Mesterséges Intelligencia MI
|
|
- Borbála Nemesné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Mesterséges Intelligencia MI Korlát/kényszerkielégítési problémák Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437,
2 Valós objektumok (feladatok), fizikai törvények,... probléma-absztrakciója Leíró változók (állapot) S = (x1=..., x2=...,, Xn=...) Változók között relációk: kényszerek/korlátok Kölcsönhatások pl. X2 = X1 + 1 NincsTámadás(VPoz1,VPoz2) A OR B = 1 Vége(MunkaSz1) < Eleje(MunkaSz2) PV = nrt...
3 Korlátkielégítési problémák Constraint Satisfaction Problems (CSPs) Megszokott keresési feladatoknál: állapot: egy fekete doboz bármely adatstruktúra, amire számítható a heurisztika, a lépésből adódó eredményállapot, és a célállapotteszt. CSP: állapot: egy Di érték-tartományból értékeit felvevő Xi (állapot)változók által definiált célállapotteszt: korlátok halmaza teljesül-e a változóértékek megengedett kombinációi révén?
4 pl. Térképszínezés Változók: WA, NT, Q, NSW, V, SA, T Értéktartományok Di = {red, green, blue} Korlátok: szomszédos területek színe legyen eltérő pl. WA NT, ill. (WA,NT) értékét csakis a {(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)} halmazból vehet fel. Lehetséges-e?
5 pl. Térképszínezés Megoldás: teljes és konzisztens változó-érték hozzárendelés pl. WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green (T lehet akármi, mert nem határos senkivel) (különben is több megoldás van)
6 Korlátok gráfja korlátgráf: csomópontjai a változók és élei a korlátok unáris CSP: egy-egy korlát csak egy változóra vonatkozik bináris CSP: egy-egy korlát 2 változót köt össze...
7 pl. Kriptoaritmetika Változók: F T U W R O X1 X2 X3 Értéktartományok: {0,1,2,3,4,5,6,7,8,9}, {0,1} Korlátok: Mind-eltérő(F, T, U, W, R, O) O + O = R + 10 X1 X1 + W + W = U + 10 X2 X2 + T + T = O + 10 X3 X3 = F, T 0, F 0 Magasabb rendű korlátok gráfja egy hipergráf!
8 pl. Golomb vonalzó N db. marker (itt N = 4), vonalzó hossza M (itt M = 6) Markerek olyan elhelyezése, hogy a páronkénti távolságuk mind eltérő legyen (a hosszáig bezárólag minden táv mérhető legyen = tökéletes Gv), nincs tökéletes Gv 5 vagy több marker esetén, optimális Gv megkeresésének komplexítása ismeretlen, stb.) Változók: P1, P2, P3,, PN Értéktartomány: {0,1,2,3,, M} Korlátok: Mind-eltérő( P1-P2, P1-P3, P1-P4, P2-P3, P2-P4, P3-P4 )
9
10 pl. Sudoku, keresztrejtvény, stb.
11 CSP problémák típusai Diszkrét változók véges értéktartományok: pl. Boole-típ. CSPs, Boole-féle kielégítési vizsgálatok (NP-t) végtelen értéktartományok: egész számok, füzérek, stb. pl. job scheduling, változók a munkaszakaszok kezdete/vége Folytonos változók pl. a Hubble Space Telescope megfigyeléseit határoló időpontok, fizikai állapotváltozók Unáris korlát: egyetlen egy változóra vonatkozik, pl. SA green Bináris korlát: két változó viszonyára vonatkozik, pl. SA WA Magasabb-rendű korlát: 3 vagy több változó viszonyára vonatkozik, pl. oszloponkénti változó korlátok kriptoaritmetikai feladványokban
12 Valós problémák Hozzárendelési problémák, pl. ki, mit, hol tanítson Menetrendi problémák, pl. az egyetemi órarend/ teremfoglalás Szállításütemezés Gyári ütemezések Problémák többsége valós változókkal dolgozik Pl. Raktár-tervezési probléma Egy szupermarket-lánc raktárakat szeretne telepíteni a bolti hálózat kiszolgálására. Mit tudunk? L1,..., Ln lokáció, ahol raktár építhető. Csak k db. raktárra van szükség (k < n). Minden lokációra jellemző CPi kapacitás = hány boltot képes kiszolgálni. Minden bolthoz rendelni kell egy raktárt. Si bolt ellátása Lj lokációból Sci,j-be kerül. Az összköltséget TC konstans alatt kell tartani.
13 Gyári ütemezés erőforrások (gépek, szerszámok) időben való allokációja - végrehajtható tervek, a legjobb alternatívák Tiszta ütemezés tevékenységek kezdő, vég pontjai Tiszta erőforrás allokáció tevékenységek és erőforrások hozzárendelése Együttes probléma tevékenységek versengenek szűkös erőforrásokért. Erőforrások - egyetlen tevékenység használhatja - diszkrét egységekben igénybe vehetők Rendelkezésre állás (kapacitás) - rögzített - változó Alternatív erőforrásokkal, de más-más idő alatt Korlátok - időablakok, határidők - precedenciák tevékenységek között (termékszerkezet, technológia) - mellékproblémák (hőkezelés a legvégén, azonos vevő összes rendelése egyszerre szállítandó, egyes gépek korlátjai, pl. max. súly a darunál,...)
14 Gyári ütemezés erőforrások (gépek, szerszámok) időben való allokációja Optimalizálási kritérium Egyetlen, jól definiált kritérium - szállítóképesség átfutási idő minimuma (makespan) késések számának minimuma késések (súlyozott) összegének minimuma (tardiness) - költségek minimuma tevékenységek összköltsége work-in-process (WIP) - erőforrás kihasználtság ( Jól definiált kritériumok kombinációja, súlyozott összege,... Pareto optimum Preferenciák, puha korlátok,... Brute-force? pl bin. változó: kb művelet 1015 op/sec (peta FLOPS), sec (világűr kora 1018 sec) (Váncza József, SZTAKI,
15 Hardver/ szoftver formális verifikáció, protokoll-tervezés, stb. Logikai kifejezések kielégíthetősége (SAT) - mi a (bináris) változók az az értékkészlete, hogy az összes kifejezés (un. klóz) egyszerre lehessen igaz? a = igaz/ hamis? b = igaz/ hamis? c = igaz/ hamis? 2 x 2 x 2 = 23 = 8 itt: a = igaz, b = igaz, c közömbös, vagy a = igaz, c = hamis, b közömbös, stb.
16 Hardver/ szoftver formális verifikáció, protokoll-tervezés, stb.
17 Hardver/ szoftver formális verifikáció, protokoll-tervezés, stb. 4 ezer oldallal arrébb
18 Hardver/ szoftver formális verifikáció, protokoll-tervezés, stb. 15 ezer oldallal arrébb 4 kb.. 10 mp alatt!
19 Megfogalmazás problémamegoldáshoz Kezdeti állapot: változó-hozzárendelés üres { } Operátor: értéket hozzárendelni egy még nem hozzárendelt változóhoz úgy, hogy az eddigi hozzárendelésekkel ne ütközzön kudarc, ha nincs megengedett hozzárendelés Célállapotteszt: ha az aktuális hozzárendelés teljes n db változó esetén minden megoldás n mélységben fekszik használjuk a mélységi keresést a pálya (út) itt nem számít elágazási tényező L mélységben, d számosságú domain mellett b = (n L) d, azaz n! dn levélcsomópont
20 Keresés Változó hozzárendelés kommutatív, azaz u.u, mint (WA = red) majd (NT = green) (NT = green) majd (WA = red) Egy-egy csomópontban csakis egyetlen egy változó hozzárendelése megtörténthet: b = d és fának dn levele van Visszalépéses keresés, azaz egy mélységi keresés egyetlen egy változó hozzárendeléssel alapvető nem informált algoritmus (keresés) CSP problémák megoldására
21 Megfogalmazás problémamegoldáshoz Az n-királynő probléma tanulsága: legyen három modell 1. változók: xij domén: {0, 1} kényszerek (sorok, oszlopok, átlók) 2. változók: x1,, xn (egy királynő mező poziciója) domén: {0, 1, 2,, n2-1} (mezőindex) kényszerek (sorok, oszlopok, átlók) 3. változók: x1,, xn (királynő sorindexe) domén: {1, 2,, n} (oszlop-index) kényszerek (sorok, oszlopok, átlók) modell változó n2 n n domén 2 n2 n keresési tér (2)^n2 (n2)n n! n=4 6.6e4 6.6e4 24 n=8 n = e19 2.6e e14 1.1e52 4e4 2.4e18
22 Visszalépéses keresés
23 Visszalépéses keresés
24 Visszalépéses keresés
25 Visszalépéses keresés
26 Visszalépéses keresés hatékonyságának növelése Általános módszerekkel is komoly gyorsítást el lehet érni: Melyik változóval foglalkozunk a legközelebb? Milyen sorrendben vizsgáljuk az értékeit? Érzékelhetjük-e jól előre a kudarcokat? (korai nyesés, mint az alfa-béta) ezek az un. domain-független heurisztikák
27 A legkevesebb fennmaradó érték ötlete A leginkább korlátozott változó: a legkisebb számú megengedett értékkel rendelkező változóval kezdjünk, ill. folytatjuk = legkevesebb fennmaradó érték heurisztika (min remaining variables, MRV) (NT ill. SA csak 2 megengedett érték (piros már nem lehet), minden más 3)
28 Fokszám heurisztika ötlete Az MRV-heurisztika semmit sem segít abban, hogy melyik régiót válasszuk ki elsőként Ausztrália kiszínezésekor, mert a kiinduláskor mindegyik régiónak három megengedett színe van. A későbbi választások elágazási tényezőjét csökkenteni, hogy azt a változót választja ki, amely a legtöbbször szerepel a hozzárendeletlen változókra vonatkozó kényszerekben.
29 A legkevésbé korlátozott érték ötlete Előnyben részesíteni azt az értéket, amely a legkevesebb választást zárja ki a kényszergráfban a szomszédos változóknál.
30 Előrenéző ellenőrzés Az előrenéző ellenőrzés minden egyes alkalommal, amikor egy X változó értéket kap, minden, az X-hez kényszerrel kötött, hozzárendeletlen Y-t megvizsgál, és Y tartományából törli az X számára választott értékkel inkonzisztens értékeket.
31 Előrenéző ellenőrzés Az előrenéző ellenőrzés minden egyes alkalommal, amikor egy X változó értéket kap, minden, az X-hez kényszerrel kötött, hozzárendeletlen Y-t megvizsgál, és Y tartományából törli az X számára választott értékkel inkonzisztens értékeket.
32 Előrenéző ellenőrzés Az előrenéző ellenőrzés minden egyes alkalommal, amikor egy X változó értéket kap, minden, az X-hez kényszerrel kötött, hozzárendeletlen Y-t megvizsgál, és Y tartományából törli az X számára választott értékkel inkonzisztens értékeket.
33 Előrenéző ellenőrzés Az előrenéző ellenőrzés minden egyes alkalommal, amikor egy X változó értéket kap, minden, az X-hez kényszerrel kötött, hozzárendeletlen Y-t megvizsgál, és Y tartományából törli az X számára választott értékkel inkonzisztens értékeket.
34 Korlátozás előreterjesztése Az előrenéző ellenőrzés ugyan sok inkonzisztenciát észrevesz, de nem mindent. Ráadásul nem látja jól előre a kudarcokat. NT és SA egyszerre nem lehet kék.
35 Élkonzisztencia X Y él konzisztens akkor és csak akkor, ha X minden x értékére létezik valamilyen megengedett y érték
36 Élkonzisztencia X Y él konzisztens akkor és csak akkor, ha X minden x értékére létezik valamilyen megengedett y érték
37 Élkonzisztencia X Y él konzisztens akkor és csak akkor, ha X minden x értékére létezik valamilyen megengedett y érték Ha X értéket veszít, a szomszédjait ujra kell ellenőrizni
38 Élkonzisztencia X Y él konzisztens akkor és csak akkor, ha X minden x értékére létezik valamilyen megengedett y érték Ha X értéket veszít, a szomszédjait ujra kell ellenőrizni Az élkonzisztencia-ellenőrzés alkalmazható előfeldolgozó lépésként a keresés megkezdése előtt, vagy a keresési folyamat minden egyes hozzárendelését követő terjesztési lépésként
39 CSP lokális kereséssel Hegymászó, szimulált lehűtés,, teljes állapotleírás = minden változónak van (esetleg rossz) értéke CSP-re: - állapotok a nem teljesült kényeszerekkel is - operátorok megváltoztatják a változók hozzárendelését Változó szelekció: véletlen módon bármely konfliktusban lévő változó Min. konfliktus heurisztika: azt az értéket állítjuk be, amely a legkevesebb sz. korlátot sérti, pl. hegymászó: h(n) = sérült korlátok száma h(n) = a támadások száma
40 CSP lokális kereséssel Min. konfliktus heurisztika:
41 CSP struktúrája miben segíthet CSP gráfja: független komponensek (komplexitás-számítás) CSP fagráf: megoldás könnyű, változószámban lineáris válasszunk egy levelet gyökérnek élkonzisztencia-nyesés gyerekektől szülői felé szülőkkel konzisztens értékek hozzárendelése gyerekeknek
42 CSP struktúrája CSP hurkos gráf: megoldás általánosságban NP nehéz Gráf CSP konvertálása fába: kondicionálás vágóhalmaz fa-dekompozíció Megoldáskeresés V6 minden értékére
43 CSP struktúrája CSP hurkos gráf: megoldás általánosságban NP nehéz Megoldáskeresés G minden értékére CSP/G problémában Gráf CSP konvertálása fába: kondicionálás vágóhalmaz fa-dekompozíció (részmegoldások él-konzisztenciája )
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Kényszerkielégítési problémák (Constraint Satisfaction Problem, CSP) http://mialmanach.mit.bme.hu/aima/ch05 Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki
Mesterséges intelligencia 4. laborgyakorlat
Mesterséges intelligencia 4. laborgyakorlat Kényszerkielégítési feladatok (Constraint Satisfaction Problems CSPs) Egy kényszerkielégítési problémát az X 1, X 2,..., X n változók egy sorozatával, és a rajtuk
2. Visszalépéses keresés
2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Problémamegoldás kereséssel. Mesterséges intelligencia március 7.
Problémamegoldás kereséssel Mesterséges intelligencia 2014. március 7. Bevezetés Problémamegoldó ágens Kívánt állapotba vezető cselekvéseket keres Probléma megfogalmazása Megoldás megfogalmazása Keresési
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - lokális információval Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Rugó tervezése
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - ha segítenek útjelzések Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Keresés ellenséges környezetben Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Ellenség
2. Visszalépéses stratégia
2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - csak lokális információra alapozva Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Lokálisan
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Intelligens Rendszerek Elmélete IRE 4/32/1
Intelligens Rendszerek Elmélete 4 IRE 4/32/1 Problémamegoldás kereséssel http://nik.uni-obuda.hu/mobil IRE 4/32/2 Egyszerű lények intelligenciája? http://www.youtube.com/watch?v=tlo2n3ymcxw&nr=1 IRE 4/32/3
Számítógép és programozás 2
Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Visszalépéses keresés korlátozással TÁMOP-4.2.3.-12/1/KONV A visszalépéses keresés (backtrack) a problémamegoldás igen széles területén
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Valószínűségi
Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék
Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm
Mesterséges Intelligencia I. (I602, IB602)
Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) harmadik (2008. szeptember 15-i) előadásának jegyzete Készítette: Papp Tamás PATLACT.SZE KPM V. HEURISZTIKUS FÜGGVÉNYEK ELŐÁLLÍTÁSA Nagyon fontos
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
Amortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
Koordinálás és feladatkiosztás aukciókkal 3.rész. Kooperáció és intelligencia, Dobrowiecki, BME-MIT
Koordinálás és feladatkiosztás aukciókkal 3.rész Komplex feladatok kezelése Elemi feladat nem dekomponálható Dekomponálható egyszerű feladat elemi, v. dekomponálható elemi feladatokra, de egyetlen egy
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 06/7. félév 7. Előadás Dr. Kulcsár Gyula egyetemi docens Tartalom. A projektütemezés alapjai..
angolul: greedy algorithms, románul: algoritmi greedy
Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város
Visszalépéses keresés korlátozással
Belépő a tudás közösségébe Informatika szakköri segédanyag Visszalépéses keresés korlátozással Heizlerné Bakonyi Viktória, Horváth Győző, Menyhárt László, Szlávi Péter, Törley Gábor, Zsakó László Szerkesztő:
Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba
I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda
Példa. Job shop ütemezés
Példa Job shop ütemezés Egy üzemben négy gép működik, és ezeken 3 feladatot kell elvégezni. Az egyes feladatok sorra a következő gépeken haladnak végig (F jelöli a feladatokat, G a gépeket): Az ütemezési
Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető.
Gráf csúcsainak színezése Kromatikus szám 2018. Április 18. χ(g) az ún. kromatikus szám az a szám, ahány szín kell a G gráf csúcsainak olyan kiszínezéséhez, hogy a szomszédok más színűek legyenek. 2 The
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
V. Kétszemélyes játékok
Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2017/18 2. félév 3. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
Algoritmizálás, adatmodellezés tanítása 8. előadás
Algoritmizálás, adatmodellezés tanítása 8. előadás Elágazás és korlátozás A backtrack alkalmas-e optimális megoldás keresésére? Van költség, és a legkisebb költségű megoldást szeretnénk előállítani. Van
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade A szükséges
Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite
Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Alkalmazásával 214 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Probléma Igények
Boronkay György Műszaki Középiskola és Gimnázium
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2014/2015.
Kétszemélyes játékok Gregorics Tibor Mesterséges intelligencia
Kétszemélyes játékok Kétszemélyes, teljes információjú, véges, determinisztikus,zéró összegű játékok Két játékos lép felváltva adott szabályok szerint, amíg a játszma véget nem ér. Mindkét játékos ismeri
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 8. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
Számítógép és programozás 2
Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási
Termeléstervezés és -irányítás Ütemezés
Termeléstervezés és -irányítás Ütemezés BMEGEGT7008 2014 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Ütemezés Erőforrások időben való allokációja tevékenységek egy halmazának végrehajtása
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel általános problémák Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Korlátozás és szétválasztás módszere Holló Csaba 2
Korlátozás és szétválasztás módszere Holló Csaba 2 A módszert Imreh Balázs, Imreh Csanád: Kombinatorikus optimalizálás Novadat, Győr, 25 egyetemi tankönyve alapján, kisebb változtatásokkal fogjuk bemutatni.
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott
Hatékonyság 1. előadás
Hatékonyság 1. előadás Mi a hatékonyság Bevezetés A hatékonyság helye a programkészítés folyamatában: csak HELYES programra Erőforrásigény: a felhasználó és a fejlesztő szempontjából A hatékonyság mérése
Anyagszükséglet-tervezés gyakorlat. Termelésszervezés
Anyagszükséglet-tervezés gyakorlat egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Feladattípusok Egyszerű tételnagyság-képzési szabályok, heurisztikák, kapacitáskorlátos esetek (3 komponens,
, , A
MI Nagy ZH, 2011. nov. 4., 14.15-16, A és B csoport - Megoldások A/1. Milyen ágenskörnyezetrıl azt mondjuk, hogy nem hozzáférhetı? Adjon példát egy konkrét ágensre, problémára és környezetre, amire igaz
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek
Rendszermodellezés. Modellellenőrzés. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Rendszermodellezés Modellellenőrzés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Ismétlés: Mire használunk modelleket? Kommunikáció, dokumentáció Gondolkodás,
Bevezetés Standard 1 vállalatos feladatok Standard több vállalatos feladatok 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 10. Előadás Vállalatelhelyezés Vállalatelhelyezés Amikor egy új telephelyet kell nyitni,
Dr. Jelasity Márk. Mesterséges Intelligencia I. Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin
Dr. Jelasity Márk Mesterséges Intelligencia I Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin Elsőrendű logika -Ítéletkalkulus : Az elsőrendű logika egy speciális esete, itt csak nullad
NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE. Szekvenciális programok kategóriái. Hoare-Dijkstra-Gries módszere
Szekvenciális programok kategóriái strukturálatlan strukturált NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE Hoare-Dijkstra-Gries módszere determinisztikus valódi korai nem-determinisztikus általános fejlett
Diszkrét, egészértékű és 0/1 LP feladatok
Diszkrét, egészértékű és 0/1 LP feladatok In English Integer Programming - IP Zero/One (boolean) programming 2007.03.12 Dr. Bajalinov Erik, NyF MII 1 Diszkrét és egészértékű változókat tartalmazó feladatok
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Algoritmuselmélet 18. előadás
Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Képrekonstrukció 6. előadás
Képrekonstrukció 6. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Diszkrét tomográfia (DT) A CT-hez több száz vetület szükséges időigényes költséges károsíthatja
Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver):
B Motiváció B Motiváció Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver): Helyesség Felhasználóbarátság Hatékonyság Modern számítógép-rendszerek: Egyértelmű hatékonyság (például hálózati hatékonyság)
ULTIMATE TIC TAC TOE. Serfőző Péter
ULTIMATE TIC TAC TOE Serfőző Péter 2016.05.02. ULTIMATE TIC TAC TOE Amőba alapján Két változat, az első könnyű, a második nehéz A játék keletkezéséről nincsenek információk, de a játékelmélet elkezdett
Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2
Matematikai modellezés
Matematikai modellezés Bevezető A diasorozat a Döntési modellek című könyvhöz készült. Készítette: Dr. Ábrahám István Döntési folyamatok matematikai modellezése Az emberi tevékenységben meghatározó szerepe
Visszalépéses keresés
Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel lokális információval Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF
Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:
Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Racionalitás: a hasznosság és a döntés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Adott: VPN topológia tervezés. Költségmodell: fix szakaszköltség VPN végpontok
Hálózatok tervezése VITMM215 Maliosz Markosz 2012 12.10..10.27 27. Adott: VPN topológia tervezés fizikai hálózat topológiája Költségmodell: fix szakaszköltség VPN végpontok 2 VPN topológia tervezés VPN
Képrekonstrukció 9. előadás
Képrekonstrukció 9. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem hv-konvex összefüggő halmazok Mag-burok-szerű rekonstrukció: S. Brunetti, A. Del Lungo, F.
22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007
Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii
Matematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
A lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)
Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de
Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma
Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit
Gráfelméleti alapfogalmak
1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont
Logika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26
1/26 Logika és számításelmélet I. rész Logika Negyedik előadás Tartalom 2/26 Az elsőrendű logika szemantikája Formulák és formulahalmazok szemantikus tulajdonságai Elsőrendű logikai nyelv interpretációja
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
Operációkutatás vizsga
Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS
... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.
Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat
Alapszintű formalizmusok
Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények
Algoritmizálás, adatmodellezés tanítása 7. előadás
Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Dr. Kulcsár Gyula. Virtuális vállalat félév. Projektütemezés. Virtuális vállalat félév 5. gyakorlat Dr.
Projektütemezés Virtuális vállalat 06-07. félév 5. gyakorlat Dr. Kulcsár Gyula Projektütemezési feladat megoldása Projekt: Projektütemezés Egy nagy, összetett, általában egyedi igény alapján előállítandó
Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje
Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával