dolás, felbontható kód Prefix kód Blokk kódk Kódfa

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "dolás, felbontható kód Prefix kód Blokk kódk Kódfa"

Átírás

1 Kódelméletlet dolás

2 dolás o Kódolás o Betőnk nkénti nti kódolk dolás, felbontható kód Prefix kód Blokk kódk Kódfa o A kódok k hosszának alsó korlátja McMillan-egyenlıtlens tlenség Kraft-tételetele o Optimális kódk Témavázlat Átlagos szóhossz, a kód k d költsk ltsége Optimális kódokk Entrópia Shannon-tételetele Bináris Huffman-kód Adaptív v kódok: k LZ-, LZW-kód dolás 2

3 dolás dolás 3

4 A hírközlésben szüks kségünk van arra, hogy valamilyen üzenetet egy csatornán átjuttassunk. A csatorna azonban csak meghatározott jeleket tud befogadni, ezért az üzenetet idınk nként nt megfelelıképpen át t kell alakítanunk, kódolnunk kell. Ez az átalakítás s olyan kell legyen, hogy a csatorna túlst lsó oldalán n többt bbé-kevésbé helyesen visszaáll llítható legyen az eredeti üzenet. Az alábbiakban olyan kódolk dolásokkal foglalkozunk, amelyek lehetıvé teszik a kódbk dból l az üzenet helyes visszaáll llítását, és a kódok k lehetıség g szerint rövidek. Ennek az elvi korlátait vizsgáljuk. dolás 4

5 Kódolás Definíci ció. Az A={a,,, a n } véges, v nemüres halmazt ábécé-nek nevezzük, elemei a betők,, a belılük k képezhetk pezhetı véges hosszú sorozatok a szavak.. Az összes véges v hosszú sorozat halmazát t A* jelöli. li. Definíci ció. Legyen B és s C ábécé.. A f: B C* leképez pezést kódolásnak nevezzük, ha injektív. f(b) C* a kódszavak halmaza, a kód. A b B b bető kódja f(b). Az injektivitás s garantálja a dekódolhat dolhatóságot,, vagyis azt, hogy a képelemekbıl l helyesen vissza tudjuk állítani a B halmaz elemeit.. példa. p Legyen B={a, b, c}, C={0, } és s f(a)= 0, f(b)=0, f(c)=00. Ez a leképez pezés s kódolk dolás. dolás 5

6 Betőnk nkénti nti kódolk dolás, felbontható kód Definíci ció. Terjesszük k ki f-et f B*-ra a következk vetkezıképpen: Legyen b=b b 2 b s B*. Ekkor f(b)=f(b )f(b 2 ) f( f(b s ). A B*-beli szavak kódjk dját t a szavakat alkotó betők k kódjainak k egymás s mellé írásával kapjuk. Ekkor E az f: B* C* kódolk dolást betőnk nkénti nti kódolk dolásnak nevezzük. Definíci ció. Az f: B* C* betőnk nkénti nti kódolk dolás felbontható kódot állít t elı,, ha két t különbk nbözı B*-beli szóhoz tartozó kód d különbk nbözı. A kód k d felbonthatósága garantálja az üzenet kódjk djából l az üzenet egyértelm rtelmő visszaáll llíthatóságát. t. 2. példa. p Az. példa p kódja k példp ldául nem felbontható,, mert f(ab)=f(c). dolás 6

7 Prefix kód Definíci ció. Betőnkénti nti kódolk dolás s esetén n a kódot k prefixnek nevezzük, ha egyik kódszó sem valódi szókezd kezdı része a másiknak. m 3. példa. p Az elızı példában szereplı kód d nem prefix. f(a)= 0, f(b)=0, f(c)=00, Például f(a) szerepel f(b) elején, más m s szóval f(b) az f(a)-nak folytatása. 4. példa. p Legyen B={a, b, c}, C={0, } és s f(a)= 0, f(b)=0, f(c)=00. Ez a kód k prefix. Tétel. Prefix kód d felbontható. Bizonyítás. Könnyen adható dekódol dolási algoritmus. Ez prefix kód d esetén n egyértelm rtelmően en elıáll llítja a kódolt k üzenetbıl l az eredetit. dolás 7

8 Blokk-kód Definíci ció. Betőnkénti nti kódolk dolás s esetén n a kódot k blokk-kódnak nevezzük, ha a B halmaz mindegyik eleméhez ugyanolyan hosszú kódszó tartozik. Tétel. Blokk-kód d felbontható. Bizonyítás. A blokk-kód d egyúttal prefix kód d is, így az elızı tétel tel alkalmazható. dolás 8

9 Kódfa Definíci ció. Az f: B C* által létrehozott l prefix kódhoz k irány nyított fát, f un. kódfát rendelhetünk nk a következk vetkezı módon. A fa csúcsaib csaiból legfeljebb C elemszámú él l vezethet ki, ezeket az éleket C elemeivel címkc mkézzük k meg. A fa leveleit (olyan csúcsok, csok, amelyekbıl l nem vezet ki él) a B elemeivel címkc mkézzük k meg. Ekkor a kódolk dolás s a következk vetkezıképpen olvasható le a fáról. f Legyen az egyik levél l a b B b és s a gyökérb rbıl l a hozzá vezetı élek címkéi i sorban c, c 2,, c k. Ekkor f(b)= c c 2 c k. A következk vetkezı példában bináris prefix kód d kódfk dfáját t látjuk. l dolás 9

10 5. példa b 6 0 b 3 0 b b 2 B={b, b 2, b 3, b 4, b 5, b 6 } C={0,} f(b )=000 f(b 2 )=00 f(b 3 )=0 f(b 4 )=000 f(b 5 )=00 f(b 6 )= 0 b 4 b 5 dolás 0

11 A kódok k hosszának alsó korlátja dolás

12 McMillan-egyenl egyenlıtlenség Tétel. (McMillan-egyenlıtlenség) Tegyük k fel, hogy f: B C* felbontható kódot határoz meg. B ={b, b 2,, b k }, és s az f(b ), f(b 2 ),,, f(b k ) kódszavak k hossza {h, h 2,, h k }, C =c. k Ekkor i= c h i 6. példa. p A 4. példa p prefix kódjára C =2, a kódhosszak k, 2, 3, a McMillan-egyenl egyenlıtlenség teljesül. l. k i= c h i = = 7 8 dolás 2

13 Vigyázzunk, a McMillan-egyenl egyenlıtlenség nem megfordíthat tható.. Ha teljesül l az egyenlıtlens tlenség, nem biztos, hogy a kód k d felbontható. 7. példa. p Az. példa p esetében ugyanazt az értéket kapjuk mint az 5. példában, pedig az elıbbi kód k d nem felbontható. Tétel. (Kraft-tétel) Legyen B és s C véges v ábécé, B ={b, b 2,, b k }, C =c, és s legyenek {h, h 2,, h k } pozitív v egész számok, melyekre teljesül l a McMillan-egyenl egyenlıtlenség. i= c h i Ekkor létezik l olyan prefix kódot meghatároz rozó f: B C* kódolk dolás, amelyre az f(b ), f(b 2 ),,, f(b k ) kódszavak k hossza éppen {h, h 2,, h k }. k dolás 3

14 Következmény. A McMillan- és s a Kraft-tételb telbıl következik, hogy ha f: B C* felbontható kódot határoz meg, akkor létezik l olyan prefix kód, hogy a két k t kódban k a B elemeihez tartozó kódszavak hossza megegyezik. Ez a tény t megnöveli a prefix kód d jelentıségét. t. dolás 4

15 Optimális kódk dolás 5

16 Átlagos szóhossz, a kód k d költsk ltsége A kódolandk dolandó üzenetben a különbk nbözı jelek más m és s más m gyakorisággal ggal fordulhatnak elı.. Ha törekszt rekszünk arra, hogy az üzenethez tartozó kód d minél l rövidebb r legyen, akkor a gyakrabban elıfordul forduló jelekhez rövidebb r kódot, k míg m g a ritkábban elıfordul fordulókhoz a hosszabb kódokat k érdemes rendelnünk. nk. dolás 6

17 Tegyük k fel a továbbiakban, hogy az F jelforrás s a B ={b, b 2,, b k } ábécé jeleit egymást stól l függetlenf ggetlenül véletlenszerően en bocsátja ki. Jelölje lje p i annak a valósz színőségét, hogy az F által kibocsátott jel b i. Feltesszük, hogy k p i >0 (i=..k), és p i i= = Elég g hosszú,, pl. M számú jelbıl álló jelsorozatban a benne elıfordul forduló b i -k száma közelk zelítıleg leg p i M. Az M számú jelbıl álló sorozat kódjk djának átlagos hossza: k p i h i Ha csökken a értéke, akkor csökken a közlk zlések átlagos i= hossza is. Ez indokolja a következk vetkezı definíci ciót. M k i= p i h i dolás 7

18 Definíci ció. Tegyük k fel, hogy az f: B C* felbontható kódolást alkalmazzuk, és s az f(b ), f(b 2 ),,, f(b k ) kódszavak k hossza {h, h 2,, h k }, C =c, K=f(B) C*. Jelölje lje p i annak a valósz színőségét, hogy az F forrás által kibocsátott jel b i. A K kód k d F forrás s melletti átlagos szóhossza hossza,, vagy költsége: k H ( K ) = i= p i h i dolás 8

19 Optimális kódokk Definíci ció. Legyen B és s C véges v ábécé.. RögzR gzítsük k a F jelforrást, vagyis a B ábécé betőihez tartozó p i valósz színőségeket. Tekintsük k az f: B C* függvf ggvények által meghatározott felbontható kódokat. Ezek közül k l a legkisebb átlagos szóhossz hosszúságú (költs ltségő) ) kódot k optimális kódnak k nevezzük. Korábbi megjegyzésünk alapján n elég g adott esetben az optimális prefix kódot keresnünk. nk. dolás 9

20 Entrópia Definíci ció. Az alábbi E(F) értéket az F forrás entrópi piájának nevezzük. (A log 2-es alapú logaritmust jelöl) l) E( F) = k i= p i log p i = k i= p i log p i dolás 20

21 H k ( K) = p i h i E( F) = pi log = i= Tétel.. (Shannon( tétele tele zajmentes csatornákra) Egy F jelforráshoz tartozó tetszıleges K felbontható kódra teljesül l a következk vetkezı H ( K) k i= E( F) log c p i k i= p i log p i Prefix kóddal ez a korlát t jól j l megközel zelíthetı. Tétel. E( F) Létezik olyan f: B C* B prefix kód, amelyre H ( K) + logc Bizonyítás. A bizonyítást példp ldául az un. Shannon-Fano kód d segíts tségével lehet elvégezni. dolás 2

22 Bináris Huffman-kód Legyen B ={b, b 2,, b k }, a valósz színőségek pedig sorban (nagyság g szerint csökken kkenıen rendezve): {0,20; 0,20; 0,9; 0,2; 0,; 0,09; 0,09} b b 2 b 3 b 4 b 5 b 6 b 7 0,20 0,20 0,9 0,2 0, 0,09 0,09 0,20 0,20 0,9 0,8 0,2 0, 0,23 0,20 0,20 0,9 0,8 0,37 0,23 0,20 0,20 0,40 0,37 0,23 0,60 0,40 b b 2 b 3 b 4 b 5 b b dolás 22 0

23 A Huffmann-kód d elınye: Optimális kódot k állít t elı. A Huffmann-kód d hátrh trányai: Ismernünk nk kell kódolk dolásnál l a teljes szöveget. Kétszer kell végigmennv gigmennünk nk az adatokon. Elısz ször meghatározzuk a forrásbet sbetők k relatív v gyakoriságát, ami megegyezik a valósz színőségekkel, majd ennek felhasználásával elvégezz gezzük k a tényleges t kódolk dolást. Adaptív v Huffmann-kódol dolás. Csak egyszer megy végig v az adatokon. Az optimalitás rovására ra idıt t takarítunk tunk meg. Egy forrásbet sbetőt t az elızı forrásbet sbetők elıfordul fordulásai alapján n kódolunk, k s ezzel együtt lépésenkl senként nt változik maga a kód k d is. Az aktuális forrásbet sbető kódolását t egy, az elızıleg leg feldolgozott forrásbet sbetőkre optimális kóddal k hajtjuk végre. dolás 23

24 Adaptív v kódok. k Menet közben k győjt jtünk informáci ciót t a forrásszimb sszimbólumokról, l, az aktuális szimbólumot az ezt megelızı szimbólumok alapján kódoljuk. Lempel-Ziv kódok: LZ77 algoritmus. 977-ben publikált lták. LZ78 algoritmus. LZW kód: k Terry Welch az LZ78-at módosm dosította. Az Unix COMPRESS parancsa és s a GIF (Graphics( Interchange Format) képtömörítı is az LZW algoritmust használja. dolás 24

25 Irodalomjegyzék Demetrovics, Denev,, Pavlov: A számítástudom studomány matematikai alapjai Tankönyvkiad nyvkiadó,, Budapest, 985 Gyırfi László-Gyıri Sándor-Vajda István: Informáci ció és kódelmélet let Typotex Kiadó,, 2000 Jablonszkij, Lupanov: Diszkrét t matematika a számítástudom studományban Mőszaki KönyvkiadK nyvkiadó,, 980 dolás 25

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.

Részletesebben

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk 1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

Hamming-kódnak. Definíci Az 1-hibajav1. nevezzük. F 2 fölötti vektorokkal foglalkozunk. se: zleményszavak hossza A H (r n)

Hamming-kódnak. Definíci Az 1-hibajav1. nevezzük. F 2 fölötti vektorokkal foglalkozunk. se: zleményszavak hossza A H (r n) Hamming-kód Definíci ció. Az -hibajav hibajavító,, perfekt lineáris kódot k Hamming-kódnak nevezzük. F 2 fölötti vektorokkal foglalkozunk. Hamming-kód készítése: se: r egész szám m (ellenırz rzı jegyek

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Hamming-kód. Definíció. Az 1-hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F 2 fölötti vektorokkal foglalkozunk.

Hamming-kód. Definíció. Az 1-hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F 2 fölötti vektorokkal foglalkozunk. Definíció. Hamming-kód Az -hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F fölötti vektorokkal foglalkozunk. Hamming-kód készítése: r egész szám (ellenırzı jegyek száma) n r a kódszavak hossza

Részletesebben

Hibajavító kódok május 31. Hibajavító kódok 1. 1

Hibajavító kódok május 31. Hibajavító kódok 1. 1 Hibajavító kódok 2007. május 31. Hibajavító kódok 1. 1 Témavázlat Hibajavító kódolás Blokk-kódok o Hamming-távolság, Hamming-súly o csoportkód o S n -beli u középpontú t sugarú gömb o hibajelzı képesség

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

Alapfogalmak a Diszkrét matematika II. tárgyból

Alapfogalmak a Diszkrét matematika II. tárgyból Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések

Részletesebben

Lineáris kódok. sorvektor. W q az n dimenziós s altere. 3. tétel. t tel. Legyen K [n,k,d] kód k d (k 1). Ekkor d(k)=w(k)

Lineáris kódok. sorvektor. W q az n dimenziós s altere. 3. tétel. t tel. Legyen K [n,k,d] kód k d (k 1). Ekkor d(k)=w(k) Defiíci ció. Legye S=F q. Ekkor S az F q test feletti vektortér. r. K lieáris kód, k ha K az S k-dimeziós s altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor. W

Részletesebben

Mohó algoritmusok. Példa:

Mohó algoritmusok. Példa: Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Dr. Kutor László Minimális redundanciájú kódok (2) Szótár alapú tömörítő algoritmusok 2014. ősz Óbudai Egyetem, NIK Dr. Kutor László IRA 8/25/1 Az információ redundanciája

Részletesebben

Információelmélet Szemináriumi gyakorlatok

Információelmélet Szemináriumi gyakorlatok Információelmélet Szemináriumi gyakorlatok. feladat. Adott az alábbi diszkrét valószínűségi változó: ( ) a b c d X = Számítsuk ki az entróiáját: H(X ) =?. feladat. Adott az alábbi diszkrét valószínűségi

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2016. ősz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2016.

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Az üzenet információ-tartalma, redundanciája Minimális redundanciájú kódok http://mobil.nik.bmf.hu/tantárgyak/iea.html Felhasználónév: iea Jelszó: IEA07

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai Dr. Kutor László Az üzenet információ-tartalma és redundanciája Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Kódoláselmélet. (Humann kód, hibajavító kódok, véges testek konstrukciója. Reed-Solomon kód és dekódolása.)

Kódoláselmélet. (Humann kód, hibajavító kódok, véges testek konstrukciója. Reed-Solomon kód és dekódolása.) Kódoláselmélet. (Humann kód, hibajavító kódok, véges testek konstrukciója. Reed-Solomon kód és dekódolása.) 1 Kommunikáció során az adótól egy vev ig viszünk át valamilyen adatot egy csatornán keresztül.

Részletesebben

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

Szakdolgozat. Pongor Gábor

Szakdolgozat. Pongor Gábor Szakdolgozat Pongor Gábor Debrecen 2009 Debreceni Egyetem Informatikai Kar Egy kétszemélyes játék számítógépes megvalósítása Témavezetı: Mecsei Zoltán Egyetemi tanársegéd Készítette: Pongor Gábor Programozó

Részletesebben

Konzulensek: Mikó Gyula. Budapest, ősz

Konzulensek: Mikó Gyula. Budapest, ősz Önálló laboratórium rium 2. M.Sc.. képzk pzés Mikrohullámú teljesítm tményerősítők linearizálása adaptív v módszerekkelm Készítette: Konzulensek: Sas Péter P István - YRWPU9 Dr. Sujbert László Mikó Gyula

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem 1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2019. május 3. 1. Diszkrét matematika 2. 10. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Mérai László diái alapján Komputeralgebra Tanszék 2019. május

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

http://www.ms.sapientia.ro/~kasa/formalis.htm

http://www.ms.sapientia.ro/~kasa/formalis.htm Formális nyelvek és fordítóprogramok http://www.ms.sapientia.ro/~kasa/formalis.htm Könyvészet 1. Csörnyei Zoltán, Kása Zoltán, Formális nyelvek és fordítóprogramok, Kolozsvári Egyetemi Kiadó, 2007. 2.

Részletesebben

5. A gráf, mint adatstruktúra Gráfelméleti bevezető

5. A gráf, mint adatstruktúra Gráfelméleti bevezető 5. A gráf, mint adatstruktúra 5.1. Gráfelméleti bevezető Az irányított gráf (digráf) A G = ( V, rendezett párt irányított gráfnak (digráfnak) nevezzük. A rendezett pár elemeire tett kikötések: V véges

Részletesebben

Információs rendszerek elméleti alapjai. Információelmélet

Információs rendszerek elméleti alapjai. Információelmélet Információs rendszerek elméleti alapjai Információelmélet Az információ nem növekedés törvénye Adatbázis x (x adatbázis tartalma) Kérdés : y Válasz: a = f(y, x) Mennyi az a információtartalma: 2017. 04.

Részletesebben

2. Visszalépéses stratégia

2. Visszalépéses stratégia 2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet

Részletesebben

1. Gráfok alapfogalmai

1. Gráfok alapfogalmai 1. Gráfok alapfogalmai Definiáld az irányítatlan gráf fogalmát! Definiáld az illeszkedik és a végpontja fogalmakat! Definiáld az illeszkedési relációt! Definiáld a véges/végtelen gráf fogalmát! Definiáld

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

Leképezések. Leképezések tulajdonságai. Számosságok.

Leképezések. Leképezések tulajdonságai. Számosságok. Leképezések Leképezések tulajdonságai. Számosságok. 1. Leképezések tulajdonságai A továbbiakban legyen A és B két tetszőleges halmaz. Idézzünk fel néhány definíciót. 1. Definíció (Emlékeztető). Relációknak

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 11. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Kongruenciák Diszkrét matematika I. középszint 2014.

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét

Részletesebben

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI 19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI Ebben a fejezetben aszimptotikus (nagyságrendi) alsó korlátot adunk az összehasonlításokat használó rendező eljárások lépésszámára. Pontosabban,

Részletesebben

2. Visszalépéses keresés

2. Visszalépéses keresés 2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel

Részletesebben

Algoritmuselmélet 7. előadás

Algoritmuselmélet 7. előadás Algoritmuselmélet 7. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 11. ALGORITMUSELMÉLET 7. ELŐADÁS 1 Múltkori

Részletesebben

Az B sorozatban a pontok helyes preorder sorrendben vannak. A preorder bejárásban p k -t közvetlenül q m követi.

Az B sorozatban a pontok helyes preorder sorrendben vannak. A preorder bejárásban p k -t közvetlenül q m követi. Nemrekurzív preorder bejárás veremmel Ismét feltesszük, hogy a fa a g gyökérpontja által van megadva elsőfiú testvér reprezentációval, és az M műveletet akarjuk minden ponton végrehajtani. PreorderV(g,M)

Részletesebben

Információs rendszerek elméleti alapjai. Információelmélet

Információs rendszerek elméleti alapjai. Információelmélet Iformácós redszerek elmélet alaja Iformácóelmélet A forrás kódolása csatora jelekké 6.4.5. Molár Bált Beczúr Adrás NMMMNNMNfffyyxxfNNNNxxMNN verzazazthatóvsszaálímdeveszteségcsaakkorfüggvéykódolásaakódsorozat:eredméyekódolássorozatváltozó:forás

Részletesebben

A rák, mint genetikai betegség

A rák, mint genetikai betegség A rák, mint genetikai betegség Diák: Ferencz Arnold-Béla la Felkész szítı tanár: József J Éva Bolyai Farkas Elméleti leti LíceumL Mi is a rák r tulajdonképpen? A rák r k egy olyan betegség g ahol sejt

Részletesebben

ZH feladatok megoldásai

ZH feladatok megoldásai ZH feladatok megoldásai A CSOPORT 5. Írja le, hogy milyen szabályokat tartalmazhatnak az egyes Chomskynyelvosztályok (03 típusú nyelvek)! (4 pont) 3. típusú, vagy reguláris nyelvek szabályai A ab, A a

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika

Részletesebben

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye: Az RSA módszer Az RSA módszer titkossága a prímtényezős felbontás nehézségén, a prímtényezők megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Alap fatranszformátorok II

Alap fatranszformátorok II Alap fatranszformátorok II Vágvölgyi Sándor Fülöp Zoltán és Vágvölgyi Sándor [2, 3] közös eredményeit ismertetjük. Fogalmak, jelölések A Σ feletti alaptermek TA = (T Σ, Σ) Σ algebráját tekintjük. Minden

Részletesebben

Hatodik gyakorlat. Rendszer, adat, információ

Hatodik gyakorlat. Rendszer, adat, információ Hatodik gyakorlat Rendszer, adat, információ Alapfogalmak Rendszer: A rendszer egymással kapcsolatban álló elemek összessége, amelyek adott cél érdekében együttmőködnek egymással, és mőködésük során erıforrásokat

Részletesebben

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR JÁRMŐELEMEK ÉS HAJTÁSOK TANSZÉK Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János Budapest 2008

Részletesebben

Az információelmélet alapjai, biológiai alkalmazások. 1. A logaritmusfüggvény és azonosságai

Az információelmélet alapjai, biológiai alkalmazások. 1. A logaritmusfüggvény és azonosságai Az információelmélet alapjai, biológiai alkalmazások 1. A logaritmusfüggvény és azonosságai 2 k = N log 2 N = k Például 2 3 = 8 log 2 8 = 3 10 4 = 10000 log 10 10000 = 4 log 2 2 = 1 log 2 1 = 0 log 2 0

Részletesebben

Kvantumcsatorna tulajdonságai

Kvantumcsatorna tulajdonságai LOGO Kvantumcsatorna tulajdonságai Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Informáci cióelméleti leti alapok összefoglalásasa Valószínűségszámítási alapok Egy A és egy B esemény szorzatán

Részletesebben

Kriptográfia Kilencedik előadás A hitelesítésről általában

Kriptográfia Kilencedik előadás A hitelesítésről általában Kriptográfia Kilencedik előadás A hitelesítésről általában Dr. NémethN L. Zoltán SZTE, Számítástudom studomány Alapjai Tanszék 2008 ősz Üzenet hitelesítés (Message Authentication) az üzenet hitesítésének

Részletesebben

Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1

Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 Turing-gépek Logika és számításelmélet, 7. gyakorlat 2009/10 II. félév Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 A Turing-gép Az algoritmus fogalmának egy intuitív definíciója:

Részletesebben

nyelvoktatásban Bernadett

nyelvoktatásban Bernadett Világh gháló a nyelvoktatásban Angol Német Készítette: Dobó Gabriella és s dr. Gaál Bernadett soha nem volt még ilyen könnyő a tudás létrehozásához szükséges információkat összegyőjteni, míg tudást létrehozni

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002.

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002. INFORMÁCIÓELMÉLET Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2002. i TARTALOMJEGYZÉK. Bevezetés 2. Az információmennyiség 6 3. Az I-divergencia 3 3. Információ és bizonytalanság

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Bevezetés az információelméletbe

Bevezetés az információelméletbe Bevezetés az információelméletbe Csiszár Vill 2017. május 10. 1. A hírközlési rendszerek matematikai modellje Olyan rendszerekkel foglalkozunk, amikor egy forrás által kibocsátott információt valamilyen

Részletesebben

Permutációk véges halmazon (el adásvázlat, február 12.)

Permutációk véges halmazon (el adásvázlat, február 12.) Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz

Részletesebben

Függvények növekedési korlátainak jellemzése

Függvények növekedési korlátainak jellemzése 17 Függvények növekedési korlátainak jellemzése A jellemzés jól bevált eszközei az Ω, O, Θ, o és ω jelölések. Mivel az igények általában nemnegatívak, ezért az alábbi meghatározásokban mindenütt feltesszük,

Részletesebben

Fraktál alapú képtömörítés p. 1/26

Fraktál alapú képtömörítés p. 1/26 Fraktál alapú képtömörítés Bodó Zalán zbodo@cs.ubbcluj.ro BBTE Fraktál alapú képtömörítés p. 1/26 Bevezetés tömörítések veszteségmentes (lossless) - RLE, Huffman, LZW veszteséges (lossy) - kvantálás, fraktál

Részletesebben

Chomsky-féle hierarchia

Chomsky-féle hierarchia http://www.cs.ubbcluj.ro/~kasa/formalis.html Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezet ), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.

Részletesebben

SHk rövidítéssel fogunk hivatkozni.

SHk rövidítéssel fogunk hivatkozni. Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,

Részletesebben

Shannon és Huffman kód konstrukció tetszőleges. véges test felett

Shannon és Huffman kód konstrukció tetszőleges. véges test felett 1 Shannon és Huffman kód konstrukció tetszőleges véges test felett Mire is jók ezek a kódolások? A szabványos karakterkódolások (pl. UTF-8, ISO-8859 ) általában 8 biten tárolnak egy-egy karaktert. Ha tudjuk,

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika alapfogalmak

Diszkrét matematika alapfogalmak 2014 tavaszi félév Diszkrét matematika alapfogalmak 1 GRÁFOK 1.1 GRÁFÁBRÁZOLÁSOK 1.1.1 Adjacenciamátrix (szomszédsági mátrix) Szomszédok felsorolása, csak egyszerű gráfok esetén használható 1.1.2 Incidenciamátrix

Részletesebben

Kódolás. Informatika alapjai-3 Kódolás 1/9

Kódolás. Informatika alapjai-3 Kódolás 1/9 Informatika alapjai-3 Kódolás 1/9 Kódolás A hétköznapi életben a mennyiségek kétféleképpen jelennek meg: Analóg érték: folyamatosan változó, például pillanatnyi idı, egy test tömege. A valóságot leíró

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

KUNHEGYESI REFORMÁTUS ÁLTALÁNOS ISKOLA

KUNHEGYESI REFORMÁTUS ÁLTALÁNOS ISKOLA KUNHEGYESI REFORMÁTUS ÁLTALÁNOS ISKOLA 5340 Kunhegyes, Kossuth Lajos u. 64 /Fax: 59/325-230 E-mail: reftitk@kunhegyes.hu A KUNHEGYESI REFORMÁTUS ÁLTALÁNOS ISKOLA INTÉZMÉNYI MINİSÉGIRÁNYÍTÁSI PROGRAMJA

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

12. Képtömörítés. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (

12. Képtömörítés. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE ( 12. Képtömörítés Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Miért van szükség tömörítésre? A rendelkezésre álló adattárolási és továbbítási

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Algoritmuselmélet 6. előadás

Algoritmuselmélet 6. előadás Algoritmuselmélet 6. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 4. ALGORITMUSELMÉLET 6. ELŐADÁS 1 Hash-elés

Részletesebben

Számítógépi képelemzés

Számítógépi képelemzés Számítógépi képelemzés Elıadás vázlat Szerzık: Dr. Gácsi Zoltán, egyetemi tanár Dr. Barkóczy Péter, egyetemi docens Lektor: Igaz Antal, okl. gépészmérnök a Carl Zeiss technika kft. Ügyvezetı igazgatója

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója SZAKKÖZÉPISKOLA A 006-007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója. Feladat: Egy számtani sorozat három egymást követő tagjához rendre 3-at, -et, 3-at adva

Részletesebben

Normák, kondíciószám

Normák, kondíciószám Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

Kvantum-tömörítés II.

Kvantum-tömörítés II. LOGO Kvantum-tömörítés II. Gyöngyös László BME Vllamosmérnök és Informatka Kar A kvantumcsatorna kapactása Kommunkácó kvantumbtekkel Klasszkus btek előnye Könnyű kezelhetőség Stabl kommunkácó Dszkrét értékek

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Tisztelt LátogatL. togatóink! koztatást adni iskolánk TÁMOP 2009-00110011 - 3.1.4. /08/2-2009. megye közoktatk. zményeiben.

Tisztelt LátogatL. togatóink! koztatást adni iskolánk TÁMOP 2009-00110011 - 3.1.4. /08/2-2009. megye közoktatk. zményeiben. Tisztelt LátogatL togatóink! Szeretnénk nk rövid r tájékoztatt koztatást adni iskolánk részvételérıl, l, feladatairól l a TÁMOP - 3.1.4. /08/2-2009 2009-00110011 A A kompetencia alapú oktatás s feltételeinek

Részletesebben

Hamilton-körök és DNS molekulák

Hamilton-körök és DNS molekulák GoBack Hamilton-körök és DNS Tengely Szabolcs 2005. november 4 tengely@math.klte.hu KöMaL Ifjúsági Ankét 2005 slide 1 Gráfok Gráfok Példa Nehéz dió DNS Hossz - S 1 n G n alkalmazása G = (V,E) egyszerű

Részletesebben