ű ű ű ű ű É ű É Á ű ű Ü Á Ó ű ű ű Ú ű ű É ű ű Ú
ű Ö ű Ú ű ű ű Á ű
ű ű Ó É É ű Ó ű Ü ű ű Ö ű Ú ű ű ű Á ű É ű Á ű ű ű ű ű ű ű ű ű ű ű Á ű ű Ö Ü Ö É ű ű Ü Ü ű É Á Ú É É ű ű ű Ö É ű É Ó É Á Á É ű ű Á ű ű ű Á É ű Ö Á ű ű ű Á ű Á É Ö Ó Ö ű ű ű ű ű ű ű Á É Á Á ű ű ű Á ű ű ű
Á Ó ű ű Á É ű ű ű ű Ú Ú
Ö ű ű Ö Ü ű ű ű ű ű Ó ű Ü ű Á Ó ű ű Á É ű ű ű ű Ú Ú ű ű Á Á Á É ű ű ű ű ű ű ű ű ű ű É ű Ö Ó Ú ű ű ű ű Ü Ó Ú ű É É Ó É É Ó É É É É Ó ű ű ű ű ű Ü ű Á ű ű ű ű ű Ü ű ű ű ű ű ű Á ű Ú Á Á Ö É Á Á Ö É Ü ű ű Ü
ű Ú ű ű É Ú ű ű
ű ű ű ű Ú Á É Ú ű Ú ű ű É Ú ű ű ű Á ű ű ű ű ű Ü ű Á ű ű ű Á Á ű ű ű É ű ű ű Ú É ű ű ű ű ű ű ű ű Á É Á Ö Ü ű É ű ű Ö É Ü Ú ű Ó ű É Ó Ó Ó ű É Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű É ű ű Á Á ű Ú ű Ú ű ű Ó ű ű Ü Ü
ü ú ú ü ú ú ú ú
ú ú ú ü Ü ú ú ű ú ú ü ú ü ü ú ú ü ú ú ú ú ü ú Ö ü ü ü ú ü ú Ó ü ü ű ü Á Ü ü ű ü ű ü ű ű ü Ó ű ú ú ű ú ü ü ú ű ű ú ű ü ú ű ű ü ü ü ű ü ű ü ü ű ü ü ü ü ü ü ü ü ü ú ű ü ű Ó ü ü ü ú Á Ü ú ü ű ü Á Ü Ö Ú Á Á
Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö
ű É É Á Á Á É Ó É É Á ö ő ő ö ő ő ő Ó ő ö ő ö ő ú ő ü ö ő ü ö Á É ű Á É É É Ö ö Á É É ő ő ö Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö É É Á Ö ő ú ő ű Ö ü Ő É Ó É É Á Ó É Á É Ü É Á Ó É ő ő ö ö ő ö ö ö
Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö
É Ó ö É Á ű Ü Ü ö Ú ö ö ö ö ö ö ö ú ö ö ö ö ö ú ú ú ú ú ú ü ú ú ö ö ű ö ü ú ö Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö Á Ó ú ö Á ö Á ö ú ú ö ö ö ö ü ü Ü ú
A megismerés másik célja: előrejelzés
Előrejelzés A megismerés másik célja: előrejelzés Miért akarjuk megismerni magunkat és a környezetünket? Előrejelzéseket szeretnénk tenni, mert: szeretünk kiszámítható világban élni céljainknak megfelelően
ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É
Ü ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É É ű Ö Ö Á É ű Ö Ö Á Ü Á ű ű Ó Ó Á Á É Ü É ű Ó Á Ó Á ű Ö ű ű É Ü Ö ű É Ö ű ű Ó ű ű Ú ű ű ű ű ű É ű É Ú Ö Á É ű ű Ó ű ű ű ű ű ű Ó ű Ü ű ű ű É ű ű Ü Ü ű ű Ő Á Á Á ű ű ű Ó Ó Ó ű
Ó é é Ó Ó ő ű Ó Ö ü Ó é Ó ő Ó Á Ö é Ö Ó Ó é Ó Ó Ó Ó ú Ó Ó Ó Ó ű Ö Ó Ó Ó é Ó Ó ö Ö Ó Ö Ö Ó Ó Ó é ö Ö é é Ü Ó Ö Ó é Ó é ö Ó Ú Ó ő Ö Ó é é Ö ú Ó Ö ö ű ő
É Ó Ű Á Ó É Ó Á É Ó Á ő ű Ó ú Ö ú é Ö Ó Ö ú Ó Ö ú Ó Ó Ó Ó ű é ű ű Ó Ó ú ű ű é é Ö ö Ö Ö Ó ű Ó Ö ü ű Ö Ó ő Ó ő Ó ú Ó ő Ó é Ó ű Ó Ó Ó Ó ú Ó Ó Ó Ó Ö Ó Ó ö ő ü é ü Ö é é é Á é Ó Ó ú ú ű é Ö é é é Ó é é Ó Ó
Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö
Ó ú ú ú ú ű ű ű ú Á Ö ű Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö Ú ű ú É Á Ó Ó É Ó Ó ú ű ű ű ú Ö Ó Ö ú ú Ö ú Ü ú Ü É Ö Á Á Á Á ú Ó Ö ú ú ú Ü Ö ú ú ú ú ú ú Ö ú Ö Ó ű
ó ő ő ó ő ö ő ő ó ó ó ö ő ó ó ó ö ő ó ő ő ö Ö ő ö ó ő ö ő ő ú ö ö ü ö ó ö ö ö ő ö ö Ö ú ü ó ü ő ő ő ő ó ő ü ó ü ö ő ö ó ő ö ő ö ü ö ü ő ö ö ó ö ő ő ö
ü ö ő ö ő ó ö ő ü ü ö ő ó ó ü ő ö ő ö ő ö ü ö ő ö ő ó ö ü ü ö ő ő ő ö ő ö ü ö ő ó ő ö ü ö ő ő ű ő ö ö ő ű ő ü ö Ő ó ö ö ő ü ó ü ú ű ú ő ó ó ó ő ö ő ő ö ó ö ö ő ő ö ö ó ú ő ő ö ó ö ó ö ü ó ő ő ö ó ő ő ó
ö ö í őí ö ö í ő ö ő ú ú ö ő ú ö ő ú ö ü ö ö ö ö ö ő ö í ő ü ü ő ö ü ű ő ö ú í ö ő ö í í ű ű í ő ö í ú ű ő
É É Á ö Á ő ú í í í ü ö í í ü ő ö í ö ő ő ő ő ő ö ő í ö ö ő ű í ö ő ö í ö í ö ö ö í őí ö ö í ő ö ő ú ú ö ő ú ö ő ú ö ü ö ö ö ö ö ő ö í ő ü ü ő ö ü ű ő ö ú í ö ő ö í í ű ű í ő ö í ú ű ő í ö ú ö ő í í ö
ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á
ú ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á Á ú á ú á Á ö á ö ö ö ú á á ö ö ö ö á ű Ü ú ö Ü ű ö ú ű á á á ú á ú ú á ö ö ú ö ú ú ö ö ú ö ö ö á ö ö ö á á ö ú ö á á Ú á ö ö ö Ü ú Á á ű ö Ü ö ú Á á ö á ö
földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás
Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév 6. elıadás Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább
í ó ó ő ő ő Íő í ó í ó ó ő ő ó ő Íő í ó ú ő í í ó ö ő ő í ő ő í ó ü ö í ő ő ó ú ő ő ő ó ő í ő Í ő í ó í ü ő í í ü í í ó ö í ő í í ö í í őí ö í ü í ó ö
Á Í Á É ö ú ö ó ő ő í ú ó ó ű í í í ó Ü í ó ö ö í ö ő í ó ő ő í ő í ö ő Í ó ő ó ő ő í ő ő ő í ö ő ó ő ő ő Í ő ó í ó ő ó ö ő í ü ő í í ó ü í ú í Í í ó ó ú ő ő ü ö ó ü ő ő í ó ö í í í í ó ü ü í Í ő í í ü
é é ó ó ó é ö é é é ó é é é é é é é é é é é é é ú ó é ó ö é é ó é ö é ó é éú é ú ó é é é é é é é é ö é é é ö é Ö é é ö ó é ö é é é é ű é ö ö ü é ö é Í
é ü é ö é é é ú Í ö é Íó ö ü é ü é ö é ó é ü ö ö ü é ö é é é ö ú ö é é ó ú é ü é ö é é é é é é é é é é ö ü é ö é é é ö ú ö é é é ö é Ö é ü ö é é ö ö é é é é é é é é é é ü é ú ó é é ú ú é ó ó é é é ó ö
é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü é é é ü é é ó é ü ó ö é
Ó Ö é ü ó ö é é ü é é ó ö é ü ü é é ó é é é é é é ö é é é é é é é ó ö ü é é é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü
Í Í í ú Í ü í ő í ö ö ö ü í Í Í Í ü í í ü í ő ő
Á Ö É Á É Ő Ü É ü ő ő ö Í Í ő ö í ő ü ü í í í ü í í í Í Í í ú Í ü í ő í ö ö ö ü í Í Í Í ü í í ü í ő ő í í ő Í Í ú í ő í ő í ö í ő É ő Íő ő Í í Ö ö ő ü ő ő É ő ö ö ő ő ö ö ö í ü ő ö ö ő ő ő ő ö í ő ő ú
É í ű ö ő ü ú ö ü ö ó ö ü í ő ó ú ő ű ú í ő ö ú ő ű ü í ő ó ü ö í ő í ö í ó ó í ó í ó ű ö ö ú í ő ú í í ó í ő í ő ó í ó ó í ó ó í í í í ó ö ö ü ó í ó
Ö É É É ö É Á ö Á ú ó É ó ö ó í ö ö ő í ő ő ő ö í ú ő ó ó ó ó ő ő ü ú ő ő ő ö ö ü ú ö ó ö ö í ö ö í ű ö ö ü ö ü ó ú í ú É ü í ő ő í ő ó í ú í ó ű ú í í ó ö ö ő ú ú í ő ó í É í ű ö ő ü ú ö ü ö ó ö ü í ő
Ó Ó ó ö ó
É ó ö É Á ó ó ü ó Ü ó ö ú ű ö ö ö ü ó Ó Ó ó ö ó Ó Ó ö ö ö ü Ó Ó ö ö ü ö ó ó ü ü Ó Ó Ó Ó ó ö ó ö ó ö ó ö ü ö ö ü ö ó ü ö ü ö ö ö ü ü ö ü É ü ö ü ü ö ó ü ü ü ü Ó Ó ü ö ö ü ö ó ö ö ü ó ü ó ö ü ö ü ö ü ö ó
ú í ü ü ö ű í í í í ü ö ö ö ö í í í ű í ö Á ö ö í í ü ö ü ü ű
í ö ö ú í ü ü ö ű í í í í ü ö ö ö ö í í í ű í ö Á ö ö í í ü ö ü ü ű ö ö ö ú ü ö ö í í í ö Á ö ö ö ö ö ö ö í ö ö ö ö ö ö ú Ő ö ö ö í ú ú ö ö í ö ö í ű í ö ö ö ö Á ü ö ü ö ü ű ö ö ö í ö í ü í ű í í ö ö Á
ú ü ü ú
Ú Á É Á É Í Á ú ú ú ú ü ü ú ú ű Á É Í Á Í Á É Í Á Á É Í Á Ó É Ú Ú Í Á Á É É É Ö Á Á É É É Á Í Í Á Á Á É Í Á Á É Ú Í Á Á É É É Ú ú ü ú ú ű ú ú ü ú Í Í Á É Í Á Ö É Ö Ú Ű Í Á Á É É ú ü ü ü Í ű ű Ü Á É Í Á
í ű ű ö í ö í ű í ú ű ű ű í Í í ö í Í ÍÍ ö ü ö í ű í ö ö ö ű í í ö í ö í ü ö í í í ű í ű ö ö ö í ű ö ö ű ü ö ö ö í ú ü ű ö ú í ö ö í ü ö ö í í í í í í
É Á Ú Ö É É É É Ü É ú ö í ü ö ú ö í Ü ü ü ö ö Ő ú í ú ö í ü Á í ű Í í í ú ü ö í í ű í Í ű ü ű í ü ü í ű ú ö Á ö ö ú ö í ű ű ö í ö í ű í ú ű ű ű í Í í ö í Í ÍÍ ö ü ö í ű í ö ö ö ű í í ö í ö í ü ö í í í
É Í ó Í Í ó Íó ó ó Á ó ú ö ű ü ú Á Í ó ó
Í Í Í Í ó ó ó ú ó ő É ú ö ü ú Á Ú ő ö ó ó ó ó ő ő ó ü ő Á ö ű ü É Í ó Í Í ó Íó ó ó Á ó ú ö ű ü ú Á Í ó ó ő ó ú Á ő ü Á ő ú Í É ö Í ö Á Í Á ő ó ő ó ó Á ó ó ó ó ó Íő Á ü ö ó ó ő ó ó Í ö ó ő ú ó Í ö ő ö ó
Á í ó ó ö Á ö ü É Á É ü É ó ó É ü Á í Á Á ö É ó Á Á Á ó ú É ö ö É Á Á Á í ó Á É É Á ó Á Á É Á ó ü Ű Ö Á Á Á ó ö É Á Á ü É Á É ó É Á Á Á Á Á Á ö ö É Á
ő ü í ő ó ö ú ö ö ó Á í ó ó ö Á ö ü É Á É ü É ó ó É ü Á í Á Á ö É ó Á Á Á ó ú É ö ö É Á Á Á í ó Á É É Á ó Á Á É Á ó ü Ű Ö Á Á Á ó ö É Á Á ü É Á É ó É Á Á Á Á Á Á ö ö É Á Á Á Á Á Á ú É Á Á Á ü É Á Á Á ü
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
ú í ü ö ú ö ö ő í ö ü ö ő ö ü ö í í ü ö í ü ő ö ú ú ő ő ő ő ő ő ö ö ő ő ü ö ü ő ő ö í ő ő ü ü ö í ü Á ő í í ő
ü ú í ü ö ú ö ö ő í ö ü ö ő ö ü ö í í ü ö í ü ő ö ú ú ő ő ő ő ő ő ö ö ő ő ü ö ü ő ő ö í ő ő ü ü ö í ü Á ő í í ő ö ő í í ü ő ő ő í ö ö ö ü ö ő í ü ő ö í ő ü ö í í ö í ü ő ú ü ö ü ő ő ő ő í ő ö ő ő ő ö őí
ö ő ó í ő ü ő ö ő ő ö í ő ó ő ü ú ő ö í ő ő ö ő ü ó ő ó ű ü ó ő ó ó ü ü ő ő ó ó Á í Ő ó ő ő ó í ő ó ó ő Ó ó ö ö Ö ó ő ó ő ö Ö ő ü ő ó ő ö ő ó í
ü ö ö ő ü ó ü ő ü ö Ö ó ő ő ő ő ő ó í ő Á ő ó í Ó Á ö ö ö ő ő ó ő ü í ü ü ő ó ő ő ő ö ő ő Ő ó ő ü ő ó ő ó ű ü ó ő ó ó ü ü ő ő ó ó Á í Ó ó ő ő ó ő ó ó ő ó ó ö ö Ö ő ő ó ő ö Ö ő ü ő ó ő ö ő ó í ő ü ő ö ő
ó Í Ó ó ö ö ó ö ó ó ó ö ó ü ö ó ó Í ó ó ó í Í ó ö í í ó Í ó ö ó í í í ó ö ó ó í ó Í Í ö ö Í ö ó ó ó ö ö ó í ü í ó Í ó ö ó ó í ó ö Í Í
É Á Í ó ö É ó Á Á ó ó ü ó ö ú ű í Í ó Ü ó í ó ó ó ö Í ó í ó ö ö ö ó ö ö ö ü ö ö ó ó ó ö í É Í Í ó ó ü Á í Í Í í ö ü ó Í Ó ó ö ö ó ö ó ó ó ö ó ü ö ó ó Í ó ó ó í Í ó ö í í ó Í ó ö ó í í í ó ö ó ó í ó Í Í
Á É Ő Ö É Á Á É í í ő ő ő ó ú ő ü ű ő ü ő í ü ó ú ó ű ő ó ő ő ú ő ő ó ó ó ő í ú ó í ú ó í í É ü ő ó ó
Á É Ő É ő í É É ü í ú í ü ő ő ő Á É Ő Ö É Á Á É í í ő ő ő ó ú ő ü ű ő ü ő í ü ó ú ó ű ő ó ő ő ú ő ő ó ó ó ő í ú ó í ú ó í í É ü ő ó ó ő í ű ő ó ü ü ő í í ő ó ő í í ő ó í ő ő ő í ó ő ő ó ű ő ű ó í ű í ó
ő ő ü ö ö ü ő ő ö ő ö ő ö ö ó ö ő ő ö í Ö ö í őí ö ö ó ö ö ő ö í Ö ő ő ö ö í í ő í ö ó ő ö ó í ó í Ö Í ó ö í ó ó ö Í Ö ő Í ő ő ó ö ő í ó ö í í í ü ö í
Ö Á Á ó É ö ő ö Ö ó ó ó Ö ő ö í ű ö ő ó ó ő í ő ö ó ö ó ö ö ő Ö ö ő ö ö ó ö ö ü ü í í í ö ö ő ő ó ö ő ó ö ő ö ó ö ű ó ő ó ó ó ő ö ő ő ö ó ó ö ó ó ó ó ö ö ö Í ö ő ö ö ó ö ö í ö ü ö í ü ö ő ö í ö ó ö ó ó
í ő ő Ü Ü Ü Ó í őí Ü ő ű í í ú í ő Ú ő Ü í ő í Ó ő ü í í ú ü Ü ü
ő í É í Ő É ő ü ő ő í Ü í ü ú ú Ú ő ő Ü ő í í Ó Ü ű ü ő Ó Ó Ó ő ő Ü Ü ű ü őí ő ű í Ó í ő ő Ü Ü Ü Ó í őí Ü ő ű í í ú í ő Ú ő Ü í ő í Ó ő ü í í ú ü Ü ü í ü ő í Á Ö í ő ő ő ő í ú í Ó ú í ő í ő Ó í í ő ő ü
ű ő ű ő ő í ü ő ü í ű ű ó ó ü í ü ó ű ő í ó ő ő ő ű ó ü ó ő ő í ó ó í ű ű ű í ó ü ő ű í ó ó ó ő Á Ö ő ó ő ő ó ü ő ó ő ő ő ő í ó í ü ő ő í ű ő ü ü ő ő
ü ó Ö ő ü ő ó ó ó ó ó ó ő É Á í í ü ó ő ü ó ő ő ó ü ő ü ü ű ő ő ü í ü í ű ü í ű í ü ű ő ű ő ő í ü ő ü í ű ű ó ó ü í ü ó ű ő í ó ő ő ő ű ó ü ó ő ő í ó ó í ű ű ű í ó ü ő ű í ó ó ó ő Á Ö ő ó ő ő ó ü ő ó ő
ő ö ö ő ó ö ü Ö ö ő í í ő ő ű ö ö ú ö ö ö ő ő ö ö ö ö ő ő ö ő ű í Á ó ó ö ő ö ü ö ö í ű ő ö ö í ö í ü ö ü ü ö ö ö ö ő ö ü í í ő ö ö ű ö ö ó ő ö ö ü ó
ö ő ö ő ó Ö ó ó í í ó ő ó ó ö ő ö Ö ő ó ő ű ö ó ű í ó Ü í ő í ó ó ő ő ö ó ö ó ü ő ö í ő ő ö ő ó ó ó ö ü ö ö Í ö ó ö ö ö ő ú ö í ö ö ö ö ö í í ö ő ő ő ö ő ö ő ő ö ő ö ő ö ö ő ó ö ü Ö ö ő í í ő ő ű ö ö ú
ő ő Á Á ó ü ő ó Í ő ö í ö ö óú óú ő ú í ő ú ó ó ó ü ö ö ü ö í ő ö ő ó ü ö ö ü ő í ő ő ó í ó ó ő ő ő ő ü Í ó É ü Ö í ö ő Í Í ő Í ő
ő Ú ó ó Á ó ő ó ü ő í Á ű Á ü ő í í í ó ó ő ő ő ó í ő ő í ö ü í ú ú ü ö í ó ő ő ő ó í ú ú ó ó ö ő Í ú í ó ő ö ö ő ö ö ö ő ö í ö ö ő ó ő ö ö ü ú ú ó Ó ő ő ő í ú ú ó ő ő ő Á Á ó ü ő ó Í ő ö í ö ö óú óú ő
ü ű í ú ú ü ü ü ű ü ű ü ű ü ű ü í ü ű í í ü í í í í í ü í ű
ü ú É Á Á ü ű í ú ú ü ü ü ű ü ű ü ű ü ű ü í ü ű í í ü í í í í í ü í ű ü ű í ü í í ü ű í ü ű ü í ü í í í ü í ű ü í ú í ü ü ú í ü ü ű ü í í í ü ü ü í ü Ü ü ü ü ü ü í í í ü í í ü í í ü ű ü ú í ü í ü í ű í
A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra
A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:
í ö ü ö í ó ü ó ó ö í ó ó ó ó ó ó í ü ó ó ö ü ó ó ü ó ó É í ó ö í í ó ó í ö ó ö í ö ö ó í í ó ö í ó ú í ó í ó ü ö ó í ö í ű í ű ó ö í ú í ó ú ö ü í ó
ö Ö ü ü ö Ö ü ó ö ü ö í ó ö ö ö ü í ü ö í í ö í ü ü ö í í ö ü ö í ú ó ö ü ó ü ű ö ü ö í ó ó ó ö ö í ó ö ó ü ó ü í ö ü ö í ó ü ó ó ö í ó ó ó ó ó ó í ü ó ó ö ü ó ó ü ó ó É í ó ö í í ó ó í ö ó ö í ö ö ó í
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
ú ö ó ű ö ö ö í ó ó ö ö ü í ü ü ö ö ü ó ü ü ü ü ö ü ö ö ü ó ó ű ö ó ü ü ü ó ó í í ü ó í í ú í ö ü ü ö ö ö í ó
ű ö Á É Ű Ö É Á ú ö ó ű ö ö ö í ó ó ö ö ü í ü ü ö ö ü ó ü ü ü ü ö ü ö ö ü ó ó ű ö ó ü ü ü ó ó í í ü ó í í ú í ö ü ü ö ö ö í ó ű ö Á ö ó ó ö Á ü ó ű ö ö ű ö í Á ö ű ö í í ű ö ö ö ö ü ö ó ö í ű í ö í ö ó
Statisztikai csalások és paradoxonok. Matematikai statisztika Gazdaságinformatikus MSc november 26. 1/31
Matematikai statisztika Gazdaságinformatikus MSc 11. előadás 2018. november 26. 1/31 A tojást rakó kutya - a könyv Hans Peter Beck-Bernholdt, Hans-Hermann Dubben: A tojást rakó kutya c. könyve alapján
É Á ű ő ó ű ő ő ű ő ó ő ü ő ő ó ó ő ő ő ő ó ó ő Ö ő ő í ó ó ó ó ű ő í ó ő ó ó ű ő ó ó ó í ű í ű ő ü ő ő ó ő ő ű ű ó í ó ű ő ő ó ó ó ó ő ő ó ő ó
ű ő Ű Ö Á É Á ű ő ó ű ő ő ű ő ó ő ü ő ő ó ó ő ő ő ő ó ó ő Ö ő ő í ó ó ó ó ű ő í ó ő ó ó ű ő ó ó ó í ű í ű ő ü ő ő ó ő ő ű ű ó í ó ű ő ő ó ó ó ó ő ő ó ő ó É Ö ű ő í ű ő í í ó ű ü ő ü ó ü Ö ő ü ó ű ő ó ó
ó ó ó ö ü ő ö ó ú ő ó ö ó ó ő ü ő ó ő ü ö ő ő ó ó ő ó ö ö ú ó ő ö ó ő ő ó É ó ő ü ö ú ű ü ő ő ú ó ö ú ó ó ó ó ő ó ö ú Á ő ő ő Á ó ó ü É ö ú
ó ó ó ó É ő ó ő ö ú ó ö ú ó ő ó ő ó ó ó ö ü ő ö ó ú ő ó ö ó ó ő ü ő ó ő ü ö ő ő ó ó ő ó ö ö ú ó ő ö ó ő ő ó É ó ő ü ö ú ű ü ő ő ú ó ö ú ó ó ó ó ő ó ö ú Á ő ő ő Á ó ó ü É ö ú ő ü ó ü ő ó Á ő ő ó ő ó Íő
MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
Módszertani dilemmák a statisztikában 40 éve alakult a Jövőkutatási Bizottság
Módszertani dilemmák a statisztikában 40 éve alakult a Jövőkutatási Bizottság SZIGNIFIKANCIA Sándorné Kriszt Éva Az MTA IX. Osztály Statisztikai és Jövőkutatási Tudományos Bizottságának tudományos ülése
í ű ő ü ó í ó í Ö ü í ő ó ő í ű ű ú ű ű ű ú úí ő í ü íő í ü ő í í ű ű ő í ü ű ó ő í ű ú ű ő ó ő í
ő ü ő ő ő ó Ö ő ü ő ü Á ő ő ő Á ű ő ő ő ő ő ő ő ő ó ő ü Ö í ő ü í ő í í Ö í Ó ú ó í ő ü í ó ó í ő í ő í í ű Ö í í ű í ő ű í í ű ű í í ű ű í í ű í ű ő ü ó í ó í Ö ü í ő ó ő í ű ű ú ű ű ű ú úí ő í ü íő í
Klinikai és Bírósági Alkalmazások Valószínűségszámítási Modellek BREUER-LÁBADY PÉTER
Klinikai és Bírósági Alkalmazások Valószínűségszámítási Modellek BREUER-LÁBADY PÉTER KLINIKAI ALKALMAZÁSOK GYÓGYSZER TESZTELÉS MIK LEHETNEK A PROBLÉMÁK? STATISZTIKAI ALAPKÖVEK GYÓGYULÁSI ESÉLYEK TARTALOM
3. Az indukció szerepe
3. Az indukció szerepe Honnan jönnek a hipotézisek? Egyesek szerint az előzetesen összegyűjtött adatokból induktív (általánosító) következtetések útján. [Az induktív következtetésekről l. Kutrovátz jegyzet,
Ü É É É É ő ő ő í ó ő í í ó ó ó í ó ó ő ó í í ó ó ó í ő ó í ó í í ó ó ő í íí ő ó ó ő ó í í ó ú ő ő í í ó í í ó ű Í í ó í í ó ó ó ű Í ó ó í í í ó ó ő í
Á Ü í ú í ú í ű ő ú ú ó ú ó í ő í ó ó ó í ő í ű ó í Ü Á Ü ő ó Í íí ő ó ő í í ő ó í Í ó ó ó í ú ő í ű ű ó ó ó ó í ű ű ó í ó ó ő í ó í őí íí Í Ü É É É É ő ő ő í ó ő í í ó ó ó í ó ó ő ó í í ó ó ó í ő ó í
é ü ö ü é í ó
é ü ö ü é é ü ö Ü É Á Á É é ú ö é í é é ű ö ő ö í ó é ü ö ü é í ó é ü ö ü é ü é ö é ű ö é é ó é é é ö é é ü é ó ó é ö é ő ö é é é ü é ö ü ő ö é ö é ő ő ó é ö é é ö ó ó ó ó é ö é ö ü é í ő ó é é ö é é í
Kiváltott agyi jelek informatikai feldolgozása Statisztika - Gyakorlat Kiss Gábor IB.157.
Kiváltott agyi jelek informatikai feldolgozása 2018 Statisztika - Gyakorlat Kiss Gábor IB.157. kiss.gabor@tmit.bme.hu Példa I (Vonat probléma) Aladár 25 éves és mindkét nagymamája él még: Borbála és Cecília.
ő ü ó í ó í Ö í Ö ű ű ű ű ú ű ú ú ó í ü ő í í ű ű ő í Ö ó Ö ü í ű ó ó ő ű ú ű ú í ú í
Ö ő ü ő ő ő ó Ö ő ü ő ü ő ő Á ó ű ő ő ő ü ő ó ő ő ő ó Á ő ü Ö í í ő ü ő í í Ö Ö Ó ó í ő ü í ó ó í ő í ő Ö í Ö í í ű Ö í í ű í ó ű í í ű ű í í ű ű í í ű í ű ő ü ó í ó í Ö í Ö ű ű ű ű ú ű ú ú ó í ü ő í í
ő í ü ű ó ó ö ö ű ó ő ő ő ö ö ő ó ő í ő ó ö ö ő ó ő ó ö ő ő ő ö ö ü ó ö ő ő ő ú Í ö ö í ő ú ö ő ő ő ő ő ö ö ö ő Á ó ő ő í í ő ő í ö ő ő ő ö ő í ö ü ő
É Á ó ö ű í ó ü ü ű ő ő ó ö ö ő ő ö ő ö ö ő Í ő í ó ö ö í Ü ö ú ő ó ó ő ő Á ő ö í ű Á ó ö ö ö ó í í ö ü ö í ő ó ő ó ö ö ő ö í ő ő í ő ő ó ő ó ő ó ö ő í ö ö ö ő ó ö ő ő ő ő ü Í ő ü ő ő ö ő ö ő ö í ó ő í
Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban
Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban Szépszó Gabriella Országos Meteorológiai Szolgálat, szepszo.g@met.hu RCMTéR hatásvizsgálói konzultációs workshop 2015. június 23.
é ö é ő á á ő é ö é ö é é í ü ő á é á ó ó á é á ő á á é ő í é í ő ő é é á á ő á á ő á á á ó ö ö ö ő é ó é á á ő é á á ö ő é ö á á ö é á á ő ő é á í ü
ö ő ő ö ö ü ő ő ő ő ő ő ő ö ö ö ő ő ö ő ö ö ő ő ü ö ö ö ő ő ü ő ő ö ő ű ű ő ő ő Á ő Á ű ö ő ü ö ú ö ő ö ö ő ú ő ő ü ö ö ű ö ö ö ő ü ü ő ö Í ö ő ő ü ö ö ő ű ő ö ű ő ő Íő ő ő ö ő ű ü ő ú ő ű ü ü ő ő ő ő
ó í ó ú ó ú ú ó ő Ó ő í ú ő ó ó ú ó ő ő í ő ő ő ő í ő ó ó ö ő ő ő ő ő ő ó ó ő ú ő ő ó ő ó ú ó ő ő ó ó ő ő ó ó ú ü ö ö ó ú ő ü ö ő í ó ő ü ö ő ő ő ő ö
Á Á É É É É ó Á Íő Ü Ü ő ó ö ó Ü ő ű ű í ö ő ö ö í í ő ő ó ő í í ö ő ö ó ő ó ó í ó ú ó ú ú ó ő Ó ő í ú ő ó ó ú ó ő ő í ő ő ő ő í ő ó ó ö ő ő ő ő ő ő ó ó ő ú ő ő ó ő ó ú ó ő ő ó ó ő ő ó ó ú ü ö ö ó ú ő
Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari
ó ó ó Ú í ó ó ó ü Í ü Í Í ű Ö Ö ü í ű Í íí ú ü Í Í í ü ü Í Í Ö Ö Í Ö Í ű Í ó ó ó Ö Í ü ó í ü ü í ó Í ü í ú ó ü
ü ü ó ü Ö í ó í í ü ü ü í ó í ú í ó í Ó ü í ű ű ü Á Á Á í Ó Í í ó Ó ó Í Í ó í Ó Á Í ü ó ó ü ó ó ó Ú í ó ó ó ü Í ü Í Í ű Ö Ö ü í ű Í íí ú ü Í Í í ü ü Í Í Ö Ö Í Ö Í ű Í ó ó ó Ö Í ü ó í ü ü í ó Í ü í ú ó
ő ő ö ő ó ö í ő ő ó Ó Ó ö ó ó ű ö ö ó ő ő ö ö Ó ó Ó Ó ó Ó ö Ó ü Ó ó Á ő
É ő Á ö ó ó ó ö ö Ö Ó Ó ö ő ó ő ő ö ö í ö ő ó ó ő ő ö ő ó ö í ő ő ó Ó Ó ö ó ó ű ö ö ó ő ő ö ö Ó ó Ó Ó ó Ó ö Ó ü Ó ó Á ő ö ö ő ó í ú ü ő ő ő Ó Ó ö ő ű ö í ő ű ó ó ű ó ö ő ó ú ö ő ó ő ő ó ó ó ő ő ó Ó ő ő
í Á Í Á Ü Á É É é ö é ő é é é á ó é á á é é é á ő é ő ő á ő á é ő é é á ő é ő Í é ó ő ú é í é é á ő á á é é ó á ó ü í é é ö á ó é ö ö í é ó á é ő é í
í Á Í Á Ü Á É É ö ő ó ő ő ő ő ő ő ő Í ó ő ú í ő ó ó ü í ö ó ö ö í ó ő í Ó ő ő ö ő ő ó ö í ö ö ő í ű ó í ó ö ű ő ö ő Í ö ő ő ó ö ő í ó ő ö ő ó ö ö ő ü ó ö ő É ó ő ö ö ó ő ö ú ö ö ö í í ü ö ö í ó í í ú ó
ö É í ü í Ú ö ó ó ó ü ó í Ö í Ú í ö í í ó ű ö ű ö ű í ö Ö ű ü ö ü ö ű ü ó ü ó í ö ű ó í ó í ó ű í í ó í ü ű ü í ó í ü ú ó í í ó ü ü í í ó í ó í í ö í
ö É í í ü ö ö ű ü ö ö ű ü ö ű ó ó ö ü ü ó ó ó í ö í ö Ű í ö í ö ö ű ü ü ó ú ü Ö ö ű ö ú ö ö ű ü ö ű ö ö ó ö í ö ö ű ü ó ö ü ü ö ö ü ü ü ű í ó ü ú ü ü ú ö ü í ú ü ö í É ű í ü í ű ó ó ú ú ú ó ú ü ü ű ú í
Í Á ü ú Ú ő ú ú ú ö Í ő ú ú őú ő Í Á Á ü Í ü Í Ú Á Á Ö ö É ü ű ö Ú ő ő Í ő ü ő ö ú ö Í Í Í ő ö ö ö ö ő ü ü ő
ö ú ö ú ő Ü ú ö Ö Í Í ö ú ü ú Í Á ü ú Ú ő ú ú ú ö Í ő ú ú őú ő Í Á Á ü Í ü Í Ú Á Á Ö ö É ü ű ö Ú ő ő Í ő ü ő ö ú ö Í Í Í ő ö ö ö ö ő ü ü ő üú ú ő ő ő ö ő ú ö ü ö ő ö ö ő ö ü ő Í Í Ö ö ő Í ü ö ő ő ö ü ö
É ő ő ő ú ö ü ő ű ö ö ö ó í ü ó ü í ü ó ö ö ü ö ö ó ó ő ü ü ö ö ő ö ö ö í í ő í ő ó ú ó í ő ü ö ö ő í ö ő ü ö ő ó ő ő ö ő í ö ű ó ü ü ö ö ü í ö ó ó ö
ő ó ő ÍÚ Ó É Ó Á É É Á Á óí ó í É ő ő ő ú ö ü ő ű ö ö ö ó í ü ó ü í ü ó ö ö ü ö ö ó ó ő ü ü ö ö ő ö ö ö í í ő í ő ó ú ó í ő ü ö ö ő í ö ő ü ö ő ó ő ő ö ő í ö ű ó ü ü ö ö ü í ö ó ó ö ú ő ü ű Ő ű ö í ü ö
ő ő ö ó ö ú ő ő ó ó ö ö ó ö ó ó ó ó ö ö í í ö í ő ő ó ó ó ö Á É ó Á ű ú ó ö ő ú ó ó ó ó ű ö ó ó ó ó í ő ú ö ő ő ö í ó ö ő ú ó ó ó ó ű ö í ó ö ú ú ó ó
ű ö ú í í ő ó ő ő ő ő ö ó ö ú ő ő ó ó ö ö ó ö ó ó ó ó ö ö í í ö í ő ő ó ó ó ö Á É ó Á ű ú ó ö ő ú ó ó ó ó ű ö ó ó ó ó í ő ú ö ő ő ö í ó ö ő ú ó ó ó ó ű ö í ó ö ú ú ó ó ő ó ő ó ö í ő ő í ó ö ű ó ö í ő ő
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati