Infravörös és CD spektroszkópia a fehérjeszerkezet vizsgálatában Mi történhet, ha egy mintát fénnyel világítunk meg? megvilágító fény (elnyelt fény) minta átjutott fény Abszorpció UV-VIS, IR, CD spektr. Smeller László kibocsátott fény Lumineszcencia (Fluoreszcencia és Foszforeszcencia) szórt fény Raman és Rayleigh szórás Abszorpciós és emissziós spektroszkópia Az átjutott vagy kibocsátott fény analizálása a hullámhossz függvényében. Információ: atomok, molekulák azonosítása, molekuláris szintű szerkezetváltozások (konformációváltozások) detektálása, koncentráció meghatározás Miért nyel el ill. bocsát ki fényt egy atom v. molekula? Energiaátmenet: ld. ablonski diagram Gerjesztett elektron- és vibrációs állapot* Gerjesztett elektronállapot Vibrációsan gerjesztett áll.* Alapállapot S S 0 E *csak molekuláknál!
E Miért nyel el ill. bocsát ki fényt egy atom v. molekula? S S 0 UV-VIS IR abszorpció Raman Fluoreszcencia Foszforeszcencia T ΔEhfhc/λ 0 0 Abszorpciós spektroszkópia Abszorpciós törvény x dx x +d d d dx d μdx d μdx d μdx ln μx + const 0 e μx Abszorpciós spektroszkópia Lambert-Beer törvény Elvi alapja: abszorpciós törvény: 0 e -μx ahol μ(anyag,c,λ) Lambert-Beer törvény: A lg 0 ε ( λ) cx spektrum: A(λ) mérés: spektrofotométer referencia oldat ( 0 ) információ: azonosítás koncentráció. UV-VIS abszorpciós spektroszkópia Mi abszorbeál a fehérjékben? Molekularész λ max (nm) ε(l/cm mol) Trp 80 5600 Tyr 74 400 Phe 57 00 Diszulfid híd 50-70 300 Peptidkötés 90-30 Fehérje koncentráció meghatározás: ε 80 (L mol - cm - )5500 n Trp + 490 n Tyr + 5 n SS (Pace et al 995. Prot. Sci. 4, 4-4)
Rnase T Infravörös spektroszkópia Moláris extinkciós koefficiens (L/(mol cm) Hullámhossz (nm) 60 80 300 30 340 Hullámhossz (nm) Fehérje koncentráció meghatározás: ε 80 (L mol - cm - )5500 n Trp + 490 n Tyr + 5 n SS (Pace et al 995. Prot. Sci. 4, 4-4) Infravörös fény: λ800 nm - mm közép infra tartomány:,5-50 μm abszorpciós spektroszkópia az elnyelt infravörös sugárzás molekularezgéseket kelt érzékeny a molekulaszerkezetre speciális detektálás: FT spektrométer (FTIR spektroszkópia) Az infravörös spektrum mérése: Fourier transzformációs spektrométer fényforrás tk 6.7 ábra tk 6.8 ábra
FTIR elve részletesen Fourier transzformáció x/ xretardáció E i const (-cos(πx/λ)) DC +const cos(πx/λ) AC 0 n 0 i cos(πx/ λ i d 0( λ) AC cos(πx/ λ) dλ dλ ) n Ai sin( ωit) E A sin(ωt) E 0 da sin( ωt) dω dω Egy f(t) függvény Fourier transzformáltja a g(x) fügvény: F( f ( t)) F πiνt f ( t) e dt g( ν ) A Fourier transzformáció inverze: πiνt ( g( ν )) g( x) e dν f ( t) A Fourier transzformáció szemléltetése Fourier transzformáció inverz Fourier transzformáció A spektrum számolása a Fourier transzformációs spektrométerben Az interferométeren keresztüljutott sugárzás: 0 d 0( λ) AC cos(πx/ λ) dλ dλ éppen a d ( 0 λ) mennyiség cosinus transzformáltja dλ d A spektrum a ( 0 λ) -nek a mintán való dλ áthaladása után megmaradt részének és a d ( 0 λ) -nak a hányadosa (transzmissziós spektrum) dλ
Michelson interferométer álló tükör féligáteresztő tükör apertúra fényforrás mozgó tükör FT mintatér fényforrás detektor minta Molekularezgések Az elektronok könnyűek, gyorsan követik az atommag mozgását, ezért az atommagok rezgéseit az elektronok nem befolyásolják. A klasszikus fizikai leírásban az atommagok közti kötést, egy rugóval vesszük figyelembe.
Molekularezgések: kétatomos molekula a középiskolából ismert: f π D m m m l l m l Δl l Δl m + m m l + l l l l Δl Δl F DΔl / D F / D F D D m + m D tehát:, amit az m D f π D m egyenletbe helyettesítve a rezgési frekvencia: D( m + m) f π mm az m mm mennyiséget redukált redukált m + m tömegnek is nevezik, ezzel a frekvencia: f π D m redukált A hullámhossz: c mredukált λ πc f D Az infravörös spektroszkópiában a λ reciprokát, a hullámszámot (ν) használják: ν D ν: hány hullám fér el egységnyi hosszúságon? [cm - ] λ πc m redukált Példa: CO A mért rezgési hullámszám: ν 43 cm - λ4,67μm f 6,43 0 3 Hz m C 0-6 kg, m O,7 0-6 kg D875 N/m Ha ν ismert, D számolható ha D ismert, ν számolható
Kvantummechanikai leírás Klasszikus fizikai rezgések és energianívók kapcsolata Klasszikus kép Energianívók E ψ n3 E ψ n3 n n n n0 x E hf ( n + ) n n 0,,. f π D m redukált rezonancia az f frekvenciájú fénnyel ΔE u.a.!!! ΔEhf n n0 x A rezgési frekvencia függése a tömegtől és a kötéserősségtől Tömeg: Infravörös rezgési frekvenciák (cm - ) B-H 400 Al-H 750 C-H 3000 Si-H 50 Ge-H 070 N-H 3400 P-H 350 As-H 50 O-H 3600 S-H 570 Se-H 300 F-H 4000 Cl-H 890 Br-H 650 Kötéserősség: C-N: 00 cm -, CN: 660 cm -, C N: 0 cm -. Sokatomos molekulák rezgései N atomos molekula: 3N szabadsági fok, 3-3 a teljes molekula transzlációja ill. rotációja 3N-6 rezgési szabadsági fok (lineáris molekuláknál csak 3N-5) normálrezgések normálkoordináták Víz (O-H): 3600 > nehézvíz: 600 cm -
Normálkoordináták A kétatomos molekula példáján bemutatva: x c x O m C m O x TKP x O x ν Normálrezgések Minden atom ugyanazzal a frekvenciával, fázissal, de különböző amplitúdóval és irányban rezeg. Pl. víz: x C Általános esetben 3N dimenziós koordinátarendszer forgatása Lineáris transzformáció (mátrixművelet) A normál módusok nem hatnak kölcsön egymással. A víz normálrezgései Néhány tipikus rezgési frekvencia Ezek nem rezgések, hanem gátolt forgások (libráció)
Példa: Formaldehid Analitikai alkalmazások szintézis: közti és végtermék azonosítás szerkezet bizonyítás metabolit kimutatás gyógyszerellenőrzés (tisztaság vizsgálat) Megj.: Lambert-Beer tv. itt is igaz, koncentráció meghatározás is lehetséges. forrás: http://www.chemistry.msu.edu/faculty/reusch/virttxtml/spectrpy/infrared/infrared.htm Molekula azonosítás molekula azonosítás C 4 H 8 O Fingerprint (ujjlenyomat) tartomány forrás: http://www.chemistry.msu.edu/faculty/reusch/virttxtml/spectrpy/infrared/infrared.htm
Makromolekulák rezgései Az N-metilacetamid mint a fehérjelánc gerincének modellje Globális rezgések (bonyolultak) Lokalizált rezgések, pl: CH rezgések a lipidekben amid rezgések a fehérjékben (acetamid rezgések) Fehérjék rezgési spektroszkópiája A víz abszorpciós spektruma Gerinc: amid rezgések konformáció (másodlagos szerkezet) H/D csere, (harmadlagos szerkezet) Oldalláncok kölcsönhatások más molekulákkal pl Ca + kötés Fontos technikai megj.: nehézvíz (D O)
Víz és nehézvíz spektrumok A fehérjék amid rezgései Bandekar BBA 0 (99) 3 A fehérjék amid rezgései Az amid I vibráció és a másodlagos szerkezet amid I CO rezgés H-híd miatt konformációérzékeny amid II N-H deformációs rezgés (síkbeli hajlítás) H-D cserére érzékeny Szerkezet kompaktsága (harmadlagos szerk.) β lemez α helix
A másodlagos szerkezeti elemekhez tartozó jellegzetes amid I jel Intramolekuláris szerkezet β-lemez rendezetlen α-hélix Intermolekuláris kölcsönhatás Intermolekuáris antiparallel β-lemez 600 700 ν cm - 600 700 ν cm - Az amid I sáv átlapoló komponensek összege: dekovolúció Alkalmazások lipid fázisátalakulás fehérjedenaturáció A A ν ν Fourier öndekonvolúció Vonalak szétválasztása vonalkeskenyítéssel Meersman és mtsai. Biophys.
BPTI bovine pancreatic trypsin inhibitor aggregáció Mioglobin (Nyomásciklus) Ca + kötés Parvalbumin aggregáció Absorbance 8 C 43.8 C 67.5 C 80.7 C 90 C 30 C 600 580 560 540 Wavenumber (cm - ) 50
CD Cirkuláris dikroizmus spektroszkópia Síkban poláros: Poláros fény Cirkulárisan poláros lin. pol jobbra+ balra cirk. pol. A jobbra és balra forgó cirkulárisan polarizált fénysugarakkal a királis molekulák különbözőképpen hatnak kölcsön: ΔAA L -A R Δε c x Δεε L -ε R Ellipticitás: θ tg θ b/a mozgó animációk: http://www.enzim.hu/~szia/cddemo/demo0.htm b a θ.303 ( A ) 80 L AR 4 π Lambert-Beer tv.: θ c l θm (θ m : moláris ellipticitás) [deg]
A CD spektrométer vázlata CD és a fehérjeszerkezet Figure 4 The far-uv CD spectra associated with various types of secondary structure elements in proteins. Red: α-helix; blue: antiparallel β-sheet; green: type I β-turn; orange: irregular structure. (Data taken from the Encyclopedia of Life Sciences) A) triosephosphate isomerase B) hen egg lysozyme C) myoglobin D) chymotrypsin red:helix. green:strand, yellow:other. The Structure and CD spectrum of Subtilisin helix sheet coil 57.9 6. 5.85