Informatikai tehetséggondozás:
|
|
- Miklós Szekeres
- 8 évvel ezelőtt
- Látták:
Átírás
1 Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Visszalépéses keresés korlátozással TÁMOP /1/KONV
2 A visszalépéses keresés (backtrack) a problémamegoldás igen széles területén alkalmazható algoritmus, amelynek lényege a feladat megoldásának megközelítése rendszeres próbálgatással. Néha ez a legjobb megoldás! Adott N sorozat, amelyek rendre M(1), M(2),... M(N) elemszámúak. Ki kell választani mindegyikből egy-egy elemet úgy, hogy az egyes sorozatokból való választások másokat befolyásolnak. Ez egy bonyolult keresési feladat, amelyben egy adott tulajdonsággal rendelkező szám N-est kell megadni úgy, hogy ne kelljen az összes lehetőséget végignézni. E feladatok közös jellemzője, hogy eredményük egy sorozat. E sorozat minden egyes tagját valamilyen sorozatból kell kikeresni, de az egyes keresések összefüggenek egymással (vezért nem lehet oda tenni, ahol egy korábban letett vezér ütné; egy munkát nem lehet két munkásnak adni; ha egy pékségnek elfogyott a kenyere, akkor attól már nem lehet rendelni). A visszalépéses keresés olyan esetekben használható, amikor a keresési tér fastruktúraként képzelhető el, amiben a gyökérből kiindulva egy csúcsot keresünk. Az algoritmus lényege, hogy a kezdőpontból kiindulva megtesz egy utat a feladatot részproblémákra bontva, és ha valahol az derül ki, hogy már nem juthat el a célig, akkor visszalép egy korábbi döntési ponthoz, és ott más utat más rész-problémát választ. Először megpróbálunk az első sorozatból kiválasztani egy elemet, ezután a következőből, s ezt addig csináljuk, amíg választás lehetséges. X(I) jelölje az I. sorozatból kiválasztott elem sorszámát! Ha még nem választottuk, akkor értéke 0 lesz. Ha nincs jó választás, akkor visszalépünk az előző sorozathoz, s megpróbálunk abból egy másik elemet választani. Visszalépésnél természetesen törölni kell a választást abból a sorozatból, amelyikből visszalépünk. Az eljárás akkor ér véget, ha minden sorozatból sikerült választani, vagy pedig a visszalépések sokasága után már az első sorozatból sem lehet újabb elemet választani (ekkor a feladatnak nincs megoldása). Változók: N: Egész [a feldolgozandó sorozat száma] M: Tömb(1..N:Egész) [a feldolgozandó sorozatok elemszáma] VAN: Logikai [van-e megfelelő elemsorozat] Y: Tömb(1..N:Egész) [a megfelelő elemek sorszáma] A megoldás legfelső szintjén keressünk az i. sorozatból megfelelő elemet! Ha ez sikerült, akkor lépjünk tovább az i+1. sorozatra, ha pedig nem sikerült, akkor lépjünk vissza az i-1.-re, s keressünk abban újabb lehetséges elemet! 2
3 Keresés(N,Van,Y): i:=1; Y():=(0,,0) Ciklus amíg i1 és i N {lehet még és nincs még kész} Jóesetkeresés(i,Van,j) Ha Van akkor Y(i):=j; i:=i+1 {előrelépés} különben Y(i):=0; i:=i-1 {visszalépés} Van:=(i>N) A keresés befejeződik, ha mindegyik sorozatból sikerült elemet választanunk (i>n) vagy pedig a visszalépések miatt már az elsőből sem tudunk újabbat választani (i<1). Egy lineáris keresés kezdődik az i. sorozatban: Jóesetkeresés(i,Van,j): j:=y(i)+1 Ciklus amíg j M(i) és (rossz(i,j) vagy tilos(j)) j:=j+1 Van:=(j M(i)) Megjegyzés: az i-edik lépésben a j-edik döntési út nem választható, ha az előzőek miatt rossz, vagy ha önmagában rossz. Megállapíthatjuk tehát, hogy minden egyes új választás az összes korábbitól függhet (ezt formalizálja az rossz függvény), a későbbiektől azonban nem! Egyes esetekben nemcsak a korábbiaktól, hanem saját jellemzőjétől is függhet a választás (ezt írja le az tilos függvény). rossz(i,j): {1. változat} k:=1 Ciklus amíg k<i és szabad(i,j,k,y(k)) k:=k+1 rossz:=(k<i) Megjegyzés: Rossz egy választás, ha valamelyik korábbi választás miatt nem szabad eldöntés. rossz(i,j): {2. változat} s:=f0 Ciklus k=1-től i-1-ig s:=f(s,k,y(k)) rossz:=nem szabad(s,i,j) 3
4 Megjegyzés: Rossz egy választás, ha a korábbiak összessége miatt nem szabad sorozatszámítás, megszámolás, Egy másik lehetséges esetben nem tudjuk, hogy az eredmény hány elemű, csupán azt, hogy mikor van készen. Ezt a kész(x) logikai értékű függvény adja meg. Keresés(N,Van,Y): I:=1; X(1..N):=(0,...,0); DB:=0 Ciklus amíg I1 és nem kész(x) Jó_eset_keresés(M,X,I,melyik,VAN) Ha VAN akkor X(I):=melyik; I:=I+1 [előrelép] különben X(I):=0; I:=I-1 [visszalép] Van:=kész(X) Ez a megoldás persze nem véd az ellen, hogy nagyon hosszú eredménysorozatokat állítsunk elő. Ilyenkor lesz szükség még egy lépésszám korlátra is. Keresés(N,Van,Y,Korlát): I:=1; X(1..N):=(0,...,0); DB:=0 Ciklus amíg I1 és nem kész(x) és i Korlát Jó_eset_keresés(M,X,I,melyik,VAN) Ha VAN akkor X(I):=melyik; I:=I+1 [előrelép] különben X(I):=0; I:=I-1 [visszalép] Van:=kész(X) 2. Munkásfelvétel: N állás N jelentkező Egy vállalkozás N különböző állásra keres munkásokat. Pontosan N jelentkező érkezett, ahol minden jelentkező megmondta, hogy mely munkákhoz ért, illetve amihez ért, arra menynyi fizetést kérne. A vállalkozás vezetője azt szeretné, ha az összes jelentkezőt fel tudná venni és minden munkát elvégeztetni, de úgy, hogy számára ez legfeljebb X összegbe kerüljön. Legyen F(i,j) értéke =0, ha az i. jelentkező a j. munkához nem ért, illetve >0, ha ért hozzá, és akkor ez az érték jelentse azt, hogy a munkát ennyiért végezné el. 4
5 Állások: jelentkező: jelentkező: jelentkező: jelentkező: jelentkező: Ha X=1300, akkor a példában vastagon szedett megoldás helyett a dőlten szedett megoldás is helyes. A példában az is látszik, hogy bármely munkás megbízásával a költség folyamatosan emelkedik, amit a megoldásban ki is használunk. A megoldásban használt fontos változók: N a munkák és a munkások száma F az adott munkások mely munkákhoz értenek (F(i,j) az i. munkás által elvégezhető j. munka ára) Y az aktuálisan számolt megoldás: Y(i) az i. jelentkezőnek adott munka sorszáma X a rendelkezésre álló összeg Munkák(N,Van,Y): i:=1; Y():=(0,,0) Ciklus amíg i1 és i N {lehet még és nincs még kész} Jóesetkeresés(i,Van,j) Ha Van akkor Ha költség(y,i) X akkor Y(i):=j; i:=i+1 {előrelépés} különben Y(i):=0; i:=i-1 {visszalépés} különben Y(i):=0; i:=i-1 {visszalépés} Van:=(i>N) Jól látható, hogy a fő eljárásban kell figyelembe venni a költség függvényt: ha az adott lépésig a költség nem haladja meg az X értéket, akkor a megtalált munka hozzárendelés jó, ha meghaladja, akkor pedig rossz, visszalépést okoz. Megjegyzés: hatékonysági szempontból a két különben ág összevonható: 5
6 Munkák(N,Van,Y): i:=1; Y():=(0,,0) Ciklus amíg i1 és i N {lehet még és nincs még kész} Jóesetkeresés(i,Van,j) Ha Van és költség(y,i) X akkor Y(i):=j; i:=i+1 {előrelépés} különben Y(i):=0; i:=i-1 {visszalépés} Van:=(i>N) A második szinten egyszerűsítenünk kellett, M(i) helyébe N került, a tilos(j) függvényt pedig egy mátrix elemre hivatkozással helyettesítjük. Jóesetkeresés(i,Van,j): j:=y(i)+1 Ciklus amíg j N és (rossz(i,j) vagy F(i,j)=0) j:=j+1 Van:=(j N) A rossz függvénnyel pedig semmi tennivalónk nem lesz: rossz(i,j): k:=1 Ciklus amíg k<i és Y(k) j k:=k+1 rossz:=(k<i) A költségszámítás nagyon egyszerű, összegzés tétellel elvégezhető. költség(x,i): S:=0 Ciklus j=1-től N-ig S:=S+F(j,Y(j)) A megoldásban a költség függvény figyelembe vétele volt a korlátozás, emiatt hamarabb lehetet szükség visszalépésre, ebből derült ki ugyanis, hogy már nem találhatunk jó megoldást. A korlátozás lényege tehát: a teljes megoldás elkészülte előtt visszalépést okozni! 6
7 Térképszínezés Ismerjük N ország elhelyezkedését a térképen, azaz tudjuk, hogy melyik országnak melyek a szomszédai. Adjuk meg a térkép egy olyan kiszínezését, amelyben szomszédos országok különböző színűek lesznek! 1 A feladat nem lenne nehéz, ha akárhány színt használhatnánk. A színek számát azonban korlátozhatjuk, például az alábbi ábrán Ausztrália tagállamai kiszínezéséhez elég 3 szín. 2 A feladat pontosan tehát egy olyan színezést kér, amelyben legfeljebb K szín használható. A feladat más lenne, ha azt a kérést adnánk, hogy a lehető legkevesebb színnel színezzük ki a térképet. 3 Ez utóbbihoz a négyszínsejtés miatt persze felhasználhatnánk az előző megoldást, ha végigvizsgáljuk K=1, K=2, K=3 és K=4 értékekre. (K=1, ha senkinek sincs szomszédja; K=2, láncok vagy páros hosszú körök esetén.) 1 Elképzelhető lenne a feladat olyan módosítása, amiben adott országoknak (területeknek) előre rögzítenénk a színét. 2 A visszalépéses keresésről persze tudjuk, hogy nagyon lassú is lehet, ha sokszor kell visszalépni. Emiatt érdemes lehet a használható színek számát a minimálisnál nagyobbra választani. Egy másik gyorsítási lehetőség, ha a nagy szomszédszámú országokat előre vesszük. 3 A négyszínsejtés szerint bármely térkép kiszínezhető legfeljebb 4 színnel, azaz még a korlátnak sem kell nagynak lenni. 7
8 Ausztrália államai szomszédságát az alábbi mátrix-szal írhatjuk le, ahol a tagállamok kezdőbetűit akár az 1..8 sorszámokkal is helyettesíthetjük: WA NT SA Q NSW ACT V T WA hamis igaz igaz hamis hamis hamis hamis hamis NT igaz hamis igaz igaz hamis hamis hamis hamis SA igaz igaz hamis igaz igaz hamis igaz hamis Q hamis igaz igaz hamis igaz hamis hamis hamis NSW hamis hamis igaz igaz hamis igaz igaz hamis ACT hamis hamis hamis hamis igaz hamis hamis hamis V hamis hamis igaz hamis igaz hamis hamis hamis T hamis hamis hamis hamis hamis hamis hamis hamis A megoldásban használt fontos változók: N a térkép területei száma Sz adott két terület szomszédos-e (Sz(i,j) ha az i. és a j. terület szomszédos, hamis egyébként) Y az aktuálisan számolt megoldás: Y(i) az i. terület színe K a használható színek száma Térkép(N,Van,Y): i:=1; Y():=(0,,0) Ciklus amíg i1 és i N {lehet még és nincs még kész} Jóesetkeresés(i,Van,j) Ha Van akkor Y(i):=j; i:=i+1 {előrelépés} különben Y(i):=0; i:=i-1 {visszalépés} Van:=(i>N) A második szinten egyszerűsítenünk kellett, az M(i) helyébe K került, a tilos(j) függvényt pedig elhagyhattuk. Jóesetkeresés(i,Van,j): j:=y(i)+1 Ciklus amíg j K és rossz(i,j) j:=j+1 Van:=(j N) 8
9 Akkor lehet az i. területnek a j. színt választani, ha minden korábbitól vagy különböző színű, vagy nem szomszéd. rossz(i,j): k:=1 Ciklus amíg k<i és (Y(k) j vagy nem Sz(k,i)) k:=k+1 rossz:=(k<i) Iskolaválasztás Egy pályaválasztási intézet elhatározza, hogy a 8. osztályos tanulók iskolaválasztásai alapján (minden jelentkezési lapon maximum két iskolát lehet megjelölni) megpróbál olyan 'beiskolázást' megvalósítani, amelyben minden tanulót az általa megjelölt valamelyik iskolába fel is vesznek. (Tudjuk az egyes iskolákba felvehetők számát.) Igények Iskola kapacitások Készíts programot, amely megad egy lehetséges jó beiskolázást! A megoldásban használt fontos változók: N a tanulók száma M az iskolák száma Igény adott tanuló igényei (Igény(i,j) ha az i. tanuló j. iskolaigénye, vagy 0) Y az aktuálisan számolt megoldás: Y(i) az i. tanuló iskolája 9
10 Kapactás az iskolák kapacitása. Iskola(N,Van,Y): i:=1; Y():=(0,,0) Ciklus amíg i1 és i N {lehet még és nincs még kész} Jóesetkeresés(i,Van,j) Ha Van akkor Y(i):=j; i:=i+1 {előrelépés} különben Y(i):=0; i:=i-1 {visszalépés} Van:=(i>N) Ha van akkor Ciklus i=1-től N-ig Y(i):=Igény(i,Y(i)) Jól látható, hogy a fő eljárásban a tanuló igénysorszáma helyett a tanuló által kapott iskolát kell eredményül adnunk. A második szinten egyszerűsítenünk kellett, az M(i) helyébe 1 vagy 2 került, a tilos(j) függvényt pedig elhagyhattuk. Jóesetkeresés(i,Van,j): j:=y(i)+1 Ha Igény(i,2)=0 akkor K:=1 különben K:=2 Ciklus amíg j K és rossz(i,j) j:=j+1 Van:=(j K) Akkor lehet az i. gyereknek a j. igényt választani, ha a korábbi igények szerint abban az iskolában van még hely. rossz(i,j): db:=1 Ciklus k=1-től i-1-ig Ha Igény(k,Y(k))=Igény(i,j) akkor db:=db+1 rossz:=(db>kapacitás(igény(i,j)) 10
Visszalépéses keresés korlátozással
Belépő a tudás közösségébe Informatika szakköri segédanyag Visszalépéses keresés korlátozással Heizlerné Bakonyi Viktória, Horváth Győző, Menyhárt László, Szlávi Péter, Törley Gábor, Zsakó László Szerkesztő:
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: isszalépéses keresés TÁMOP-4.2.3.-12/1/KON A visszalépéses keresés (backtrack) a problémamegoldás igen széles területén alkalmazható
Algoritmizálás, adatmodellezés tanítása 7. előadás
Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk
Backtrack-es feladat-variációk
Menyhárt László 1, Zsakó László 2 { 1 menyhart, 2 zsako }@caesar.elte.hu ELTE IK Absztrakt. Ezt a cikket olyan informatika tanároknak írtuk, akik az óráikon, házifeladatnak, esetleg versenyeken backtrack-es
Problémamegoldási stratégiák
Problémamegoldási stratégiák Kumulatív összegzés Algoritmusok kumulatív összegzés Adott egy N elemű számsorozat, adjuk meg a sorozat azon [a,b] intervallumát, ahol az elemek összege maximális! Bemenet:
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Visszalépéses maximumkiválasztás TÁMOP-4.2.3.-12/1/KONV 1. Munkásfelvétel: N állás N jelentkező Egy vállalkozás N különböző állásra
Feladatmegoldási stratégiák
Kumulatív összegzés Algoritmusok kumulatív összegzés Adott egy N elemű számsorozat, adjuk meg a sorozat azon [a,b] intervallumát, ahol az elemek összege maximális! Bemenet: N N, X N * Kimenet: a,b H *
Algoritmusok és adatszerkezetek I. 7. előadás
Algoritmusok és adatszerkezetek I. 7. előadás Feladat 1. változat Visszalépéses keresés Egy vállalkozás N különböző állásra keres munkásokat. Pontosan N jelentkező érkezett, ahol minden jelentkező megmondta,
Visszalépéses maximumkiválasztás
Belépő a tudás közösségébe Informatika szakköri segédanyag Visszalépéses maximumkiválasztás Heizlerné Bakonyi Viktória, Horváth Győző, Menyhárt László, Szlávi Péter, Törley Gábor, Zsakó László Szerkesztő:
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: isszalépéses kiválogatás TÁMOP-4.2.3.-12/1/KON isszalépéses kiválogatás 1. Az összes lehetséges sorrend Sokszor előfordul feladatként,
Algoritmizálás, adatmodellezés tanítása 1. előadás
Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási
Összetett programozási tételek
Összetett programozási tételek 3. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 19. Sergyán (OE NIK) AAO 03 2011. szeptember
9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
Algoritmizálás, adatmodellezés tanítása 1. előadás
Algoritmizálás, adatmodellezés tanítása 1. előadás Specifikáció A specifikáció elemei bemenet mit ismerünk? kimenet mire vagyunk kíváncsiak? előfeltétel mit tudunk az ismertekről? utófeltétel mi az összefüggés
Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.
Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,
Programozási tételek. Dr. Iványi Péter
Programozási tételek Dr. Iványi Péter 1 Programozási tételek A programozási tételek olyan általános algoritmusok, melyekkel programozás során gyakran találkozunk. Az algoritmusok általában számsorozatokkal,
Egyszerű programozási tételek
Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Összetett programozási tételek 2 TÁMOP-4.2.3.-12/1/KONV Feladataink egy jelentős csoportjában több bemenő sorozat alapján egy sorozatot
Hatékonyság 1. előadás
Hatékonyság 1. előadás Mi a hatékonyság Bevezetés A hatékonyság helye a programkészítés folyamatában: csak HELYES programra Erőforrásigény: a felhasználó és a fejlesztő szempontjából A hatékonyság mérése
Visszalépéses kiválogatás
elépő a tudás közösségébe Informatika szakköri segédanyag Heizlerné akonyi iktória, Horváth Győző, Menyhárt László, Szlávi Péter, Törley Gábor, Zsakó László Szerkesztő: Abonyi-Tóth Andor, Zsakó László
Kombinatorikai algoritmusok. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)
Kombinatorikai algoritmusok (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával,
Kombinatorikai algoritmusok
Kombinatorikai algoritmusok (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával,
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Kényszerkielégítési problémák (Constraint Satisfaction Problem, CSP) http://mialmanach.mit.bme.hu/aima/ch05 Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki
Adatbázis és szoftverfejlesztés elmélet. Programozási tételek
Adatbázis és szoftverfejlesztés elmélet Témakör 8. 1. Egy sorozathoz egy érték hozzárendelése Az összegzés tétele Összefoglalás Programozási tételek Adott egy számsorozat. Számoljuk és írassuk ki az elemek
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Összetett programozási tételek 1 TÁMOP-4.2.3.-12/1/KONV Feladataink egy jelentős csoportjában egyetlen bemenő sorozat alapján egy
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Rekurzió. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)
Rekurzió (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Rekurzió és iteráció Balrekurzió Ha az eljárás első utasításaként szerepel a rekurzív hívás, akkor a rekurzió lényegében az első nem
Adatszerkezetek II. 10. előadás
Adatszerkezetek II. 10. előadás Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával, kiválasztásával, sorrendbe rakásával foglalkozik
A 2015/2016 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal 2015/2016 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMTIK II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat
A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMTIK II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Mohó stratégia 1. TÁMOP-4.2.3.-12/1/KONV Többféle feladat megoldási stratégia létezik. Közülük az egyik legegyszerűbb a mohó stratégia,
PROGRAMOZÁSI TÉTELEK
PROGRAMOZÁSI TÉTELEK Összegzés tétele Adott egy N elemű számsorozat: A(N). Számoljuk ki az elemek összegét! S:=0 Ciklus I=1-től N-ig S:=S+A(I) Megszámlálás tétele Adott egy N elemű sorozat és egy - a sorozat
Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez
Pásztor Attila Algoritmizálás és programozás tankönyv az emeltszintű érettségihez 9. ÖSSZETETT FELADATOK...111 9.1. ELEMI ALGORITMUSOK ÖSSZEÉPÍTÉSE...111 9.2. ÖSSZEFOGLALÁS...118 9.3. GYAKORLÓ FELADATOK...118
Összetett programozási tételek 2.
Belépő a tudás közösségébe Informatika szakköri segédanyag Összetett programozási tételek 2. Heizlerné Bakonyi Viktória, Horváth Győző, Menyhárt László, Szlávi Péter, Törley Gábor, Zsakó László Szerkesztő:
Algoritmizálás, adatmodellezés tanítása 8. előadás
Algoritmizálás, adatmodellezés tanítása 8. előadás Elágazás és korlátozás A backtrack alkalmas-e optimális megoldás keresésére? Van költség, és a legkisebb költségű megoldást szeretnénk előállítani. Van
A 2008/2009 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában
Oktatási Hivatal A 2008/2009 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
2. Visszalépéses keresés
2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel
Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu
Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember
Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs
Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán
Dinamikus programozás II.
Dinamikus programozás II. Dinamikus programozás stratégiája A dinamikus programozás stratégiája 1. Az [optimális] megoldás szerkezetének tanulmányozása. 2. Részproblémákra és összetevőkre bontás úgy, hogy:
Adatszerkezetek II. 1. előadás
Adatszerkezetek II. 1. előadás Gráfok A gráf fogalma: Gráf(P,E): P pontok (csúcsok) és E P P élek halmaza Fogalmak: Irányított gráf : (p 1,p 2 ) E-ből nem következik, hogy (p 2,p 1 ) E Irányítatlan gráf
BACKTRACKING Visszalépéses keresés
BACKTRACKING Visszalépéses keresés I. rész A wiki.prog.hu weboldal az alábbi leírással vezeti fel a visszalépéses keresés algoritmus bemutatását: A visszalépéses keresés (Backtracking) olyan esetekben
Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető.
Gráf csúcsainak színezése Kromatikus szám 2018. Április 18. χ(g) az ún. kromatikus szám az a szám, ahány szín kell a G gráf csúcsainak olyan kiszínezéséhez, hogy a szomszédok más színűek legyenek. 2 The
Algoritmizálás és adatmodellezés tanítása 2. előadás
Algoritmizálás és adatmodellezés tanítása 2. előadás Tartalom Összegzés vektorra, mátrixra Megszámolás vektorra, mátrixra Maximum-kiválasztás vektorra, mátrixra Eldöntés vektorra, mátrixra Kiválasztás
GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus
GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,
Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs
Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember
OKTV 2005/2006 döntő forduló
Informatika I. (alkalmazói) kategória feladatai OKTV 2005/2006 döntő forduló Kedves Versenyző! A megoldások értékelésénél csak a programok futási eredményeit vesszük tekintetbe. Ezért igen fontos a specifikáció
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
Bánsághi Anna 2014 Bánsághi Anna 1 of 68
IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív
PROGRAMOZÁSI NYELVEK (GYAKORLAT)
PROGRAMOZÁSI NYELVEK (GYAKORLAT) A következő részben olyan szabványos algoritmusokkal fogunk foglalkozni, amelyek segítségével a későbbiekben sok hétköznapi problémát meg tudunk majd oldani. MUNKAHELYZET-
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Programozás I. Matematikai lehetőségek Műveletek tömbökkel Egyszerű programozási tételek & gyakorlás V 1.0 OE-NIK,
Programozás I. Matematikai lehetőségek Műveletek tömbökkel Egyszerű programozási tételek & gyakorlás OE-NIK, 2013 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk
Láthatjuk, hogy az els szám a 19, amelyre pontosan 4 állítás teljesül, tehát ez lesz a legnagyobb. 1/5
D1. Egy pozitív egész számról az alábbi 7 állítást tették: I. A szám kisebb, mint 23. II. A szám kisebb, mint 25. III. A szám kisebb, mint 27. IV. A szám kisebb, mint 29. V. A szám páros. VI. A szám hárommal
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24.
Rendezések 8. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. október 24. Sergyán (OE NIK) AAO 08 2011. október 24. 1 / 1 Felhasznált irodalom
1.1.1 Dátum és idő függvények
1.1.1 Dátum és idő függvények Azt már tudjuk, hogy két dátum különbsége az eltelt napok számát adja meg, köszönhetően a dátum tárolási módjának az Excel-ben. Azt is tudjuk a korábbiakból, hogy a MA() függvény
Gráfelméleti feladatok. c f
Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,
Algoritmizálás, adatmodellezés tanítása 2. előadás
Algoritmizálás, adatmodellezés tanítása 2. előadás Programozási tételek Mi az, hogy programozási tétel? Típusfeladat általános megoldása. Sorozat érték Sorozat sorozat Sorozat sorozatok Sorozatok sorozat
Változók. Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai):
Javascript Változók Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai): Név Érték Típus Memóriacím A változó értéke (esetleg más attribútuma is) a program futása
Mohó stratégia. Feladat: Megoldás:
I. Feladat: Egy kábelhálózat különböző csatornáin N filmet játszanak. Ismerjük mindegyik film kezdési és végidejét. Egyszerre csak 1 filmet tudunk nézni. Add meg, hogy maximum hány filmet nézhetünk végig!
Korlátozás és szétválasztás elve. ADAGOLO adattípus
Korlátozás és szétválasztás elve ADAGOLO adattípus Értékhalmaz: E Adagolo : A E Műveletek: A : Adagolo, x : E {Igaz} Letesit(A) {A = /0} {A = A} Megszuntet(A) {Igaz} {A = A} Uresit(A) {A = /0} {A = A}
Objektum Orientált Programozás VII.
Objektum Orientált Programozás VII. Összetett programozási tételek Programozási tételek összeépítése Feladatok ÓE-NIK, 2011 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk
A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában
Oktatási Hivatal A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a
29. Visszalépéses keresés 1.
29. Visszalépéses keresés 1. A visszalépéses keresés algoritmusa Az eddig megismert algoritmusok bizonyos értelemben nyílegyenesen haladtak elôre. Tudtuk, hogy merre kell mennünk, és minden egyes lépéssel
Adatszerkezetek II. 6. előadás
Adatszerkezetek II. 6. előadás Feladat: Egy kábelhálózat különböző csatornáin N filmet játszanak. Ismerjük mindegyik film kezdési és végidejét. Egyszerre csak 1 filmet tudunk nézni. Add meg, hogy maximum
Bevezetés a programozásba I.
Bevezetés a programozásba I. 3. gyakorlat Tömbök, programozási tételek Surányi Márton PPKE-ITK 2010.09.21. ZH! PlanG-ból papír alapú zárthelyit írunk el reláthatólag október 5-én! Tömbök Tömbök Eddig egy-egy
Oktatási Hivatal. A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. II. (programozás) kategória
Oktatási Hivatal A 201/2015 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai II. (programozás) kategória 1. feladat: Sorminta (3 pont) Fordítsuk meg: a mintából kell kitalálni
A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai 1. feladat: Repülők (20 pont) INFORMATIKA II. (programozás) kategória Ismerünk városok közötti repülőjáratokat.
PROGRAMOZÁSMÓDSZERTAN
PROGRAMOZÁSMÓDSZERTAN 4. ELŐADÁS 2004 (VÁZLAT). A TÉTELEK SZIGNATÚRÁJÁRÓL.. Formája és célja Induljunk ki egy ismert tételből: Megszámolás(H *,F(H, )): Be: N N, X H *, T:H L Ki: Ef: Db N ez most nem érdekes
FIGYELEM VÁLTOZÁS!!! Tisztelt Szülők!
Tisztelt Szülők! Ezúton is szeretnénk megköszönni, hogy gyermekük számára továbbtanulási céllal valamely ünket választották. Iskolánk iránti töretlen és növekvő népszerűségét jelzi, hogy a tavalyi 600
Gyakori elemhalmazok kinyerése
Gyakori elemhalmazok kinyerése Balambér Dávid Budapesti M szaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudomány szakirány 2011 március 11. Balambér Dávid (BME) Gyakori
Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Láncolt listák Témakörök. Lista alapfogalmak
Láncolt listák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Lista alapfogalmai Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Speciális láncolt listák Témakörök
Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.
11. gyakorlat Branch-and-Bound a korlátozás és szétválasztás módszere 1. Az egészértéketű programozás 1.1. Bevezető Bizonyos feladatok modellezése kapcsán előfordulhat olyan eset, hogy a megoldás során
Változók. Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai):
Python Változók Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai): Név Érték Típus Memóriacím A változó értéke (esetleg más attribútuma is) a program futása alatt
Bevezetés a programozásba I 3. gyakorlat. PLanG: Programozási tételek. Programozási tételek Algoritmusok
Pázmány Péter Katolikus Egyetem Információs Technológiai Kar Bevezetés a programozásba I 3. gyakorlat PLanG: 2011.09.27. Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok
Visszalépéses keresés
Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési
Algoritmusok és adatszerkezetek I. 4. előadás
Algoritmusok és adatszerkezetek I. 4. előadás A lista olyan sorozat, amelyben műveleteket egy kiválasztott, az ún. aktuális elemmel lehet végezni. A lista rendelkezik az alábbi műveletekkel: Üres: Lista
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek
Amortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
2. Visszalépéses stratégia
2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:
A 2009/2010 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában
Oktatási Hivatal A 2009/2010 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda
Programozási segédlet
Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Közismereti informatika I. 4. előadás
Közismereti informatika I. 4. előadás Rendezések Bemenet: N: Egész, X: Tömb(1..N: Egész) Kimenet: X: Tömb(1..N: Egész) Előfeltétel: Utófeltétel: Rendezett(X) és X=permutáció(X ) Az eredmény a bemenet egy
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Algoritmizálás, adatmodellezés 1. előadás
Algoritmizálás, adatmodellezés 1. előadás Algoritmus-leíró eszközök Folyamatábra Irányított gráf, amely csomópontokból és őket összekötő élekből áll, egyetlen induló és befejező éle van, az induló élből
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI
19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI Ebben a fejezetben aszimptotikus (nagyságrendi) alsó korlátot adunk az összehasonlításokat használó rendező eljárások lépésszámára. Pontosabban,
Algoritmuselmélet 11. előadás
Algoritmuselmélet 11. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 26. ALGORITMUSELMÉLET 11. ELŐADÁS 1 Kruskal
Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10.
Programozás I. 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 10. Sergyán (OE NIK) Programozás I. 2012. szeptember 10. 1 /
Diszkrét matematika II. gyakorlat
Diszkrét matematika II. gyakorlat 9. Gyakorlat Szakács Nóra Helyettesít: Bogya Norbert Bolyai Intézet 2013. április 11. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2013. április 11.
Lépj be a SZÓKINCS oldalra. (A honlap fejlécében kattints a SZÓKINCS menüpontra.)
Lépj be a SZÓKINCS oldalra. (A honlap fejlécében kattints a SZÓKINCS menüpontra.) A szókincs modul menüpontja a fejlécben Itt az alábbiakat fogod látni: - ismertető szövegdoboz ("MI EZ, ÉS HOGYAN MŰKÖDIK?")
A 2012/2013 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában
Oktatási Hivatal A 2012/2013 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a
Optimalizációs stratégiák 2.
Optimalizációs stratégiák 2. Visszalépéses keresés, szétválasztás és korlátozás előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai
Egyszerű programozási tételek
Egyszerű programozási tételek Sorozatszámítás Eljárás Sorozatszámítás(N, X, S) R R 0 Ciklus i 1-től N-ig R R művelet A[i] A : számokat tartalmazó tömb N : A tömb elemszáma R : Művelet eredménye Eldöntés