ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA"

Átírás

1 ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet Komplex Folyadékok Osztály MTA Csillebérc / KFKI donko.zoltan@wigner.mta.hu zoltan.donko@gmail.com (8)

2 A plazma-diagnosztika alapjai Diagnosztika (cél: információt szerezni a plazma egyes jellemzőiről, pl. összetétel, hőmérséklet, sűrűség,...) Elektromos szondák Plazma-spektroszkópia Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 2

3 Langmuir-szondák φ K Szonda áramkör sémája φ L I L Plazma Szonda A φ L U T V Gömb Henger Sík R az egyik legrégebben és leggyakrabban alkalmazott plazma-diagnosztikai eljárás (1920- as évektől) kisméretű szonda segítségével egyes plazmaparaméterek meghatározhatók (becsülhetők) elektronsűrűség elektron-hőmérséklet elektronenergia-eloszlás módszer: szonda-karakterisztika mérése (= a szondára kapcsolt feszültség függvényében mérjük annak áramát) típusok: egyes / dupla szondák, emisszív szondák, stb. térbeli / időbeli felbontás RF üzemmód a szondát általában körülveszi egy határréteg, ezért részletesen megnézzük, hogy mi történik egy, a plazmába helyezett tárgy (elektróda) környékén Szonda-karakterisztikát mindenki tud mérni Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 3

4 0 DC határréteg Határréteg modellje stacionárius esetre, ütközésmentes közelítésben Feltételezések: plazmapotenciál n n s x φ φ p s határréteg n i n e átmeneti réteg n e = n i plazma n e = n i = n 0 elektronok Maxwell-Boltzmann eloszlásúak, Te hideg ionok Az x = 0 helyen az ionok us sebességgel áramlanak a határrétegbe. Az ionsűrűség meghatározható a potenciáleloszlás ismeretében: 1 2 m iu 2 i = 1 2 m iu 2 s e (x) Folytonossági egyenlet: n i u i = n s u s x φ(x =0) = 0 falpotenciál φ w n i (x) =n s 1 2e (x) m i u 2 s 1/2 Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 4

5 0 DC határréteg Határréteg modellje ütközésmentes közelítésben n i (x) =n s 1 2e (x) m i u 2 s 1/2 Maxell-Boltzmann eloszlású elektronok: n határréteg átmeneti réteg plazma n e (x) =n s exp e (x) k B T e n s n i n e = n i n e = n i = n 0 Poisson-egyenlet: plazmapotenciál x φ φ p s n e e n s 0 d 2 dx 2 = e [n i (x) n e (x)] = 0 exp e (x) k B T e 1 2e (x) m i u 2 s 1/2 x φ(x =0) = 0 Szorozzuk be mindkét oldalt d dx -szel falpotenciál φ w és integráljuk x szerint! Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 5

6 DC határréteg Határréteg modellje ütközésmentes közelítésben Poisson egyenlet: d 2 dx 2 = e n s 0 exp e (x) k B T e 1 2e (x) m i u 2 s 1/2 1 2 d dx 2 = n s 0 (e ) 2 (e ) 2 2k B T e 2m i u 2 s Böhm-kritérium és Böhm-sebesség m i u 2 s >k B T e megoldhatósága megköveteli az alábbi egyenlőtlenséget (e ) 2 (e ) 2 2k B T e 2m i u 2 s > 0 u s >u B = k BT e m i A Böhm-sebességet az ionok az átmeneti tartományban ( presheath ) veszik fel, emiatt ezen a tartományon egy adott feszültségesés kell, hogy legyen: 1 2 m iu 2 B = e p p = m iu 2 B 2e Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 6

7 0 DC határréteg Határréteg modellje ütközésmentes közelítésben n határréteg átmeneti réteg plazma 1 2 m iu 2 B = e p p = m iu 2 B 2e u B = k BT e m i n s n i n e = n i n e = n i = n 0 n e plazmapotenciál x φ φ p s n s = n 0 exp e p k B T e = n 0 e 1/2 = 0.61n 0 falpotenciál x φ w φ(x =0) = 0 Következő feladat: lebegő fal potenciáljának kiszámítása Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 7

8 0 DC határréteg Határréteg modellje ütközésmentes közelítésben n határréteg átmeneti réteg plazma Falpotenciál kiszámítása Elektron- és ionfluxusok egyenlőek. Elektronfluxus: n s x s n i n e n e = n i n e = n i = n 0 Maxwell-Boltzmann: v = e(x) = n e(x) v 4 8k B T e / m e plazmapotenciál φ φ p e = 1 4 n s 8k B T e m e exp e w k B T e x φ(x =0) = 0 Ionfluxus: i = n s u B falpotenciál φ w A lebegő fal potenciálja negatív és tipikusan k B T e e néhányszorosa w = k BT e e ln m i 2 m e Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 8

9 0 DC határréteg Határréteg modellje ütközésmentes közelítésben n határréteg átmeneti réteg plazma Szonda n s n i n e = n i n e = n i = n 0 L Szonda esetében: n e x s plazmapotenciál falpotenciál x φ φ p φ w φ(x =0) = 0 L = L = p w főleg elektronáram a nagyobb sebesség miatt lebegő potenciál: egyenlő elektronés ionfluxus Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 9

10 Langmuir-szondák SZONDA-KARAKTERISZTIKA φ K Plazma Szonda gömb elektronáram henger φ L I L A V I L sík φ L R φ L U T ionáram φ p I L = I L,sat Gömb Henger Sík A lebegő potenciál helye: a szondaáram zérus értékénél φ f I L = 0 A plazmapotenciál helye: inflexiós pont (a szondaáram második deriváltja zérus) Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 10

11 Langmuir-szondák Sík felületű szonda, ütközésmentes határréteggel, Maxwell-eloszlású elektronok e = 1 4 n 0 v e exp e( L p) k B T e = 1 4 n 0 8k B T e m e exp e( L p) k B T e I e ( L )= ean 0 4 8k B T e m e exp e( L p) k B T e = I e,sat exp e( L p) k B T e I L gömb elektronáram henger ln I e I e,sat = e( L p) k B T e sík 1) Az elektron-hőmérséklet meghatározható a meredekség reciprokából φ p φ L 2) A telítési elektronáram ismeretében a sűrűség is meghatározható ionáram φ f I L = I L,sat I L = 0 Probléma: A telítési elektronáram mérésének bizonytalansága Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 11

12 Langmuir-szondák I 2 módszer Az elektronsűrűség meghatározására a pontos elektron-hőmérséklet érték ismerete nélkül I L gömb elektronáram henger sík I e ( L )= ean 0 4 I 2 e ( L )= ean 0 4 8k B T e m e exp e( L p) k B T e 2 8k B T e m e exp e( L p) k B T e 2 ionáram φ p I L = I L,sat φ L I 2 e ( L ) = ean k B T e m e 1+2 e( L p) k B T e φ f I L = 0 I 2 e ( L )= (ea)2 m e n k BT e e p + e L állandó I 2 e ( L ) függvény meredeksége az elektronsűrűség négyzetével arányos Španěl P.: Int J. Mass Spectrom and Ion Proces., 149/150, 299, 1995 Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 12

13 Langmuir-szondák Sík felületű szonda, ütközésmentes határréteggel, nem-maxwell-boltzmann eloszlású elektronok Cél: elektronok energia-eloszlásának meghatározása f e (v) v θ min φ L < φ p ( retardáló tartomány) gömb elektronáram henger x I L φ p sík φ L A felületet azok az elektronok tudják elérni, amelyeknek az x irányú sebessége egy minimális értéket meghalad: 1 2 m evmin 2 = e( p L ) v min = 2e( p L) m e ionáram I L = I L,sat I e = ea v x f e (v)dv x dv y dv z = φ f I L = 0 v x =v min v y = v z = min 2 ea v 3 f e (v) sin cos d d dv v=v min =0 =0 Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 13

14 Langmuir-szondák I e = ea 2 3/2 m 1/2 e eu g e ( ) 1 eu d = m e v 2 /2 ahol U = p L di e du = ea 2 3/2 m 1/2 e eu U g e( ) 1 eu d = e 2 A 2 3/2 m 1/2 e eu g e ( ) d d 2 I e du 2 = e2 A 2 3/2 m 1/2 e g e ( ) =eu g e ( )= g e( ) 2 3/2 m 1/2 e = e 2 A d 2 I e du 2 Az energiaeloszlás függvény a szondaáram második deriváltjával arányos Felhasználtuk, hogy a határréteg ütközésmentes alacsony nyomás mellett működik! Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 14

15 Langmuir szondák Példa: Áram második deriváltja (egyenes: Maxwell, Te) =0 : plazmapotenciál I 2 módszer: elektronsűrűség mérésére, nagyobb nyomások mellett is működik Szondaáram zéró: lebegő potenciál Szonda feszültség Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 15

16 Langmuir szondák Felbontás: Tisztaság: Térbeli: Debye-hossz Szennyeződések a szonda felületén D = 0kT n 0 e 2 1/2 Szennyezheti a plazmát Elektronemissziót indukálhat Időbeli: a határréteg kialakulásának időskálája Torzítja a szonda-karakterisztikát pi = n ie 2 0m i Tisztítás elektronárammal Tisztítás ionbombázással Tipikus tisztítófeszültség V, áram ma Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 16

17 Langmuir szondák Mérőáramkör: φ v Szonda A1 + I L φ K Plazma - A2 A4 Szonda φ L I L A φ L V R + - A3 A5 φ L U T Köszönet: Dr Ihor Korolov Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 17

18 A plazma-diagnosztika alapjai Diagnosztika (cél: információt szerezni a plazma egyes jellemzőiről, pl. összetétel, hőmérséklet, sűrűség,...) Elektromos szondák Plazma-spektroszkópia Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 18

19 Optikai spektroszkópia - történelem Sir Isaac Newton was one of the first scientists to investigate color theory. Around he discovered the origin of color when he shone a beam of light through an angular prism and split it into the spectrum - the various colors of the rainbow. wikipedia.org picture by J.A. Houston Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 19

20 Spektrométerek Prizmás spektrométer az 1800-as évek végéről Prizma Működési elv: Kollimált nyalábok Fénybontó (diszperzív) elemek: Prizma (fénytörés, diszperzió ) Optikai rács (interferencia) Forrás Lencsék Detektálás Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 20

21 Spektrométerek Avantes fibre optic spectrometer Zeiss PGS-2 f = 2 m f = 7.5 cm Int. [a.u.] Helium I DC = 5.4 ma p = 11 mbar [nm] [A] Nitrogén Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 21

22 Spektrométerek Czerny-Turner elrendezés MONOKROMÁTOR CCD SPEKTROMÉTER Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 22

23 Emissziós / abszorpciós folyamatok Abszorpció Spontán emisszió Indukált emisszió h ν h ν h ν 2 1 Fotonenergia E = h Indukált emisszió folyamata (Einstein 1917) Egyensúlyban Boltzmann-eloszlás: N 2 N 1 = g 2 g 1 exp E kt Szelektív gerjesztés 2 1 Gerjesztett állapotok: elektronátmenet vibrációs átmenet rotációs átmenet (energiaviszonyok) A Spektroszkópiai vizsgálatok az 1930-as években. (Encyclodedia of Physics 1956: gázkisülésekben az indukált emisszió teljesen elhanyagolható ) Később: LÉZEREK!! B Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 23

24 Emissziós / abszorpciós spektroszkópia Információ: felső nívóról alsó nívóról Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 24

25 Spektrumvonalak alakja Félértékszélesség Hullámhossz: elemre, molekulára jellemző Intenzitás: sűrűség, hőmérséklet,... Hullámhossz-eltolódás: sugárzók sebessége Vonalalak: hőmérséklet, elektronsűrűség,... Természetes vonalszélesség (az átmenet véges időtartama és az intenzitás exponenciális lecsengése), Lorentz-profil Centrális hullámhossz: 0 = hc E 2 E 1 Ütközési kiszélesedés (gázatomokkal való ütközések következtében), Lorentz-profil 2 Doppler kiszélesedés (a sugárzó atomok mozgása miatt), Gauss-profil 1 Emissziós együttható: 21 = n(2)a 21 hc 4 0 = d Mérés esetén: + a műszer vonalalakja (átviteli függvénye) Intenzitás: I 21 = n(2)a 21 Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 25

26 Atomspektrumok Bohr-elmélet: Posztulátumok: mv n r n = n h = E n E k A hidrogénatom (impulzusmomentum) (energia) Az empírikus = R H 1 k 2 1 n 2 összefüggés magyarázata a Bohr-elmélet nagy sikere volt (1913) R H : Rydberg-állandó Nehezebb elemek hidrogénszerű ionjainak spektruma a Rydberg-állandó korrekcióra szorul, az atommag mozgása miatt. További siker: a deutérium létezésére a vonalak eltolódásából következtettek. Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 26

27 Atomspektrumok Bohr-Sommerfeld modell, (Bohr modell körpályái helyett ellipszispályák) majd kvantummechanika : Schrödinger-egyenlet: 2 2µ n: főkvantumszám (az energia nagyságát határozza meg) 2 e 2 4 0r l = 0,1,2,...n-1: mellékkvantumszám (az elektron l pálya-impulzusmomentumának nagyságát határozza meg) ml = l, l+1,..., 1,0,1,...,l 1,l : mágneses kvantumszám (az l vetületét határozza meg egy kitüntetett irányra) = E sajátérték-probléma kvantumszámok: A hidrogénatom E n = me h2 n 2 degenerált, de perturbációra felhasad Tradícionális jelölés: l =0:s l =1:p l =2:d n l ml állapot s s p 2 1 ±1 2p s p 3 1 ±1 3p d 3 2 ±1 3d 3 2 ±2 3d Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 27

28 Atomspektrumok A hidrogénatom n l ml állapot s s p 2 1 ±1 2p s p 3 1 ±1 3p d 3 2 ±1 3d 3 2 ±2 3d Az elektronspinről csak a relativisztikus kvantummechanika szolgáltat információt (Dirac-egyenletek) Az elektron állapotának teljes leírásához hozzátartozik a spinkvantumszám s = ± 1 2 Sune Svanberg: Atomic and molecular spectroscopy Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 28

29 Atomspektrumok Hidrogén Hidrogén / alkáli atom spektrumok Nátrium Sune Svanberg: Atomic and molecular spectroscopy Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 29

30 Atomspektrumok Alkáli atom spektrumok - az elektronspin szerepe L-S csatolás ev 3p 3p l = 1, s = +1/2 l = 1, s = 1/2 3 2 P 3/2 3 2 P 1/2 Sune Svanberg: Atomic and molecular spectroscopy nm l = 0, s = ±1/2 j = l ± 1 2 3s nm Dublett szerkezet 3 2 S 1/2 Kitüntetett irány (mágneses tér esetén) a spin csak kétféleképpen állhat be: s = ± 1 2 Az elektron teljes impulzusmomentuma a pálya-impulzusmomentum és a spin összege: j = l + s belső kvantumszám (más energiaszinteknél esetleg más multiplicitás) n 2S+1 L J Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 30

31 Atomspektrumok Energia [ev] Többelektronos rendszerek HÉLIUM ionizációs szint: elektronkonfiguráció: 1s S 3 1 P 3 1 D 3 3 S 3 3 P 3 3 D L-S csatolás n 2S+1 L J S P1 metastabil nívók rezonáns átmenetek S P0,1,2 (pl. 3 vonal, néhány század nm-en belül) (hullámhossz értékek nm-ben) Int. [a.u.] Helium I DC = 5.4 ma p = 11 mbar J = L + S,..., L S SZINGLET TRIPLET S0 alapállapot: elektronkonfiguráció: 1s [nm] Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 31

32 Molekulaspektrumok Elektronállapotok + vibrációs + rotációs szerkezet Oxigén molekula elektronállapotai Sune Svanberg: Atomic and molecular spectroscopy Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 32

33 Molekulaspektrumok Franck-Condon elv Az elektronátmenet sokkal rövidebb időskálán megy végbe a rezgések időskálájánál Sune Svanberg: Atomic and molecular spectroscopy Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 33

34 Molekulaspektrumok Rezgési és rotációs (forgási) átmenetek Sune Svanberg: Atomic and molecular spectroscopy Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 34

35 Vibrációs sávok: levegő plazma spektruma Mért spektrum Nitrogén molekula potenciálgörbéi UV / ibolya tartomány domináns, nitrogén molekula vibrációs spektrum I N Kadochnikov et al 2013 Phys. Scr Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 35

36 Rotációs szerkezet: nitrogén gázkisülés Hőmérsékletmérés a rotációs spektrum segítségével: alapja a rotációs szintek közötti lokális egyensúly (a kis energiatávolság miatt) N J = const. exp BJ (J + 1)hc kt rot Boltzmann-eloszlás: Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 36

37 Lézerspektroszkópia: optogalvanikus spektroszkópia Optogalvanikus spektroszkópia alapja: a besugárzás megváltoztatja az atomok/ ionok egyes szintjei közötti átmenetek erősségét, és ezzel perturbálja a plazma elektromos vezetőképességét Mérési elv Neon pozitív oszlopú gázkisülés optogalvanikus spektruma Hangolható fényforrás Lock-in detektálás Beniamino Barbieri, Nicolò Beverini, Antonio Sasso, Rev. Mod. Phys. 62, (1990) Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 37

38 Lézerspektroszkópia: abszorpciós spektroszkópia hangolható diódalézerrel Mérési elv: h ν 2 1 Az abszorpció arányos az 1. szint populációjával (telítéstől távol) G. Bánó and Z. Donkó, Plasma Sources Sci. Technol. 21, (2012) Köszönet: N. Sadeghi, J. Fourier University, Grenoble Vonalintegrált sűrűség Limitált érzékenység Abszolút számsűrűség Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 38

39 Lézerspektroszkópia: abszorpciós spektroszkópia hangolható diódalézerrel Hőmérsékletmérés: a lézert folyamatosan hangoljuk a Doppler-profil felvételéhez F ( ) = ln I I 0 = 2 D ln 2 exp 4ln2 D 2 Sűrűségmérés: Argon metastabil atomok térbeli eloszlása n M =4 0 mc e 2 D 2 ln 2/ 1 Lf ln I I 0 D = 2 ln 2 0 kt M G. Bánó and Z. Donkó, Plasma Sources Sci. Technol. 21, (2012) Köszönet: N. Sadeghi, J. Fourier University, Grenoble Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 39

40 Lézer-indukált fluoreszcencia Abszorpció Lézer-indukált fluoreszcencia Det. 2 Det. h ν 1 h ν Nagy térbeli feloldás Nagy érzékenység Abszolút számsűrűség meghatározása kalibrációt igényel Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 40

41 Számonkérés pontjai Elektromos szondák plazma-felület határréteg: Böhm-sebesség, plazmapotenciál, falpotenciál, lebegő potenciál Langmuir-szondák típusai, szonda-karakterisztika elektron-hőmérséklet, elektronsűrűség, elektronenergia-eloszlás mérés elve Plazma-spektroszkópia emissziós és abszorpciós spektroszkópia elektronátmenetek, vibrációs és rotációs spektrumok lézeres módszerek (optogalvanikus, abszorpciós, lézer-indukált fluoreszcencia spectroszkópia elve) Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 41

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet Komplex Folyadékok Osztály MTA Csillebérc / KFKI donko.zoltan@wigner.mta.hu zoltan.donko@gmail.com

Részletesebben

Abszorpciós spektrumvonalak alakja. Vonalak eredete (ld. előző óra)

Abszorpciós spektrumvonalak alakja. Vonalak eredete (ld. előző óra) Abszorpciós spektrumvonalak alakja Vonalak eredete (ld. előző óra) Nagysága Kiszélesedése Elem mennyiségének becslése a vonalerősségből Elemi statfiz Boltzmann-faktor: Megadja egy állapot súlyát a sokaságban

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

Koherens fény (miért is különleges a lézernyaláb?)

Koherens fény (miért is különleges a lézernyaláb?) Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon sugároznak ki elektromágneses hullámokat Pl: Termikus sugárzó Koherens

Részletesebben

Koherens fény (miért is különleges a lézernyaláb?)

Koherens fény (miért is különleges a lézernyaláb?) Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon, különböző fázissal fotonokat. Pl: Termikus sugárzó Koherens fény Atomok

Részletesebben

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

Koherens lézerspektroszkópia adalékolt optikai egykristályokban

Koherens lézerspektroszkópia adalékolt optikai egykristályokban Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Abszorpció, emlékeztetõ

Abszorpció, emlékeztetõ Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Stern Gerlach kísérlet. Készítette: Kiss Éva

Stern Gerlach kísérlet. Készítette: Kiss Éva Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet

Részletesebben

Abszorpciós spektrometria összefoglaló

Abszorpciós spektrometria összefoglaló Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Newton kísérletei a fehér fénnyel. Sir Isaac Newton ( )

Newton kísérletei a fehér fénnyel. Sir Isaac Newton ( ) Newton kísérletei a fehér fénnyel Sir Isaac Newton (1642 1727) Az infravörös sugárzás felfedezése 1781: Herschel felfedezi az Uránuszt 1800: Felfedezi az infravörös sugárzást Sir William Herschel (1738

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. március 2. A mérés száma és címe: 5. Elektronspin rezonancia Értékelés: A beadás dátuma: 2009. március 5. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy

Részletesebben

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

Az anyagok kettős (részecske és hullám) természete

Az anyagok kettős (részecske és hullám) természete Az anyagok kettős (részecske és hullám) természete de Broglie hipotézise (1924-25): Bármilyen fénysebességgel mozgó részecskére: mc = p E = mc 2 = hn p = hn/c = h/ = h/p - de Broglie-féle hullámhossz Nem

Részletesebben

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos

Részletesebben

AZ ATOM. Atom: atommag + elektronfelhő = proton, neutron, elektron. Elemi részecskék

AZ ATOM. Atom: atommag + elektronfelhő = proton, neutron, elektron. Elemi részecskék AZ ATOM Atom: atommag + elektronfelhő = proton, neutron, elektron Elemi részecskék Atomok Dalton elmélete (1805): John DALTON 1766-1844 1. Az elemek apró részecskékből, atomokból állnak. Atom: görög szó

Részletesebben

Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=

Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B= Elektrodinamika Maxwell egyenletek: div E =4 div B =0 rot E = rot B= 1 B c t 1 E c t 4 c j Kontinuitási egyenlet: n t div n v =0 Vektoranalízis rot rot u=grad divu u rot grad =0 div rotu=0 udv= ud F V

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses

Részletesebben

Atomfizika. FIB1208 (gyakorlat) Meghirdetés féléve 4 Kreditpont 3+2 Összóraszám (elmélet+gyakorlat) 3+2

Atomfizika. FIB1208 (gyakorlat) Meghirdetés féléve 4 Kreditpont 3+2 Összóraszám (elmélet+gyakorlat) 3+2 Tantárgy neve Atomfizika Tantárgy kódja FIB1108 (elmélet) FIB1208 (gyakorlat) Meghirdetés féléve 4 Kreditpont 3+2 Összóraszám (elmélet+gyakorlat) 3+2 Számonkérés módja Kollokvium + gyakorlati jegy Előfeltétel

Részletesebben

2. ZH IV I.

2. ZH IV I. Fizikai kémia 2. ZH IV. kérdések 2018-19. I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me=

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Felhevített tárgyak több száz fokos hőmérsékletet elérve először vörösen majd még magasabb hőmérsékleten sárgán izzanak, tehát fényt (elektromágneses hullámokat a látható tartományban)

Részletesebben

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok

Részletesebben

ω mennyiségek nem túl gyorsan változnak

ω mennyiségek nem túl gyorsan változnak Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok

Részletesebben

AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE

AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE A Planck-féle sugárzási törvény Hipotézis 1.: A hősugárzást (elektromágneses hullámokat) kis, apró rezgő oszcillátorok hozzák létre. Egy ilyen oszcillátor

Részletesebben

9. Fotoelektron-spektroszkópia

9. Fotoelektron-spektroszkópia 9/1 9. Fotoelektron-spektroszkópia 9.1. ábra. Fotoelektron-spektroszkópiai módszerek 9.2. ábra. UP-spektrométer vázlata 9/2 9.3. ábra. N 2 -fotoelektron-spektrum 9.4. ábra. 2:1 mólarányú CO-CO 2 gázelegy

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61 Elektronok, atomok 2-1 Elektromágneses sugárzás 2-2 Atomi Spektrum 2-3 Kvantumelmélet 2-4 A Bohr Atom 2-5 Az új Kvantummechanika 2-6 Hullámmechanika 2-7 Kvantumszámok Dia 1/61 Tartalom 2-8 Elektronsűrűség

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

A Mössbauer-effektus vizsgálata

A Mössbauer-effektus vizsgálata A Mössbauer-effektus vizsgálata Tóth ence fizikus,. évfolyam 006.0.0. csütörtök beadva: 005.04.0. . A mérés célja három minta: lágyvas, nátrium-nitroprusszid és rozsdamentes acél Mössbauereffektusának

Részletesebben

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán

Részletesebben

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás

Részletesebben

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria 2013 január Abszorpciós fotometria Elektron-spektroszkópia alapjai Biofizika. szemeszter Orbán József PTE ÁOK Biofizikai ntézet Definíciók, törvények FÉNYTAN ALAPOK SMÉTLÉS - Elektromágneses sugárzás,

Részletesebben

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós Alapjai, tulajdonságai, mérése Kellermayer Miklós Fotolumineszcencia Radiolumineszcencia Fotolumineszcencia Radiolumineszcencia Aurora borrealis (sarki fény) Biolumineszcencia GFP-egér Biolumineszcencia

Részletesebben

Speciális fluoreszcencia spektroszkópiai módszerek

Speciális fluoreszcencia spektroszkópiai módszerek Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon

Részletesebben

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)

Részletesebben

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása

Részletesebben

Raman spektroszkópia. Történet Két leirás: Eldines, kvantumos Kiválasztási szabályok Szimmetriák Raman Intenzitás Rezonáns Raman

Raman spektroszkópia. Történet Két leirás: Eldines, kvantumos Kiválasztási szabályok Szimmetriák Raman Intenzitás Rezonáns Raman Raman spektroszkópia Történet Két leirás: Eldines, kvantumos Kiválasztási szabályok Szimmetriák Raman Intenzitás Rezonáns Raman Speciális Raman esetek elektronikus SERS, tip enh. ROA near-field Kisérleti

Részletesebben

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60 Elektronok, atomok 10-1 Elektromágneses sugárzás 10- Atomi Spektrum 10-3 Kvantumelmélet 10-4 A Bohr Atom 10-5 Az új Kvantummechanika 10-6 Hullámmechanika 10-7 Kvantumszámok Slide 1 of 60 Tartalom 10-8

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60 Elektronok, atomok -1 Elektromágneses sugárzás - Atomi Spektrum -3 Kvantumelmélet -4 A Bohr Atom -5 Az új Kvantummechanika -6 Hullámmechanika -7 A hidrogénatom hullámfüggvényei Slide 1 of 60 Tartalom -8

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

ATOMEMISSZIÓS SPEKTROSZKÓPIA

ATOMEMISSZIÓS SPEKTROSZKÓPIA ATOMEMISSZIÓS SPEKTROSZKÓPIA Elvi jellemzők, amelyek meghatározzák a készülék felépítését magas hőmérsékletű fényforrás (elsősorban plazma, szikra, stb.) kis méretű sugárforrás (az önabszorpció csökkentése

Részletesebben

Szerves oldott anyagok molekuláris spektroszkópiájának alapjai

Szerves oldott anyagok molekuláris spektroszkópiájának alapjai Szerves oldott anyagok molekuláris spektroszkópiájának alapjai 1. Oldott molekulában lejátszódó energetikai jelenségek a Jablonski féle energia diagram alapján 2. Példák oldatok abszorpciójára és fotolumineszcenciájára

Részletesebben

Elektronspinrezonancia (ESR) - spektroszkópia

Elektronspinrezonancia (ESR) - spektroszkópia Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben E m S μ z

Részletesebben

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet Komplex Folyadékok Osztály MTA Csillebérc / KFKI donko.zoltan@wigner.mta.hu zoltan.donko@gmail.com

Részletesebben

Atomok, elektronok. Általános Kémia - Elektronok, Atomok. Dia 1/61

Atomok, elektronok. Általános Kémia - Elektronok, Atomok. Dia 1/61 , elektronok 2-1 Elektromágneses sugárzás 2-2 Atomi spektrum 2-3 Kvantumelmélet 2-4 Bohr-atom 2-5 Az új kvantummechanika 2-6 Hullámmechanika 2-7 A hidrogénatom hullámfüggvényei Dia 1/61 , elektronok 2-8

Részletesebben

A fény és az anyag kölcsönhatása

A fény és az anyag kölcsönhatása A fény és az anyag kölcsönhatása Bohr-feltétel : E = E 2 E 1 = hν abszorpció foton (hν) E 2 E 2 E 1 E 1 E 2 E 2 spontán emisszió E 1 E 1 stimulált (kényszerített) emisszió E 2 E 2 E 1 E 1 Emissziós és

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán MTA Wigner Fizikai Kutatóközpont Szilártestfizikai és Optikai Intézet Komplex Folyaékok Osztály MTA Csillebérc / KFKI onko.zoltan@wigner.mta.hu zoltan.onko@gmail.com

Részletesebben

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán / Dr. Derzsi Aranka MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet Komplex Folyadékok Osztály MTA Csillebérc / KFKI donko.zoltan@wigner.mta.hu

Részletesebben

Szédítő por, avagy, hogyan mérjünk 3000 Tesla-n

Szédítő por, avagy, hogyan mérjünk 3000 Tesla-n Szédítő por, avagy, hogyan mérjünk 3000 Tesla-n Hartmann Péter Elektromos Gázkisülések Wigner kutatócsoport, Komplex Folyadékok Osztály, MTA Wigner FK társszerzők: Donkó Zoltán, Torben Ott, Hanno Kählert,

Részletesebben

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás

Részletesebben

Magyarkuti András. Nanofizika szeminárium JC Március 29. 1

Magyarkuti András. Nanofizika szeminárium JC Március 29. 1 Magyarkuti András Nanofizika szeminárium - JC 2012. Március 29. Nanofizika szeminárium JC 2012. Március 29. 1 Abstract Az áram jelentős részéhez a grafén csík szélén lokalizált állapotok járulnak hozzá

Részletesebben

Elektronspin rezonancia

Elektronspin rezonancia Elektronspin rezonancia jegyzıkönyv Zsigmond Anna Fizika MSc I. Mérés vezetıje: Kürti Jenı Mérés dátuma: 2010. november 25. Leadás dátuma: 2010. december 9. 1. A mérés célja Az elektronspin mágneses rezonancia

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

5. Atmoszférák. z I λ. z κ λ

5. Atmoszférák. z I λ. z κ λ 5. Atmoszférák 5.1. Sugárzásátvitel Az angol terminológia nyomán radiatív transzfernek nevezett kérdéskör azzal foglalkozik, hogy ha egy optikailag átlátszó, de saját sugárzással is rendelkező anyagon

Részletesebben

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet Komplex Folyadékok Osztály MTA Csillebérc / KFKI donko.zoltan@wigner.mta.hu zoltan.donko@gmail.com

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez 1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet

Részletesebben

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék 3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal

Részletesebben

Modern Fizika Laboratórium Fizika és Matematika BSc 8. Alkáli spektrumok

Modern Fizika Laboratórium Fizika és Matematika BSc 8. Alkáli spektrumok Modern Fizika Laboratórium Fizika és Matematika BSc 8. Alkáli spektrumok Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 03/7/0 Beadás ideje: 04/0/0 Érdemjegy: . A mérés

Részletesebben

Kémiai alapismeretek 2. hét

Kémiai alapismeretek 2. hét Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2014. szeptember 9.-12. 1/13 2014/2015 I. félév, Horváth Attila c Hullámtermészet:

Részletesebben

KÉMIAI ANYAGSZERKEZETTAN

KÉMIAI ANYAGSZERKEZETTAN KÉMIAI ANYAGSZERKEZETTAN (Ábragyűjtemény) / tanév /. BEVEZETÉS.. ábra. A Fraunhofer-vonalak a Nap színképében Minta omorú holografikus rács Rések Fényforrás Fotódiódatömb.. ábra. Egyutas UV-látható abszorpciós

Részletesebben

Boyle kísérlete. Boyle 1781-ben ónt hevített és azt tapasztalta, hogy annak tömege. Robert Boyle angol fizikus, kémikus

Boyle kísérlete. Boyle 1781-ben ónt hevített és azt tapasztalta, hogy annak tömege. Robert Boyle angol fizikus, kémikus Boyle kísérlete Boyle 1781-ben ónt hevített és azt tapasztalta, hogy annak tömege Robert Boyle 1627-1691 angol fizikus, kémikus A tömegmegmaradás törvénye Lavoisier kísérlete 1. Boyle tapasztalata: ónt

Részletesebben

Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.

Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb. Szervetlen komponensek analízise A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.) A fény λ i( k r ωt + φ0 ) Elektromágneses sugárzás E( r,

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic

Részletesebben

Hőmérsékleti sugárzás

Hőmérsékleti sugárzás Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális

Részletesebben

Elektronszínképek Ultraibolya- és látható spektroszkópia

Elektronszínképek Ultraibolya- és látható spektroszkópia Elektronszínképek Ultraibolya- és látható spektroszkópia Elektronátmenetek elektromos dipólus-átmenetek (a molekula változó dipólusmomentuma lép kölcsönhatásba az elektromágneses sugárzás elektromos terével)

Részletesebben

Optika Gröller BMF Kandó MTI

Optika Gröller BMF Kandó MTI Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása

Részletesebben

Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty

Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty Dr. Berta Miklós bertam@sze.hu 2017. október 26. 1 / 11 Tekintsünk egy olyan kristályrácsot, amelynek minden mérete sokkal

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Elektronok, atomok. Tartalom

Elektronok, atomok. Tartalom Elektronok, atomok 8-1 Elektromágneses sugárzás 8-2 Atomi Spektrum 8-3 Kvantumelmélet 8-4 ABohr Atom 8-5 Az új Kvantummechanika 8-6 Hullámmechanika 8-7 Kvantumszámok, elektronpályák Slide 1 of 60 Tartalom

Részletesebben

Lézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok

Lézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok Lézerek Lézerek A lézerműködés feltételei Lézerek osztályozása Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok Extrém energiák Alkalmazások A lézerműködés feltételei

Részletesebben

Klórbenzol lebontásának vizsgálata termikus rádiófrekvenciás plazmában

Klórbenzol lebontásának vizsgálata termikus rádiófrekvenciás plazmában Klórbenzol lebontásának vizsgálata termikus rádiófrekvenciás plazmában Fazekas Péter Témavezető: Dr. Szépvölgyi János Magyar Tudományos Akadémia, Természettudományi Kutatóközpont, Anyag- és Környezetkémiai

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán MTA Wigner Fizikai Kutatóközpont Szilártestfizikai és Optikai Intézet Komplex Folyaékok Osztály MTA Csillebérc / KFKI onko.zoltan@wigner.mta.hu zoltan.onko@gmail.com

Részletesebben

Röntgen-gamma spektrometria

Röntgen-gamma spektrometria Röntgen-gamma spektrométer fejlesztése radioaktív anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű meghatározására Szalóki Imre, Gerényi Anita, Radócz Gábor Nukleáris Technikai Intézet

Részletesebben