A fehérjék szerkezeti hierarchiája. Fehérje-szerkezetek! Klasszikus szerkezet-funkció paradigma. szekvencia. funkció. szerkezet! Myoglobin.
|
|
- Katalin Bognár
- 8 évvel ezelőtt
- Látták:
Átírás
1 Myoglobin Fehérje-szerkezetek! MGLSDGEWQLVLNVWGKVEADIPGGQEVLIRLFK GPETLEKFDKFKLKSEDEMKASE DLKKGATVLTALGGILKKKGEAEIKPLAQSA TKKIPVKYLEFISECIIQVLQSK PGDFGADAQGAMNKALELFRKDMASNYKELGFQG Fuxreiter Mónika! Debreceni Egyetem, rvos- és Egeszségtudományi Centrum! Biokémiai és Molekuláris Biológiai Intézet! Mastermind Mastermind MVLPTCPMAEFALPRSAVMERLRRRIELCRRSTCEARYEAVSPERLELERQTFAL QRCIQAKAKRAGKRQPPAATAPAPAAPAPRLDAADGPEGRPATLDTVKRNLDSATS PQNGDQQNGYGDLFPGKKTRREAPLGVAISSNGLPPASPLGQSDKPSGADALQSSGKS LGLDSLNKKRLADSSLLNGGSNPSESFPLSLNKELKQEPVEDLPCMITGTVGSISQSNL MPDLNLNEQEWKELIEELNRSVPDEDMKDLFNEDFEEKKDPESSGSATQTPLAQDINIKT EFSPAAFEQEQLGSPQVRAGSAGQTFLGPSSAPVSTDSPSLGGSQTLFTSGQPRADNPS PNLMPASAQAQNAQRALAGVVLPSQGPGGASELSSAQLQQIAAKQKREQMLQNPQQATP APAPGQMSTWQQTGPSSSLDVPYPMEKPASPSSYKQDFTNSKLLMMPSVNKSSPRPGGP YLQPSVNLLSQPPSNLNQNSANNQGSVLDYGNTKPLSYKADCGQGSPGSGQSKPALM AYLPQQLSISEQNSLFLMKPKPGNMPFRSLVPPGQEQNPSSVPVQAQATSVGTQPPAV SVASSNSSPYLSSQQQAAVMKQQLLLDQQKQREQQQKLQQQQFLQRQQLLAEQEKQ QFQRLTRPPPQYQDPTQGSFPQQVGQFTGSSAAVPGMNTLGPSNSSCPRVFPQAGNLMP MGPGASVSSLPTNSGQQDRGVAQFPGSQNMPQSSLYGMASGITQIVAQPPPQATNGA IPRQTNVGQNTSVSAAYGQNSLGSSGLSQQNKGTLNPGLTKPPVPRVSPAMGGQNSSWQ QGMPNLSGQTPGNSNVSPFTAASSFMQQQALKMSSPQFSQAVPNRPMAPMSSAAAVG SLLPPVSAQQRTSAPAPAPPPTAPQQGLPGLSPAGPELGAFSQSPASQMGGRAGLCTQA YPVRTAGQELPFAYSGQPGGSGLSSVAGTDLIDSLLKNRTSEEWMSDLDDLLGSQ Wilson & Kovall Cell (2006) Klasszikus szerkezet-funkció paradigma szekvencia funkció A fehérjék szerkezeti hierarchiája szerkezet! 1
2 Elsődleges szerkezet primer szerkezet - 19 amino, 1 iminosav idrofób, poláros, töltött Elsődleges szerkezet primer szerkezet - 19 amino, 1 iminosav idrofób poláros töltött A,L,V,I,F,W Y S,T,Q,N, D,E,K,R p53 Speciális Speciális Speciális P (hélixtörő) C (kovalens link) G (nincs oldallánc) idrofóbicitási profilok Másodlagos szerkezet lokális (rendezett) szerkezetek β-szál, lemez! különböző skálák! pl. Kyte-Doolittle transzmembrán hélixek predikciója! fehérjén belüli topológia (kívül-belül)! α-helix! Másodlagos szerkezet lokális (rendezett) szerkezetek Fehérjék szerkezetének hierarchiája másodlagos szerkezet torziós szögek,! -kötés mintázat! főlánc szerint! turn! α-helix! Radhakrisnan Cell (1997) 2
3 Feltekeredési tölcsér! armadlagos szerkezet atomok kitüntetett térbeli elrendeződése Nemcsak a másodlagos! másodlagos elemekre vonatkozik! szabályos kötés-mintázat! -kötések! ionos kontaktusok! van der Waals kötések! Levinthal paradoxon! Anfinsen elv! egy natív állapot (kitüntetett)! Feltekeredési tölcsér! egy natív állapot (kitüntetett)! Negyedleges szerkezet Dinamika több peptidlánc elrendeződése molekuláris gépezetek 3
4 L-aminosav Cα királis atom! Építsünk fehérjét lépésenként R C oldallánc CRN-szabály főlánc Peptidkötés: merev szerkezet Transz peptid kötés Ψ N φ C=, N- Delokalizált elektronpár: merev szerkezet dipólusok, polaritás stabilabb Cisz peptid kötés Polipeptid lánc Planáris peptidkötés R 2 N N α α α R1 R3 ritkábban 4
5 Polipeptid lánc geometriájának jellemzése R ϕ C N C N α α C α R R ϕ : C-N-C α -C N-C α Ramachandran-térkép β-lemez φ, Ψ torziós szögek eloszlása R ψ C N C N α α C α R R R C α N C α ω N C α R R ψ : N-C α -C-N C α -C() ω (omega): C α -C-N-C α α-hélix nem G G Mi engedélyezett? α-hélix - ϕ = -60 ± 30 - Ψ = -50 ± 30-3,6 alegység/fordulat - hossz: 5-40 aminosav - -kötések: az n peptidkötés C= része és az n+4 peptidkötés N része között - az oldalláncok kifelé néznek hidrofil v amfipatikus 5.4 Å 3 10 hélix és a többiek Szuper másodlagos szerkezetek β-szál Kendrew, 1957 myoglobin 5
6 parallel β-redő antiparallel β-redő 4.6 Å - ϕ = -140 ± Å - Ψ = 140 ± 30 - legalább 5-10 aminosav hidrofób - -kötések a láncok között vannak - az oldalláncok a lemez síkja alatt/felett helyezkednek el Eisenberg Nature (2005) amiloid képződés (irreverzibilis aggregátumok, Parkinson kór, Alzheimer kór) Nem szabályos másodlagos szerkezeti elemek urkok (turn, coil) urkok! pl. β szálak összekapcsolódásánál VCBP AA között α1a adrenerg receptor et" összekötő szakaszok, hurkok - A fehérjék fontos másodlagos szerkezeti elemei, nem mutatnak periodikus rendezettséget, mint az α-hélixek vagy a β-szerkezetek.! - et kötnek össze.! - Különböző hosszúságúak és alakúak lehetnek.! armadlagos szerkezet - Jellemzően poláros és töltéssel rendelkező aminosavak vannak ezekben a régiókban.! - Általában a fehérjék felszínén fordulnak elő, ezért fontos szerepük van a fehérjék biológiai funkcióiban (fehérje-fehérje kölcsönhatásokban, felismerési folyamatokban, kötődésben, stb.).! - A fehérjék evolúciós fejlődése során az α-hélixek és a β-szerkezetek nagymértékben konzerválódtak, míg a hurkok nagymértékben változtak. 6
7 Globuláris - vízoldható Mi a globuláris fehérje? idrofób mag! idrofil felszín Globuláris - vízoldható A fehérjeszerkezet feltekeredésének problémája hidrofób mag,! hidrofil felszín E Levinthal paradoxon: ogyan találja meg a fehérje a natív! szerkezetet a csillagászati számú! konformáció közül rövid (ms-min)! idő alatt?! 100 aminosav konformáció s / konformációváltozás év kell a natív szerkezethez Globuláris fehérjék feltekeredése: másodlagos szerkezetek először Milyen fehérjék vannak még? hidrofób kölcsönhatások először 7
8 Membránfehérjék Rendezetlen fehérjék sok szerkezet Konzervált szerkezeti/funkcionális egységek: domének W2 8
Fehérjeszerkezet, és tekeredés
Fehérjeszerkezet, és tekeredés Futó Kinga 2013.10.08. Polimerek Polimer: hasonló alegységekből (monomer) felépülő makromolekulák Alegységek száma: tipikusan 10 2-10 4 Titin: 3,435*10 4 aminosav C 132983
Fehérjék felépítése és struktúrája. Aminosav oldalláncok. A fehérjék királis elemekből (α-l-aminosavakból) épülnek fel
Fehérjék felépítése és struktúrája Aminosav oldalláncok A fehérjék királis elemekből (α-l-aminosavakból) épülnek fel Fehérjék szerkezete Anfinsen dogmája Anfinsen dogmája (vagy: termodinamikus hipotézis)
Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis
Szerkezet Protein Data Bank (PDB) http://www.rcsb.org/pdb ~ 35 701 szerkezet közepes felbontás 1552 szerkezet d 1.5 Å 160 szerkezet d 1.0 Å 10 szerkezet d 0.8 Å (atomi felbontás) E globális minimum? funkció
Peptidek és fehérjék 1. Fehérjék Fehérjetekeredés. Fehérje (protein) Fehérje (protein) Aminosavak. Aminosavak
Fehérjék Fehérjetekeredés Peptidek és fehérjék 1 peptid: rövid, peptid kötéssel összekapcsolt aminosavakból álló polimer (< ~50 aminosav) fehérje: hosszú, peptid kötéssel összekapcsolt aminosavakból álló
Bioinformatika 2 6. előadás
6. előadás Prof. Poppe László BME Szerves Kémia és Technológia Tsz. Bioinformatika proteomika Előadás és gyakorlat 2018.10.08. PDBj: http://www.pdbj.org/ Fehérjék 3D szerkezeti adatbázisai - PDBj 2 2018.10.08.
FEHÉRJÉK A MÁGNESEKBEN. Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium. Alkímia Ma, Budapest,
FEHÉRJÉK A MÁGNESEKBEN Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium Alkímia Ma, Budapest, 2013.02.28. I. FEHÉRJÉK: L-α aminosavakból felépülő lineáris polimerek α H 2 N CH COOH amino
A fehérjék hierarchikus szerkezete
Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék
Biopolimer 12/7/09. Makromolekulák szerkezete. Fehérje szerkezet, és tekeredés. DNS. Polimerek. Kardos Roland DNS elsődleges szerkezete
Biopolimerek Makromolekulák szerkezete. Fehérje szerkezet, és tekeredés. Osztódó sejt magorsófonala Kardos Roland 2009.10.29. Dohány levél epidermális sejtjének aktin hálózat Bakteriofágból kiszabaduló
Hemoglobin - myoglobin. Konzultációs e-tananyag Szikla Károly
Hemoglobin - myoglobin Konzultációs e-tananyag Szikla Károly Myoglobin A váz- és szívizom oxigén tároló fehérjéje Mt.: 17.800 153 aminosavból épül fel A lánc kb 75 % a hélix 8 db hélix, köztük nem helikális
Fehérjeszerkezet, fehérjetekeredés
Fehérjeszerkezet, fehérjetekeredés A fehérjeszerkezet szintjei A fehérjetekeredés elmélete: Anfinsen kísérlet Levinthal paradoxon A feltekeredés tölcsér elmélet 2014.11.05. Aminosavak és fehérjeszerkezet
Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek
Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Hidroxikarbonsavak α-hidroxi karbonsavak -Glikolsav (kézkrémek) - Tejsav (tejtermékek, izomláz, fogszuvasodás) - Citromsav (citrusfélékben,
Makromolekulák. Fehérjetekeredé. rjetekeredés. Biopolimer. Polimerek
Biopolimerek Makromolekulá Makromolekulák. Fehé Fehérjetekeredé rjetekeredés. Osztódó sejt magorsófonala 2011. November 16. Huber Tamá Tamás Dohány levél epidermális sejtjének aktin hálózata Bakteriofágból
Fehérjeszerkezet, és tekeredés. Futó Kinga
Fehérjeszerkezet, és tekeredés Futó Kinga Polimerek Polimer: hasonló alegységekből (monomer) felépülő makromolekulák Alegységek száma: tipikusan 10 2-10 4 Titin: 3,435*10 4 aminosav C 132983 H 211861 N
A fehérjék hierarchikus szerkezete
Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék
MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak
Modul cím: MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak Egy átlagos emberben 10-12 kg fehérje van, mely elsősorban a vázizomban található.
Az aminosavak peptidek és fehérjék koronázatlan királyai, kémiai Nobel-díjak:
Az aminosavak peptidek és fehérjék koronázatlan királyai, kémiai obel-díjak: Linus Pauling 1954 obel-díj fehérje szerkezet alapjai Frederick Sanger 1958 obel-díj Az inzulin szekvenálása Sir. John owdery
Az élő anyag szerkezeti egységei: víz, nukleinsavak, fehérjék. elrendeződés, rend, rendszer, periodikus ismétlődés
Az élő anyag szerkezeti egységei: víz, nukleinsavak, fehérjék Agócs Gergely 2013. december 3. kedd 10:00 11:40 1. Mit értünk élő anyag alatt? Az élő szervezetet felépítő anyagok. Az anyag azonban nem csupán
Nukleinsavak építőkövei
ukleinsavak Szerkezeti hierarchia ukleinsavak építőkövei Pirimidin Purin Pirimidin Purin Timin (T) Adenin (A) Adenin (A) Citozin (C) Guanin (G) DS bázisai bázis Citozin (C) Guanin (G) RS bázisai bázis
Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete
Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete Polipeptidek térszerkezete Tipikus (rendezett) konformerek em tipikus (rendezetlen) konformerek Periodikus vagy homokonformerek Aperiodikus
3. A kémiai kötés. Kémiai kölcsönhatás
3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes
MedInProt Szinergia IV. program. Szerkezetvizsgáló módszer a rendezetlen fehérjék szerkezetének és kölcsönhatásainak jellemzésére
MedInProt Szinergia IV. program Szerkezetvizsgáló módszer a rendezetlen fehérjék szerkezetének és kölcsönhatásainak jellemzésére Tantos Ágnes MTA TTK Enzimológiai Intézet, Rendezetlen fehérje kutatócsoport
A fehérjéket felépítő húsz standard aminosav Fehérjék szerkezetének kialakulása
A fehérjéket felépítő húsz standard aminosav Fehérjék szerkezetének kialakulása Osváth Szabolcs Semmelweis Egyetem szabolcs.osvath@eok.sote.hu reakció t 1/2 25 ºC-on t 1/2 100 ºC-on DNS hidrolízis Biopolimerek
A fehérjéket felépítő húsz standard aminosav
Fehérjék szerkezetének kialakulása Osváth Szabolcs Semmelweis Egyetem szabolcs.osvath@eok.sote.hu Biopolimerek reakció t 1/2 25 ºC-on t 1/2 100 ºC-on egy polimerben lévő kötések tipikus száma hányfajta
A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR)
4. előadás A kovalens kötés elmélete Vegyértékelektronpár taszítási elmélet (VSEPR) az atomok kötő és nemkötő elektronpárjai úgy helyezkednek el a térben, hogy egymástól minél távolabb legyenek A központi
A fehérjék hierarchikus szerkezete. Szerkezeti hierarchia. A fehérjék építőkövei az aminosavak. Fehérjék felosztása
Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék
Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39
Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet
A fehérjék szerkezetét fenntartó kölcsönhatások
A fehérjék szerkezetét fenntartó kölcsönhatások Bionanorendszerek A fehérjék szerkezetét fenntartó kölcsönhatások alapvetően négy nagyobb csoportba oszthatók: 1. elektrosztatikus kölcsönhatások (sóhíd:
Szerkesztette: Vizkievicz András
Fehérjék A fehérjék - proteinek - az élő szervezetek számára a legfontosabb vegyületek. Az élet bármilyen megnyilvánulási formája fehérjékkel kapcsolatos. A sejtek szárazanyagának minimum 50 %-át adják.
TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301)
Biokémia és molekuláris biológia I. kurzus (bb5t1301) Tematika 1 TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301) 0. Bevezető A (a biokémiáról) (~40 perc: 1. heti előadás) A BIOkémia tárgya
3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások)
3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások) 3.1 Fehérjék, enzimek A genetikai információ egyik fő manifesztálódása
7. Fehérjeszekvenciák és térszerkezetek analízise.
7. Fehérjeszekvenciák és térszerkezetek analízise. 1. Egyszerû elemzések 2. Térszerkezet predikció 2.1. A probléma bonyolultsága 2.2. A predikció szintjei 2.3. 1D predikciók (másodlagos szerkezet, hozzáférhetõség,
A kovalens kötés polaritása
Általános és szervetlen kémia 4. hét Kovalens kötés A kovalens kötés kialakulásakor szabad atomokból molekulák jönnek létre. A molekulák létrejötte mindig energia csökkenéssel jár. A kovalens kötés polaritása
Eszközszükséglet: Szükséges anyagok: tojás, NaCl, ammónium-szulfát, réz-szulfát, ólom-acetát, ecetsav, sósav, nátrium-hidroxid, desztillált víz
A kísérlet, megnevezés, célkitűzései: Fehérjék tulajdonságainak, szerkezetének vizsgálata. Környezeti változások hatásának megfigyelése a fehérjék felépítésében. Eszközszükséglet: Szükséges anyagok: tojás,
Bioinformatika előad
7.. előad adás Prof. Poppe László BME Szerves Kémia és Technológia Tsz. Bioinformatika proteomika Előadás és gyakorlat 2009. 04. 03. Térszerkezet előrejelz rejelzés s főf módszerei Homológia modellezés
Biokémiai kutatások ma
Nyitray László Biokémiai Tanszék Hb Biokémiai kutatások ma Makromolekulák szerkezet-funkció kutatása Molekuláris biológia minden szinten Redukcionista molekuláris biológia vs. holisztikus rendszerbiológia
Tel: ;
BIOLÓGIA ALAPJAI (BMEVEMKAKM1; BMEVEMKAMM1) Előadói: Dr. Bakos Vince, Kormosné Dr. Bugyi Zsuzsanna, Dr. Török Kitti, Nagy Kinga (BME ABÉT) Előadások anyaga: Dr. Pécs Miklós, Dr. Bakos Vince, Kormosné Dr.
Tartalom. A citoszkeleton meghatározása. Citoszkeleton. Mozgás a biológiában A CITOSZKELETÁLIS RENDSZER 12/9/2016
Tartalom A CITOSZKELETÁLIS RENDSZER Nyitrai Miklós, 2016 november 29. 1. Mi a citoszkeleton? 2. Polimerizáció, polimerizációs egyensúly 3. Filamentumok osztályozása 4. Motorfehérjék A citoszkeleton meghatározása
A CITOSZKELETÁLIS RENDSZER (Nyitrai Miklós, )
A CITOSZKELETÁLIS RENDSZER (Nyitrai Miklós, 2010.11.30.) 1. Mi a citoszkeleton? 2. Polimerizá, polimerizás egyensúly 3. ilamentumok osztályozása 4. Motorfehérjék Citoszkeleton Eukariota sejtek dinamikus
Peptidek és fehérjék szerkezetvizsgálata spektroszkópia és in silico módszerekkel
Peptidek és fehérjék szerkezetvizsgálata spektroszkópia és in silico módszerekkel Mik a peptidek és fehérjék? L-konfigurációjú a-aminosavakból felépülő lineáris polimerek 3 betűs kód: -Thr-His-Ile-Ser-Ser-Ile-Met-Pro-Leu-Glu-
BIOLÓGIA ALAPJAI (BMEVEMKAKM1; BMEVEMKAMM1) Előadói: Dr. Bakos Vince, Kormosné Dr. Bugyi Zsuzsanna, Dr. Török Kitti, Nagy Kinga (BME ABÉT)
BIOLÓGIA ALAPJAI (BMEVEMKAKM1; BMEVEMKAMM1) Előadói: Dr. Bakos Vince, Kormosné Dr. Bugyi Zsuzsanna, Dr. Török Kitti, Nagy Kinga (BME ABÉT) Előadások anyaga: Dr. Pécs Miklós, Dr. Bakos Vince, Kormosné Dr.
Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39
Kémiai kötés 4-1 Lewis-elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet
A fehérjék szerkezete és az azt meghatározó kölcsönhatások
A fehérjék szerkezete és az azt meghatározó kölcsönhatások 1. A fehérjék szerepe az élõlényekben 2. A fehérjék szerkezetének szintjei 3. A fehérjék konformációs stabilitásáért felelõs kölcsönhatások 4.
Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39
Kémiai kötés 12-1 Lewis elmélet 12-2 Kovalens kötés: bevezetés 12-3 Poláros kovalens kötés 12-4 Lewis szerkezetek 12-5 A molekulák alakja 12-6 Kötésrend, kötéstávolság 12-7 Kötésenergiák Általános Kémia,
Víz. A víz biofizikája. A vízmolekula szerkezete. A vízmolekula dinamikája. Forgó-rezgő mozgás
Víz A víz biofizikája Inspiráció forrása (zene, festészet). Thales (Kr. e. 580):...a víz minden dolgok forrása... Henry Cavendish (1783): a víz H2O. Egyedüli vegyület, amely a természetben mindhárom halmazállapotban
Kémiai kötés Lewis elmélet
Kémiai kötés 10-1 Lewis elmélet 10-2 Kovalens kötés: bevezetés 10-3 Poláros kovalens kötés 10-4 Lewis szerkezetek 10-5 A molekulák alakja 10-6 Kötésrend, kötéstávolság 10-7 Kötésenergiák Általános Kémia,
Bio-nanorendszerek. Vonderviszt Ferenc. Pannon Egyetem Nanotechnológia Tanszék
Bio-nanorendszerek Vonderviszt Ferenc Pannon Egyetem Nanotechnológia Tanszék Technológia: képesség az anyag szerkezetének, az anyagot felépítő részecskék elrendeződésének befolyásolására. A technológiai
DNS, RNS, Fehérjék. makromolekulák biofizikája. Biológiai makromolekulák. A makromolekulák TÖMEG szerinti mennyisége a sejtben NAGY
makromolekulák biofizikája DNS, RNS, Fehérjék Kellermayer Miklós Tér Méret, alak, lokális és globális szerkezet Idő Fluktuációk, szerkezetváltozások, gombolyodás Kölcsönhatások Belső és külső kölcsöhatások,
Immunológia alapjai előadás. Az immunológiai felismerés molekuláris összetevői.
Immunológia alapjai 3 4. előadás Az immunológiai felismerés molekuláris összetevői. Az antigén fogalma. Antitestek, T- és B- sejt receptorok: molekuláris szerkezet, funkciók, alcsoportok Az antigén meghatározása
Gáspári Zoltán. Élő molekulák az élet molekulái
Gáspári Zoltán Élő molekulák az élet molekulái Invokáció Kajtár Márton 1929-1991 www.eotvoskiado.hu Élő és élettelen? Élő és élettelen: a kemoton Élő kémiai rendszer, de nem élőlény (Gánti, 1975) Autokatalitikus
Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia
Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat
Fehérjék szerkezetének kialakulása II
Egy kis fehérje gombolyodása több párhuzamos úton Fehérjék szerkezetének kialakulása II Osváth Szabolcs Semmelweis Egyetem hélix kialakulás és kollapszus több párhuzamos úton további kollapszus és hélix
Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze
Röntgendiffrakció Kardos Roland 2010.03.08. Előadás vázlata Röntgen sugárzás Interferencia Huygens teória Diffrakció Diffrakciós eljárások Alkalmazás Röntgen sugárzás 1895 röntgen sugárzás felfedezés (1901
Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39
Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet
Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol
Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések
Immunológia alapjai előadás. Az immunológiai felismerés molekuláris összetevői
Immunológia alapjai 3 4. előadás Az immunológiai felismerés molekuláris összetevői Az antigén fogalma. Antitestek, T- és B- sejt receptorok: molekuláris szerkezet, funkciók, alcsoportok Az antigén meghatározása
Fehérjék. A fehérjék szerkezeti szintjei. Elsődleges szerkezet
Fehérjék A fehérjék az élő szervezet számára nélkülözhetetlen molekulák, melyeket változatos térszerkezet és funkcionalitás jellemez. De úgy is fogalmazhatnánk, hogy a fehérjék olyan kivételes tulajdonságokkal
Fehérjék szerkezetének kialakulása II. Semmelweis Egyetem. Osváth Szabolcs
Fehérjék szerkezetének kialakulása II Osváth Szabolcs Semmelweis Egyetem szabolcs.osvath@eok.sote.hu Egy kis fehérje gombolyodása több párhuzamos úton hélix kialakulás és kollapszus több párhuzamos úton
Bioinformatika 2 5. előadás
5. előadás Prof. Poppe László BME Szerves Kémia és Technológia Tsz. Bioinformatika proteomika Előadás és gyakorlat 2018.10.01. Fehérje térszerkezet megjelenítése A fehérjék meglehetősen összetett szerkezetek,
A víz biofizikája. Víz. A vízmolekula szerkezete. Újsághír. Egy (1) tudta mindössze, hogy a vízről van szó...
Újsághír Az Eagle Rock középiskola diákja nyerte el az első díjat az április 26-án megrendezett Idaho Falls középiskolai Tudományos Konferencián. Dolgozatával azt akarta bemutatni, mennyire ráhangolódtak
Elválasztástechnikai és bioinformatikai kutatások. Dr. Harangi János DE, TTK, Biokémiai Tanszék
Elválasztástechnikai és bioinformatikai kutatások Dr. Harangi János DE, TTK, Biokémiai Tanszék Fő kutatási területek Enzimek vizsgálata mannozidáz amiláz OGT Analitikai kutatások Élelmiszer analitika Magas
A CITOSZKELETÁLIS RENDSZER FUTÓ KINGA
A CITOSZKELETÁLIS RENDSZER FUTÓ KINGA 2013.10.09. CITOSZKELETON - DEFINÍCIÓ Fehérjékből felépülő, a sejt vázát alkotó intracelluláris rendszer. Eukarióta és prokarióta sejtekben egyaránt megtalálható.
Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások Definíciók
Jelentősége szubsztrát kötődés szolvatáció ionizációs állapotok (pka) mechanizmus katalízis ioncsatornák szimulációk (szerkezet) all-atom dipolar fluid dipolar lattice continuum Definíciók töltéseloszlás
Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok
Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer A kémiai kötés Kémiai
Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete
Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete Polipeptidek térszerkezete Tipikus (rendezett) konformerek em tipikus (rendezetlen) konformerek Periodikus vagy homokonformerek Aperiodikus
Szalai István. ELTE Kémiai Intézet 1/74
Elsőrendű kötések Szalai István ELTE Kémiai Intézet 1/74 Az előadás vázlata ˆ Ismétlés ˆ Ionos vegyületek képződése ˆ Ionok típusai ˆ Kovalens kötés ˆ Fémes kötés ˆ VSEPR elmélet ˆ VB elmélet 2/74 Periodikus
(1) A T sejtek aktiválása (2) Az ön reaktív T sejtek toleranciája. α lánc. β lánc. V α. V β. C β. C α.
Immunbiológia II A T sejt receptor () heterodimer α lánc kötőhely β lánc 14. kromoszóma 7. kromoszóma 1 V α V β C α C β EXTRACELLULÁRIS TÉR SEJTMEMBRÁN CITOSZÓL αlánc: VJ régió β lánc: VDJ régió Nincs
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
Kolloid állapotjelzők. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek
Kolloid állapotjelzők. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek Dr. Berka Márta Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/
Energiaminimum- elve
Energiaminimum- elve Minden rendszer arra törekszi, hogy stabil állapotba kerüljön. Milyen kapcsolat van a stabil állapot, és az adott állapot energiája között? Energiaminimum elve Energiaminimum- elve
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 13. mérés: Molekulamodellezés PC-n. 2008. április 29.
Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 13. mérés: Molekulamodellezés PC-n Értékelés: A beadás dátuma: 2008. május 6. A mérést végezte: 1/5 A mérés célja A mérés célja az
Biológiai membránok és membrántranszport
Biológiai membránok és membrántranszport Biológiai membránok A citoplazma membrán funkciói: térrészek elválasztása (egész sejt, organellumok) transzport jelátvitel Milyen a membrán szerkezete? lipidek
Kolloid állapotjelzık. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek
Kolloid állapotjelzık. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek Dr. Berka Márta és Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/
Periódusos rendszer (Mengyelejev, 1869) nemesgáz csoport: zárt héj, extra stabil
s-mezı (fémek) Periódusos rendszer (Mengyelejev, 1869) http://www.ptable.com/ nemesgáz csoport: zárt héj, extra stabil p-mezı (nemfém, félfém, fém) d-mezı (fémek) Rendezés elve: növekvı rendszám (elektronszám,
Bevezetés a lézeres anyagmegmunkálásba
Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 6. Anyagcsaládok Fémek Kerámiák, üvegek Műanyagok Kompozitok A családok közti különbségek tárgyalhatóak: atomi szinten
A kémiai kötés. Kémiai kölcsönhatás
A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS KOVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Ionos kötés Na Cl Ionpár képződése e - Na + Cl - Na:
Natív antigének felismerése. B sejt receptorok, immunglobulinok
Natív antigének felismerése B sejt receptorok, immunglobulinok B és T sejt receptorok A B és T sejt receptorok is az immunglobulin fehérje család tagjai A TCR nem ismeri fel az antigéneket, kizárólag az
Immunológia alapjai előadás Az immunológiai felismerés molekuláris összetevői. Az antigén fogalma. Antitestek, T- és B-sejt receptorok:
Immunológia alapjai 3 4. előadás Az immunológiai felismerés molekuláris összetevői. Az antigén fogalma. Antitestek, T- és B-sejt receptorok: molekuláris szerkezet, funkciók, alcsoportok Az antigén meghatározása
Elektronegativitás. Elektronegativitás
Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:
Mi mekkora? Fehérjék a Biológiába és a Nanotechnológiában. Plenty of Room at the Bottom. Hullám részecske kettősség 2/15/17
Fehérjék a Biológiába és a Nanotechnológiában Mi mekkora? Osváth Szabolcs Semmelweis Egyetem osvath.szabolcs@med.semmelweis-univ.hu Plenty of Room at the Bottom " The principles of physics, as far as I
TDK lehetőségek az MTA TTK Enzimológiai Intézetben
TDK lehetőségek az MTA TTK Enzimológiai Intézetben Vértessy G. Beáta egyetemi tanár TDK mind 1-3 helyezettek OTDK Pro Scientia különdíj 1 második díj Diákjaink Eredményei Zsűri különdíj 2 első díj OTDK
Makromolekulák. I. A -vázas polimerek szerkezete és fizikai tulajdonságai. Pekker Sándor
Makromolekulák I. A -vázas polimerek szerkezete és fizikai tulajdonságai Pekker Sándor MTA SZFKI Telefon:392-2222/845, Fax:392-229, Email: pekker@szfki.hu SZFKI tanfolyam: www.szfki.hu/moodle/course/ a
Kötések kialakítása - oktett elmélet
Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések
Martinek Tamás: "Peptid foldamerek: szerkezet és alkalmazás" című MTA Doktori értekezésének bírálata
Richter Gedeon NyRt. Szerkezetkutatási osztály H-1475 Budapest, 10, Pf. 27 Tel.: 431-4952 e-mail: cs.szantay@richter.hu 1 Martinek Tamás: "Peptid foldamerek: szerkezet és alkalmazás" című MTA Doktori értekezésének
Enzimek. Enzimek! IUBMB: szisztematikus nevek. Enzimek jellemzése! acetilkolin-észteráz! legalább 10 nagyságrend gyorsulás. szubsztrát-specificitás
Enzimek acetilkolin-észteráz! Enzimek! [s -1 ] enzim víz carbonic anhydrase 6x10 5 10-9 karbonikus anhidráz acetylcholine esterase 2x10 4 8x10-10 acetilkolin észteráz staphylococcal nuclease 10 2 2x10-14
A sztereoizoméria hatása peptidek térszerkezetére és bioaktivitására OTKA PD Szakmai zárójelentés. Dr. Leitgeb Balázs
A sztereoizoméria hatása peptidek térszerkezetére és bioaktivitására OTKA PD 78554 Szakmai zárójelentés Dr. Leitgeb Balázs A projekt során azt tanulmányoztam, hogy a sztereoizoméria milyen hatásokat fejt
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekIKözgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
térrészek elválasztása transzport jelátvitel Milyen a membrán szerkezete? Milyen a membrán szerkezete? lipid kettısréteg, hidrofil/hidrofób részek
Biológiai membránok A citoplazma membrán funkciói: Biológiai membránok és membrántranszport térrészek elválasztása (egész sejt, organellumok) transzport jelátvitel Milyen a membrán szerkezete? lipidek
A racionális gyógyszertervezés lehetőségei. A racionális gyógyszertervezés lehetőségei. A racionális gyógyszertervezés lehetőségei
Cél: kis koncentrációban kötődő célvegyület tervezése Agonista: segíti az enzim működését, hatékonyabb, mint a természetes szubsztrát Antagonista: gátolja az enzim működését, ellentétes hatású, mint a
Bírálat Martinek Tamás Peptid foldamerek: szerkezet és alkalmazás című MTA doktori értekezéséről
Bírálat Martinek Tamás Peptid foldamerek: szerkezet és alkalmazás című MTA doktori értekezéséről Földünk elő szervezeteinek három és fél milliárd éves evolúciója csodálatos biopolimereket - mint például
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz Programajánlatok október 18. 16:00 ELTE Kémiai Intézet 065-ös terem Észbontogató (www.chem.elte.hu/pr)
Szerves kémiai és biokémiai alapok:
Szerves kémiai és biokémiai alapok: Másodlagos kémiai kötések: A másodlagos kötések energiája nagyságrenddel kisebb, mint az elsődlegeseké. Energiaközlés hatására a másodlagos kötések bomlanak fel először,
Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok
Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer energia szintek atomokban
BIOMOLEKULÁK KÉMIÁJA. Novák-Nyitrai-Hazai
BIOMOLEKULÁK KÉMIÁJA Novák-Nyitrai-Hazai A tankönyv elsısorban szerves kémiai szempontok alapján tárgyalja az élı szervezetek felépítésében és mőködésében kulcsfontosságú szerves vegyületeket. A tárgyalás-
1. jelentésük. Nevüket az alkotó szén, hidrogén, oxigén 1 : 2 : 1 arányából hajdan elképzelt képletről [C n (H 2 O) m ] kapták.
Összefoglalás II. Szénhidrátok 1. jelentésük Nevüket az alkotó szén, hidrogén, oxigén 1 : 2 : 1 arányából hajdan elképzelt képletről [C n (H 2 O) m ] kapták. Ha ezeket az anyagokat hevítjük vizet vesztenek
Az elektronpályák feltöltődési sorrendje
3. előadás 12-09-17 2 12-09-17 Az elektronpályák feltöltődési sorrendje 3 Az elemek rendszerezése, a periódusos rendszer Elsőként Dimitrij Ivanovics Mengyelejev és Lothar Meyer vette észre az elemek halmazában
Prológus helyett polimorfizmus kapcsolodó-mutációk
Prológus helyett polimorfizmus kapcsolodó-mutációk egy vesebetegség öröklésének vizsgálata során rámutattak, hogy hogyan okozhatnak gyakori genetikai variánsok ritka betegséget. Jó hír ez, mivel segíthet
Infravörös és CD spektroszkópia a fehérjeszerkezet vizsgálatában
Infravörös és CD spektroszkópia a fehérjeszerkezet vizsgálatában Mi történhet, ha egy mintát fénnyel világítunk meg? megvilágító fény (elnyelt fény) minta átjutott fény Abszorpció UV-VIS, IR, CD spektr.
A BIOLÓGIAI JELENSÉGEK FIZIKAI HÁTTERE Zimányi László
A BIOLÓGIAI JELENSÉGEK FIZIKAI HÁTTERE Zimányi László Összefoglalás A négy alapvető fizikai kölcsönhatás közül az elektromágneses kölcsönhatásnak van fontos szerepe a biológiában. Atomi és molekuláris
Membrántranszport. Gyógyszerész előadás Dr. Barkó Szilvia
Membrántranszport Gyógyszerész előadás 2017.04.10 Dr. Barkó Szilvia Sejt membránok A sejtmembrán funkciói Védelem Kommunikáció Molekulák importja és exportja Sejtmozgás Általános szerkezet Lipid kettősréteg
6. szeminárium - Fehérjeszerkezethez kötött patológiás állapotok kémiája
6. szeminárium Fehérjeszerkezethez kötött patológiás állapotok kémiája A fehérjék háromdimenziós, specifikus funkcióra alkalmas szerkezetét natív konformációnak nevezzük, melyet egy dinamikus feltekeredési