Optikai spektroszkópia az anyagtudományban 8. Raman spektroszkópia Anizotrópia IR és Raman spektrumokban
|
|
- Domokos Biró
- 6 évvel ezelőtt
- Látták:
Átírás
1 Optikai spektroszkópia az anyagtudományban 8. Raman spektroszkópia Anizotrópia IR és Raman spektrumokban Kamarás Katalin MTA Wigner FK Optkai spektroszkópia az anyagtudományban 8. 1
2 Raman-szórás: történet Raman Mandelstam, kombinációs szórás Optkai spektroszkópia az anyagtudományban 8. 2
3 virt. gerj. áll. gerj. áll. alapállapot abszorpció emisszió szórás Rayleigh-szórás Optkai spektroszkópia az anyagtudományban 8. 3
4 virt. gerj. áll. gerj. áll. alapállapot abszorpció emisszió szórás Stokes Optkai spektroszkópia az anyagtudományban 8. 4
5 virt. gerj. áll. gerj. áll. alapállapot abszorpció emisszió szórás anti-stokes Optkai spektroszkópia az anyagtudományban 8. 5
6 Infravörös abszorpció és Raman-szórás IR: 0 ( cos0t 0 rcos0t r Deformálható eset: ~ r, vagy dipólmomentum változása rezgés során ind 1 0 ( cos0t ][ E0 cost ] 0E0 cost ( E0[cos( 0 t cos( t] 2 [ 0 Rayleigh anti-stokes Stokes Optkai spektroszkópia az anyagtudományban 8. 6
7 A Raman-effektus klasszikus kép D. A. Long: Raman spectroscopy McGraw-Hill, 1977 Rayleigh Stokes anti-stokes Optkai spektroszkópia az anyagtudományban 8. 7
8 Polarizálhatósági tenzor P E xx yx zx xy yy zy xz yz zz E Optkai spektroszkópia az anyagtudományban 8. 8
9 A Raman-effektus kvantumos kép Álmosdi Péter, BME 2008 Forrás: Wikipedia Optkai spektroszkópia az anyagtudományban 8. 9
10 Veres Miklós, MTA SZFKI Raman-szórás: energia- és impulzusmegmaradás S k S k L L q A foton hullámvektor változását a fononnak kell kompenzálnia. k L, k S 10 4 cm -1 q cm -1 k L, k S << q A szórásban csak a Brillouin zóna közepén található fononok vesznek részt. Optkai spektroszkópia az anyagtudományban 8. 10
11 Álmosdi Péter, BME 2008 Forrás: Wikipedia Kísérleti elrendezés Mink János: Az infravörös és Raman spektroszkópia alapjai. Veszprémi Egyetem Analitikai Kémiai Tanszék Gerjesztés: látható, monokromatikus fény (lézer ~ 10 4 cm -1 Frekvenciakülönbség: infravörös tartomány, felbontás: ~ 1 cm -1 Monokromátor felbontása kritikus! Optkai spektroszkópia az anyagtudományban 8. 11
12 Raman-mikroszkóp Optkai spektroszkópia az anyagtudományban 8. 12
13 CCl 4 Raman-spektruma Mink János: Az infravörös és Raman spektroszkópia alapjai. Veszprémi Egyetem Analitikai Kémiai Tanszék Optkai spektroszkópia az anyagtudományban 8. 13
14 Stokes, 0 = 2 1, : Raman-effektus 1 a 1 b i Optkai spektroszkópia az anyagtudományban 8. 14
15 Veres Miklós, MTA SZFKI Rezonáns Raman-szórás Ha a gerjesztő lézer energiája megközelíti a közeg egy valós átmenetének energiáját, a Raman szórás intenzitása néhány nagyságrenddel megnő. Ez a rezonáns Raman szórás. A rezonáns Raman szórás állapotsűrűség maximumok közelében a legerősebb. Optkai spektroszkópia az anyagtudományban 8. 15
16 Veres Miklós, MTA SZFKI Rezonáns Raman gerjesztési profil Gerjesztő energia Raman shift (cm Raman shift (cm Raman shift (cm Raman shift (cm Raman shift (cm -1 Intenzitás (tetsz. egys Gerjesztés energiája (ev Optkai spektroszkópia az anyagtudományban 8. 16
17 Gerjesztési profil: példa Gerjesztés: 1,623-1,722 ev A 173,6 cm -1 sáv gerjesztési profilja Veres Miklós, MTA SZFKI A.Jorio et al. Phys. Rev. B 63 ( Optkai spektroszkópia az anyagtudományban 8. 17
18 IR 0 Q Rezgések számának becslése Raman 0 Q 3N 6 szabadsági fok degeneráció Kölcsönös kizárás elve: ha a molekulában inverziós centrum van, az IR-aktív módusok nem Raman-aktívak és fordítva i: (u IR (g kiválasztási szabályok Raman csendes páros és páratlan normálkoordináták ortogonálisak A szimmetria-analízis a spektrumvonalak maximális számát adja meg (véletlen degeneráció, küszöb alatti intenzitás még csökkentheti Optkai spektroszkópia az anyagtudományban 8. 18
19 Anizotrópia infravörös és Raman-spektrumokban Optkai spektroszkópia az anyagtudományban Q IR Raman 0 Q Q Q Q Q z y x Q Q Q Q Q Q Q Q Q zz zy zx yz yy yx xz xy xx Q Beeső és szórt fény polarizációja különbözhet Polarizátor, analizátor szükséges
20 Kettőstörés, lineáris dikroizmus T, R független irányokban mérhető megfelelően polarizált fénnyel max. 3 független n, Kramers-Kronig összefüggések megmaradnak az egyes irányokban kiválasztási szabályok irányfüggőek normál beesés: 3 mérés, legalább 2 különböző felületen polarizátor, analizátor ugyanolyan állásban (az egyik el is hagyható Egydimenziós szerves vezető anyag spektruma Optkai spektroszkópia az anyagtudományban 8. 20
21 Szórási sík, szórási geometria Beeső z(xzx Szórt irány pol. Depolarizációs arány: ( I ( I ( q beeső és szórt fény szöge felső index: beeső fény pol. alsó index: szórt fény pol. (E, szórási síkhoz képest Optkai spektroszkópia az anyagtudományban 8. 21
22 Depolarizációs arány Optkai spektroszkópia az anyagtudományban mérésből a mátrixelemek relatív nagyságát megkaphatjuk ( ( ( I I természetes fényre: ( ( ( I I n n n z(xzx geometriában: z x y x I I 2 ( y y x y I I 2 ( y n z n n I I 2 ( 2 2 ' ( ' ( 2 ( zx yx 2 2 ' ( ' ( 2 ( yy zy ' ( ' ( ' ( ' ( 2 ( yy yx zy zx n zz, xx más orientációból
23 ( Depolarizációs arány nem-orientált anyagokra I I ( ( beeső és szórt fény szöge felső index: beeső fény pol. alsó index: szórt fény pol. (E, szórási síkhoz képest és szimmetrikus mennyiségek a koordináták elforgatására: xy x', y' x', y' cos( xx' cos( yy' x,y lehet x,y,z Mivel szimmetrikus tenzor (és feltesszük, hogy valós is, xy = yx és a molekulák térbeli orientációjára átlagolva: a xx yy zz yx yz zx xy Az intenzitást meghatározó mennyiség: Q xx ' xy yy yy ezekre hasonló összefüggések írhatók fel és segítségével, ahonnan 3( ' ( a' 4( ' 2 2 zz zz xx a 2 45 Optkai spektroszkópia az anyagtudományban 8. 23
24 a =0 3 4 Depolarizációs arány depolarizált = teljesen polarizált részben polarizált Teljesen polarizált módus: =0 Pl. xx yy zz és xxv = yy = zz teljesen szimmetrikus módus (A, A g Optkai spektroszkópia az anyagtudományban 8. 24
25 Teljesen szimmetrikus rezgési módusok Optkai spektroszkópia az anyagtudományban 8. 25
26 Depolarizációs arány: példa ciklohexán Optkai spektroszkópia az anyagtudományban 8. 26
27 Depolarization (antenna effect Optkai spektroszkópia az anyagtudományban 8. 27
28 Szén nanocsövek Raman spektruma: polarizációfüggés DWNT 785 nm xx xy DWNT 785 nm depolarization ratio I xy /I xx Raman intensity Frequency (cm Frequency (cm -1 Optkai spektroszkópia az anyagtudományban 8. 28
29 Tipikus infravörös és Raman-spektrum B. Schrader: Raman/Infrared Atlas of Organic Compounds VCH Publishers, Optkai spektroszkópia az anyagtudományban 8. 29
30 Optikai aktivitás Optikai rotációs diszperzió (ORD: jobbra és balra cirkulárisan polarizált fényre más törésmutató lineárisan polarizált fény polarizációs síkja elfordul Cirkuláris dikroizmus: más extinkciós együttható lineárisan polarizált fény elliptikusra változik Optkai spektroszkópia az anyagtudományban 8. 30
31 optikai forgatás szöge: ( n L ( n l Optikai forgatás (cirkuláris kettőstörés ' n R L l ' l 2c ' nr' ( n 2c L ' n R ' fajlagos forgatóképesség (oldatokra: Fontos! nm (Na D-vonal T = 25 o C oldószer: víz [c ]: g/100 cm 3 [l]: dm lc' Felhasználás: cukorkoncentráció (egészségügy, élelmiszeripar polarimetria, szacharimetria Optkai spektroszkópia az anyagtudományban 8. 31
32 Természetes optikai forgatás Kézsmárki István, BME Fizika Tsz Pasteur (1849 Borkősav Levo (+ Dextro ( Optikai forgatás Levo Dextro Levo Dextro Optkai spektroszkópia az anyagtudományban 8. 32
33 Cirkuláris dikroizmus Ellipticitás: n különböző abszorpció különböző ~ ( n L " nr" l fajlagos ellipticitás: ellipticitás, 1 cm-en létrejövő ellipticitás 100 [ ] lc' használatos még az extinkciós (abszorpciós koefficiens különbsége: (fajlagos, moláris " " L R nl nr Egy mennyiségbe összefoglalva: i n L n R, L definíciója és az előjel önkényes! ( c 0 4 ( log10 ( R Optkai spektroszkópia az anyagtudományban 8. 33
34 Cotton-effektus i n~ ~ L n ( R és között Kramers-Kronig összefüggések Pozitív Cotton-effektus: > 0 Negatív: Mikroszkopikus kép: gerjesztés szerkezet köráram mágneses tér fény mágneses tere Optkai spektroszkópia az anyagtudományban 8. 34
35 Alkalmazás információ optikai izomerekről (azonos szerkezet, kivéve a forgatást szerencsés esetben felbontás nőhet (előjel! mágneses dipólátmenetek megnövelhetik az intenzitást ORD: mindenütt CD: csak gerjesztések körül Optkai spektroszkópia az anyagtudományban 8. 35
36 Szerkezeti feltétel: kiralitás (S n szimmetriaelem hiánya Optikai izomeria Optikai izomeria: enantiomerek: síkra való tükrözéssel vihetők át egymásba racém keverék: enantiomerek 1:1 arányú keveréke diasztereomerek: két királis molekula reakciójával keletkezett izomerek (nem enantiomerek enantiomerek Kajtár Márton: Változatok négy elemre diasztereomerek Optkai spektroszkópia az anyagtudományban 8. 36
37 Optikai izomeria Optkai spektroszkópia az anyagtudományban 8. 37
38 Optikai izomerek szétválasztása Optikai izomerek szétválasztása: szimmetrikus szintézis diasztereomerek Természetes anyagok (enzimek, aminosavak élő szervezetekben: csak az egyik enantiomer létezik (a természet királis Felhasználás: kormeghatározás (aminosav-racemizáció aminosavak Forrás: Wikipedia Optkai spektroszkópia az anyagtudományban 8. 38
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Vizsgálati módszerek az anyagtudományban: Infravörös és Raman spektroszkópia
Vizsgálati módszerek az anyagtudományban: Infravörös és Raman spektroszkópia Kamarás Katalin MTA SzFKI kamaras@szfki.hu IR-Raman Raman spektroszkópia 1 Tipikus infravörös és Raman-spektrum B. Schrader:
Raman spektroszkópia. Történet Két leirás: Eldines, kvantumos Kiválasztási szabályok Szimmetriák Raman Intenzitás Rezonáns Raman
Raman spektroszkópia Történet Két leirás: Eldines, kvantumos Kiválasztási szabályok Szimmetriák Raman Intenzitás Rezonáns Raman Speciális Raman esetek elektronikus SERS, tip enh. ROA near-field Kisérleti
CD-spektroszkópia. Az ORD spektroskópia alapja
CD-spektroszkópia Az ORD spektroskópia alapja - A XIX. század elején Biot megfigyelte, hogy bizonyos, a természetben előforduló szerves anyagok a lineárisan polarizált fény síkját elforgatják. - 1817-ben
Abszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
Infravörös, spektroszkópia
Infravörös, Raman és CD spektroszkópia Spektroszkópia Az EM sugárzás abszorbcióján alapszik: látható (leggyakrabban kvantitatív) UV IR (inkább kvalitatív) RAMAN ESR (mikrohullám) NMR (rádióhullám) Fény
Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
Abszorpció, emlékeztetõ
Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
13. Előadás. A Grid Source panelen a Polarization fül alatt megadhatjuk a. Rendre az alábbi lehetőségek közül választhatunk:
13. Előadás Polarizáció és anizotrópia A Grid Source panelen a Polarization fül alatt megadhatjuk a sugár polarizációs állapotát Rendre az alábbi lehetőségek közül választhatunk: Polarizálatlan Lineáris
Abszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén
ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén A paraméterek anizotrópiája egykristályok rögzített tengely körüli forgatásakor
OPTIKA. Vozáry Eszter November
OPTIKA Vozáry Eszter 2015. November FÉNY Energia: elektromágneses hullám c = λf részecske foton ε = hf Szubjektív érzet látás fény és színérzékelés ELEKTROMÁGNESES SPEKTRUM c = λf ε = hf FÉNY TRANSZVERZÁLIS
Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano
Bordács Sándor doktorjelölt Túl l a távoli t infrán: THz spektroszkópia pia az anyagtudományban nyban Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Terahertz sugárz rzás THz tartomány: frekvencia:
Jahn Teller-effektus Cs 3 C 60 -ban. Pergerné Klupp Gyöngyi. Matus Péter, Kamarás Katalin MTA SZFKI
Jahn Teller-effektus Cs 3 C 60 -ban Pergerné Klupp Gyöngyi Matus Péter, Kamarás Katalin MTA SZFKI Jahn Teller-effektus Cs 3 C 60 -ban Tartalom 2 Bevezetés az A 3 C 60 (A = K, Rb, Cs) alkálifém-fulleridekről
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
12/5/2012. Biomolekuláris szerkezet. Diffrakció, röntgenkrisztallográfia, fény- és elektronmikroszkópia. Tömegspektrometria, CD.
fáziskülönbség egy adott távolság után konstruktív/destruktív interferencia Biomolekuláris szerkezet. Diffrakció, röntgenkrisztallográfia, fény- és elektronmikroszkópia. Tömegspektrometria, CD. c 2 > c
E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic
Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses
A fény tulajdonságai
Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó
2. ZH IV I.
Fizikai kémia 2. ZH IV. kérdések 2018-19. I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me=
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
Optikai spektroszkópia az anyagtudományban 7. Infravörös spektroszkópia
Optikai spektroszkópia az anyagtudományban 7. Infravörös spektroszkópia Kamarás Katalin MTA Wigner FK kamaras.katalin@wigner.mta.hu Optikai spektroszkópia az anyagtudományban 7. 1 Molekularezgések Optikai
Abszorpciós fotometria
abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok
Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
Optika Gröller BMF Kandó MTI
Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása
Abszorpciós spektrometria összefoglaló
Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció
A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD
A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása
Szabó Dénes Molekulák és reakciók három dimenzióban
Szabó Dénes Molekulák és reakciók három dimenzióban Alkímia ma, 2012. április 19. Egy kis tudománytörténet -O azonos kémiai szerkezet -O Scheele (1769) -O különböző tulajdonságok -O Kestner (1822) borkősav
Kristályok optikai tulajdonságai. Debrecen, december 06.
Kristályok optikai tulajdonságai Debrecen, 2018. december 06. A kristályok fizikai tulajdonságai Anizotrópia - kristályos anyagokban az egyes irányokban az eltérő rácspontsűrűség miatt a fizikai tulajdonságaik
Abszorpciós fotometria
A fény Abszorpciós fotometria Barkó Szilvia PTE ÁOK Biofizikai ntézet 2011. február E A fény elektromos térerősségvektor hullámhossz A fény kettős termzete: Hullám (terjedkor) Rzecske (kölcsönhatáskor)
Abszorpciós fotometria
abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor
Koherens lézerspektroszkópia adalékolt optikai egykristályokban
Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek 2012. 11. 08. Fotonok és molekulák ütközése Fény (foton) ütközése a molekulákkal fényszóródás abszorpció E=hν
Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált
Síkban polarizált hullámok Tekintsünk egy z-tengely irányában haladó fénysugarat. Ha a tér egy adott pontjában az idő függvényeként figyeljük az elektromos (ill. mágneses) térerősség vektorokat, akkor
Fény kölcsönhatása az anyaggal:
Fény kölcsönhatása az Fény kölcsönhatása az : szórás, abszorpció, emisszió Kellermayer Miklós Fényszórás A fényszórás mérése, orvosi alkalmazásai Lord Rayleigh (1842-1919) J 0 Light Fényforrás source Rayleigh
mágneses-optikai Kerr effektus
Mágnesezettség optikai úton történő detektálása: mágneses-optikai Kerr effektus I. Mágneses-optikai effektusok 2 II. Kísérleti technika 3 III. Mérési feladatok 5 IV. Ajánlott irodalom 6 2008. BME Fizika
Elektronszínképek Ultraibolya- és látható spektroszkópia
Elektronszínképek Ultraibolya- és látható spektroszkópia Elektronátmenetek elektromos dipólus-átmenetek (a molekula változó dipólusmomentuma lép kölcsönhatásba az elektromágneses sugárzás elektromos terével)
A fény és az anyag kölcsönhatása
A fény és az anyag kölcsönhatása Bohr-feltétel : E = E 2 E 1 = hν abszorpció foton (hν) E 2 E 2 E 1 E 1 E 2 E 2 spontán emisszió E 1 E 1 stimulált (kényszerített) emisszió E 2 E 2 E 1 E 1 Emissziós és
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós
Alapjai, tulajdonságai, mérése Kellermayer Miklós Fotolumineszcencia Radiolumineszcencia Fotolumineszcencia Radiolumineszcencia Aurora borrealis (sarki fény) Biolumineszcencia GFP-egér Biolumineszcencia
Átmenetifém-komplexek ESR-spektrumának jellemzıi
Átmenetifém-komplexek ESR-spektrumának jellemzıi A párosítatlan elektron d-pályán van. Kevéssé delokalizálódik a fémionról, a fém-donoratom kötések meglehetısen ionos jellegőek. A spin-pálya csatolás viszonylag
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET)
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Biofizika szeminárium PTE ÁOK Biofizikai Intézet Huber Tamás 2014. 02. 11-13. A gerjesztett állapotú elektron lecsengési lehetőségei Gerjesztés Fluoreszcencia
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy
Pere Balázs október 20.
Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?
Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. dec. 16. A mérés száma és címe: 11. Spektroszkópia Értékelés: A beadás dátuma: 2011. dec. 21. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
Fénnyel keltett átorientálások és instabilitások
Fénnyel keltett átorientálások és instabilitások Bevezetés (fotokróm anyagok & folyadékkristályok); Folyadékkristály cellák fényérzékeny réteggel: - a minták előkészítése; - alapjelenségek megfigyelése:
OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET)
Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET) Gerjesztés A gerjesztett állapotú elektron lecsengési lehetőségei Fluoreszcencia 10-9 s k f Foszforeszcencia 10-3 s k ph 10-15 s Fizika-Biofizika 2. Huber
Speciális fluoreszcencia spektroszkópiai módszerek
Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon
Optika Gröller BMF Kandó MTI
Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Az elektromágneses spektrum Az anyag és a fény kölcsönhatása Visszaverődés, reflexió Törés, kettőstörés, polarizáció
BIOFIZIKA. Metodika- 4. Liliom Károly. MTA TTK Enzimológiai Intézet liliom@enzim.hu
BIOFIZIKA 2012 11 26 Metodika- 4 Liliom Károly MTA TTK Enzimológiai Intézet liliom@enzim.hu A biofizika előadások temamkája 1. 09-03 Biofizika: fizikai szemlélet, modellalkotás, biometria 2. 09-10 SZÜNET
A fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
Visszaverődés. Optikai alapfogalmak. Az elektromágneses spektrum. Az anyag és a fény kölcsönhatása. n = c vákuum /c közeg
Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Az elektromágneses spektrum Az anyag és a fény kölcsönhatása Visszaverődés Visszaverődés, reflexió Törés, kettőstörés,
Geometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
A CD alapjai. Fény: elektromágneses hullám, elektromos és mágneses tér időbeli és térbeli periodikus változása
Fehérje Analitika 2. Spektroszkópiás technikák MSC, 2011. tavaszi félév CD Cirkuláris Dikroizmus spektroszkópia A CD alapjai Fény: elektromágneses hullám, elektromos és mágneses tér időbeli és térbeli
Szerves oldott anyagok molekuláris spektroszkópiájának alapjai
Szerves oldott anyagok molekuláris spektroszkópiájának alapjai 1. Oldott molekulában lejátszódó energetikai jelenségek a Jablonski féle energia diagram alapján 2. Példák oldatok abszorpciójára és fotolumineszcenciájára
Fullerének vizsgálata infravörös spektroszkópiával Kamarás Katalin, Pergerné Klupp Gyöngyi MTA SzFKI,
Fullerének vizsgálata infravörös spektroszkópiával Kamarás Katalin, Pergerné Klupp Gyöngyi MTA SzFKI, email: kamaras@szfki.hu, klupp@szfki.hu A gyakorlat célja a C 60 molekulakristály és a lineáris szerkezet
Abszorpciós fotometria
2013 január Abszorpciós fotometria Elektron-spektroszkópia alapjai Biofizika. szemeszter Orbán József PTE ÁOK Biofizikai ntézet Definíciók, törvények FÉNYTAN ALAPOK SMÉTLÉS - Elektromágneses sugárzás,
Egzotikus magneto-optikai effektusok kristályos anyagokban
Ph.D. tézisfüzet Egzotikus magneto-optikai effektusok kristályos anyagokban Bordács Sándor Témavezető: Dr. Kézsmárki István Fizika tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem BME (2011) Bevezetés
Akusztikai tervezés a geometriai akusztika módszereivel
Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Mikroszerkezeti vizsgálatok
Mikroszerkezeti vizsgálatok Dr. Szabó Péter BME Anyagtudomány és Technológia Tanszék 463-2954 szpj@eik.bme.hu www.att.bme.hu Tematika Optikai mikroszkópos vizsgálatok, klasszikus metallográfia. Kristálytan,
Sztereokémia, királis molekulák: (királis univerzum, tükörképi világ?) memo: a földi élet királis elemek sokasága!
Sztereokémia, királis molekulák: (királis univerzum, tükörképi világ?) memo: a földi élet királis elemek sokasága! (pl. a földön az L-aminosavak vannak túlnyomó többségben. - Az enantiomer szelekció, módját
Szélsőérték-számítás
Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y
Az optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
Optikai spektroszkópiai módszerek
Mi történhet, ha egy mintát fénnyel világítunk meg? Optikai spektroszkópiai módszerek megvilágító fény (elnyelt fény) minta átjutott fény Abszorpció UV-VIS, IR Smeller László kibocsátott fény Lumineszcencia
Tarczay György, Góbi Sándor, Magyarfalvi Gábor, Vass Elemér. ELTE Kémiai Intézet
Tarczay György, Góbi Sándor, Magyarfalvi Gábor, Vass Elemér ELTE Kémiai Intézet KMOP-4.2.1/B-10-2011-0002 Rezgési optikai aktivitás Abszolút konfiguráció meghatározása és konformációanalízis A gyógyszerkutatás
Végeselem analízis. 1. el adás
Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33
Optika gyakorlat 3. Sugáregyenlet, fényterjedés parabolikus szálban, polarizáció, Jones-vektor. Hamilton-elv. Sugáregyenlet. (Euler-Lagrange egyenlet)
Optika gyakorlat 3. Sugáregyenlet, fényterjeés parabolikus szálban, polarizáció, Jones-vektor Hamilton-elv t2 t2 δ Lq k, q k, t) t δ T V ) t 0 t 1 t 1 t L L 0 q k q k Euler-Lagrange egyenlet) De mi az
Raman spektroszkópia. Spektroszkópiai módszerek
Raman spektroszkópia Dégi Júlia MTA SZFKI julia.degi@gmail.com Spektroszkópiai módszerek összefoglalása A Raman effektus Raman spektrumok értelmezése A Raman mikroszkóp felépítése Geológiai alkalmazások
Bevezetés a fluoreszcenciába
Bevezetés a fluoreszcenciába Gerjesztett Excited Singlet szingulett Manifold állapot S1 Jablonski diagram Belső internal konverzió conversion S2 k isc k -isc Triplett állapot Excited Triplet Manifold T1
Modern Fizika Laboratórium Fizika és Matematika BSc 11. Spektroszkópia
Modern Fizika Laboratórium Fizika és Matematika BSc 11. Spektroszkópia Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 02/28/2012 Beadás ideje: 03/05/2012 Érdemjegy:
Makromolekulák szerkezetvizsgálati módszerei: IR, CD
Makromolekulák szerkezetvizsgálati módszerei: IR, CD Mi történhet, ha egy mintát fénnyel világítunk meg? megvilágító fény (elnyelt fény) minta átjutott fény Abszorpció UV-VIS, IR, CD spektr. Smeller László
Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.19. A mérés száma és címe: 7. Az optikai pumpálás Értékelés: A beadás dátuma: 2005.10.28. A mérést végezte: Orosz Katalin Tóth Bence Optikai pumpálás segítségével
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria
Rezgési spektroszkópiák Infravörös (IR) és Raman spektroszkópia
Vizsgálati módszerek az anyagtudományban Rezgési spektroszkópiák Infravörös (IR) és Raman spektroszkópia Vizsgálati módszerek az anyagtudományban IR spektroszkópia szeptember 24: előadás szeptember 27:
KÉMIAI ANYAGSZERKEZETTAN
KÉMIAI ANYAGSZERKEZETTAN (Ábragyűjtemény) / tanév /. BEVEZETÉS.. ábra. A Fraunhofer-vonalak a Nap színképében Minta omorú holografikus rács Rések Fényforrás Fotódiódatömb.. ábra. Egyutas UV-látható abszorpciós
dc_615_12 Természetes eredetű és szintetikus heterociklusok sztereokémiai vizsgálata MTA doktori értekezés Kurtán Tibor
Természetes eredetű és szintetikus heterociklusok sztereokémiai vizsgálata MTA doktori értekezés Kurtán Tibor Debreceni Egyetem Természettudományi és Technológiai Kar Szerves Kémiai Tanszék 2013 Tartalomjegyzék
Lumineszcencia spektrometria összefoglaló
Lumineszcencia spektrometria összefoglaló Ismétlés: fény (elektromágneses sugárzás) elnyelés: abszorpció elektron gerjesztés: excitáció alap és gerjesztett állapot atomi energiaszintek, energiaszintek
2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika
2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A
Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.
Szervetlen komponensek analízise A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.) A fény λ i( k r ωt + φ0 ) Elektromágneses sugárzás E( r,
Mérés spektroszkópiai ellipszométerrel
Mérés spektroszkópiai ellipszométerrel Bevezetés Az ellipszometria egy igen sokoldalú, nagypontosságú optikai módszer vékonyrétegek dielektromos tulajdonságainak meghatározására. Mivel optikai módszer,
Lézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok
Lézerek Lézerek A lézerműködés feltételei Lézerek osztályozása Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok Extrém energiák Alkalmazások A lézerműködés feltételei
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok
Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1
Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet
Optikai spektroszkópiai módszerek
Mi történhet, ha egy mintát énnye viágítunk meg? Optikai spektroszkópiai módszerek megviágító ény (enyet ény) minta átjutott ény Abszorpció UV-VIS, IR Smeer Lászó kibocsátott ény Lumineszcencia (Fuoreszcencia
A többatomos molekula rezgéseinek a leírása a klasszikus modellen alapul. Abból indulunk ki, hogy egy atom lehetséges elmozdulásait 3 egységvektor
1 A többatomos molekula rezgéseinek a leírása a klasszikus modellen alapul. Abból indulunk ki, hogy egy atom lehetséges elmozdulásait 3 egységvektor segítségével írhatjuk le. 2 Ennek megfelelően egy N
SZAKDOLGOZAT. Optikai magnetoelektromos eektus kísérleti és elméleti vizsgálata. Farkas Dániel Gergely
SZAKDOLGOZAT Optikai magnetoelektromos eektus kísérleti és elméleti vizsgálata Farkas Dániel Gergely Témavezet : Dr. Kézsmárki István egyetemi docens BME Fizikai Intézet Fizika Tanszék BME 2014 Önállósági
Reakciókinetika és katalízis
Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.
Szélsőérték feladatok megoldása
Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
Kamarás Katalin. Minden optikai spektroszkópiai mérés lényege fényintenzitás meghatározása a frekvencia
Bevezetés Fourier-transzformációs infravörös spektroszkópia Kamarás Katalin MTA Szilárdtestfizikai Kutató Intézet Minden optikai spektroszkópiai mérés lényege fényintenzitás meghatározása a frekvencia
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása
A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás
Egzotikus elektromágneses jelenségek alacsony hőmérsékleten Mihály György BME Fizikai Intézet Hall effektus Edwin Hall és az összenyomhatatlan elektromosság Kvantum Hall effektus Mágneses áram anomális