8. előadás: Az irányredukció és a vetületi meridiánkonvergencia
|
|
- Eszter Somogyi
- 8 évvel ezelőtt
- Látták:
Átírás
1 8 előadás: Az irányredukció és a vetületi meridiánkonvergencia 8 előadás: Az irányredukció és a vetületi meridiánkonvergencia Sztereografikus vetületen a vetületi síkon levő bármely egyenes olyan gömbi körnek a képe, amelynek síkja átmegy a Q vetítési központon Ha az egyenes a K vetületi kezdőponton megy át, akkor legnagyobb gömbi körnek, más esetben pedig gömbi kis körnek a képe Sztereografikus vetületen minden qömbi kör pontonként vetített, valódi képe szintén kör; nemcsak a legnagyobb gömbi köröké, hanem a gömbi kis köröké is A legnagyobb gömbi körök kör alakú valódi képe mindig homorú oldalát mutatja a K vetületi kezdőpont felé 1 ábra: Gömbháromszög és képe sztereografikus vetületen (Vetületi kezdőpont az egyik csúcspont) Ha az ábra jobb oldali részén a P 1 és P pontképet a K kezdőponttal egyenes vonalakkal összekötjük, akkor ezek a vonalak a P 1 K, illetve P K legnagyobb gömbi körök pontonként vetített, valódi képét ábrázolják; ezek a legnagyobb gömbi körök ugyanis a vetületi kezdőponton mennek át, képük tehát egyenesként jelentkezik A P 1 és P pontot a gömbön összekötő legnagyobb gömbi kör képe szintén kör, melynek P 1 P szakasz a húrja, tehát az ábrán 1 -vel és 1 -gyel jelölt szögek (a második irányredukciók) egyenlők Mivel a P 1 P K gömbháromszög szögösszege 180 o -nál nagyobb, és a pontonkénti vetítéskor szögtartó vetületen a szögek nem változnak, kell, hogy a szögek a K P 1 P háromszögön kívül helyezkedjenek el Ezt a körülményt használjuk fel azimutális vetületeken az irányredukció meghatározására A K P 1 P háromszög szögfeleslege tehát csupán a P 1 P oldal két irányredukciójára oszlik el Mivel a P 1 P egyenes szakasz a pontonként vetített legnagyobb gömbi kör kör alakú képének húrja, a két irányredukció nagyságra egyenlő, előjelre pedig ellenkező: 1 = - 1 és I 1 I + I 1 I = ε aholε annak a gömbháromszögnek a szögfeleslege, melynek csúcspontjai a vizsgált oldal két végpontja és a vetületi kezdőpont A gömbi szögfelesleg az F ε = ρ R 8-1
2 Óravázlat a Vetülettan előadásaihoz képletből számítható Mivel a vetület alkalmazásában a gömbháromszög F területe a gömbsugár négyzetéhez képest kicsi, a gömbi terület és a megfelelő síkbeli terület különbségét általában elhanyagolhatjuk, és F-nek a síkháromszög területét vehetjük Ez pedig a x1 y x y1 T = képlettel határozható meg Ezt a gömbi szögfelesleg képletébe behelyettesítve, továbbá figyelembe véve, hogy a két irányredukció abszolút értéke egymással egyenlő, és a kettő összege megegyezik a szögfelesleggel, az irányredukciók minden gyakorlati munkánál felhasználható képlete: x1 y x y 1 = 1 ρ x y1 x1 y, = ρ 1 Ha valamely oldal két végpontjában ki akarjuk számítani az irányredukciókat, tetszés szerint az egyik végpontot P 1 -gyel, a másikat P -vel jelöljük Ha a képletekbe az indexeknek megfelelően helyettesítjük be a koordinátákat, a 1 a P 1, a 1 a P pontban adja előjelhelyesen az irányredukciót Az előjelet azonban szemlélet alapján is megállapíthatjuk Az ábrán vázolt helyzetben 1 előjele pozitív, mert a pontonként vetített kép (körív) érintőjének irányszöge kisebb, mint a P 1 és P pontot összekötő képfelületi legrövidebb vonalé A P pontban ellentétes a helyzet, tehát a 1 negatív előjelű A vetületi meridiánkonvergenciát számíthatjuk pl Szádeczky-Kardoss Gyula képletének segítségével, melyet a vetületi meridiánkonvergencia általános képletéből kiindulva vezetett le: sin µ = D C x ( B C p + D x ) + ( A y) ahol A =, B = cos ϕ 0, C = cos ϕ 0, D = sin ϕ 0, p = x + y Sztereografikus vetületen a meridiánkonvergencia előjele megegyezik a λ előjelével és délnyugati tájékozású koordináta-rendszer esetén ellentétes az y koordináta előjelével A hossztorzulási tényező meghatározása A hossztorzulási tényező képletét a lineármodulus általános képletéből vezethetjük le: 1 β l = = 1+ tan β cos A sugárfüggvény β p = R tan, 8-
3 8 előadás: Az irányredukció és a vetületi meridiánkonvergencia amelyből p ' tan β A síkkoordinátákból p = x + y, amit az előbbi egyenletbe behelyettesítve: tan β x + y =, és így a síkkoordinátákból számított lineármodulus minden irányban x + y l = 1+ A levezetést a továbbiakban mellőzve a hossztorzulási tényező: ahol m t s = = 1+ U 0,8 U, 1 U = ( x1 + x1 x + x + y1 + y1 y + y ) 1 Területtorzulási tényező A területtorzulási tényező képlete hosszabb levezetés után: ' ' ' ' T p1 + p p1 p f = = 1+ +, 4 F 16 R ahol p 1 a P 1 és p a P pont sugártávolsága A P 1 pont a kérdéses idom határvonalának a vetületi kezdőponthoz legközelebbi, a P pedig a legtávolabbi pontja Sztereografikus vetületen a kezdőponttól kiinduló sugár (meridián, segédmeridián) irányában kiterjedtebb idomot a kezdőpont körül húzott koncentrikus körökkel kell körgyűrűkre osztani, és a területtorzulási tényezőt az egyes körgyűrűkre külön-külön kell számítani Kis környezetben a területtorzulási tényező gyakorlati célokból helyettesíthető a területi modulussal: f τ A sztereografikus vetület magyarországi alkalmazása Magyarország közepes földrajzi szélességében (ϕ 47, β 43 ) a normális elhelyezésű érintő sztereografikus vetületen 8-3
4 Óravázlat a Vetülettan előadásaihoz 1 a = b = l = = 1,155, τ = a = 1,334 β cos Az l és τ számértékéből látható, hogy a normális elhelyezésben a vetület nem alkalmas Magyarország geodéziai célú ábrázolására, mert egy 10 kilométeres ívhossznak mintegy 11,6 kilométeres síkhossz felel meg, és egy 100 km -es gömbfelület darabot mintegy 133 km területű síkidom ábrázol Éppen ezért a sztereografikus vetületet geodéziai célra ferde elhelyezésben használják úgy, hogy a vetületi kezdőpontot az ábrázolandó terület közepe táján helyezik el Az érintő sztereografikus vetület hossztorzulása a vetületi kezdőponttól 17 km-re éri el az 1/ értéket, ami kilométerenként 10 cm-es hossznövekedést jelent Ha tehát ezt az értéket jelöljük meg a geodéziai ábrázoláshoz még megengedhető legnagyobb hossztorzulásnak, akkor az érintő sztereografikus vetület csak a vetületi kezdőpont körül rajzolt 17 km sugarú körön belül használható Metsző elhelyezésnél az ábrázolható kör alakú terület sugara 180 km, ha nem lépjük túl az 1/ értékű hossztorzulást Ilyenkor viszont hossznövekedés és hosszrövidülés is jelentkezik Magyarországon két ferdetengelyű érintő sztereografikus rendszer van, illetve volt: 1 Budapesti rendszer Kezdőpontja a Gellért-hegy felsőrendű háromszögelési pont gömbi megfelelője; Marosvásárhelyi rendszer Kezdőpontja a Kesztej-hegy felsőrendű háromszögelési pont gömbi megfelelője A szakirodalomban tévedésből egy harmadik sztereografikus rendszert is említenek, az ivanicsit (Ivanić), amelyik tulajdonképpen vetületnélküli rendszer volt A síkkoordináta-rendszer x tengelye mindkét rendszerben a kezdőpont meridiánjának (a kezdőmeridiánnak) egyenesként jelentkező képe, az x tengely pozitív ága dél felé mutat Az y tengelyek mindkét rendszerben a kezdőpontban a kezdőmeridiánra merőleqes legnagyobb gömbi körök (segédegynlítők) szintén egyenesként jelentkező képei, az y tengelyek pozitív ága nyugat felé mutat A marosvásárhelyi rendszert a Királyhágón túli területek, a budapesti rendszert az előbbiek kivételével az első világháború előtti Magyarországon használták, ahol a hossztorzulás a Budapesttől távolabbi részeken erősen meghaladta az 1/ értéket, sőt elérte az 1/1000 értéket is A magyarországi sztereografikus vetületi síkok az R = ,966 m sugarú ún régi magyarországi Gauss-gömböt (alapfelület) érintik, mely a Bessel-féle ellipszoid simulógömbje A számunkra legfontosabb budapesti rendszer vetületi kezdőpontjának (Gellért-hegy nevű háromszögelési) gömbi földrajzi koordinátái: ϕ 0 = 47 o 6' 1,137", λ 0 = 0 o 0' 0,0000" A jobb oldali érték azt jelenti, hogy a földrajzi hosszúságokat a gellérthegyi meridiántól számítjuk A kezdőmeridiántól keletre levő pontok földrajzi hosszúsága pozitív, a nyugatra levő pontoké negatív, azaz ellentétes az y koordináta előjelével A nagyméretarányú (kataszteri) felmérésekben a sztereografikus x, y síkkoordinátákat használták Topográfiai célokra 1935-ben vezették be az ún katonai sztereografikus 8-4
5 8 előadás: Az irányredukció és a vetületi meridiánkonvergencia koordinátákat A budapesti katonai rendszernél az x, y országos koordinátákat C = m-ből, a marosvásárhelyi katonai rendszernél C = m-ből kivonva nyerték az X, Y katonai sztereografikus koordinátákat: Y = C y, X = C x A teljesség kedvéért említést kell tenni a budapesti városi sztereografikus rendszerről (BÖV) Az 1930-as években Budapest városmérése céljára nagypontosságú háromszögelési hálózatot fejlesztettek ki A városi hálózat több pontja része az országos háromszögelési hálózatnak is A régi magyarországi Gauss-gömbön kifejlesztett városi háromszögelési hálózatot sztereografikus vetítéssel vitték át a vetületi síkra Az alapfelületet és vetületi kezdőpontot tekintve a budapesti városi sztereografikus rendszer megegyezik a budapesti országos sztereografikus rendszerrel, különbség csak az ábrázolt háromszögelési hálózatok pontosságában és tájékozásában van A háromszögelési hálózatok különbözősége miatt csak illesztő pontok alapján lehet az országos sztereografikus és a budapesti önálló városi rendszer között átszámításokat végezni, a koordináta-módszer nem alkalmazható Illesztő pontoknak nevezzük azokat a pontokat, amelyeknek síkkoordinátáit mindkét vetületi rendszerben ismerjük 8-5
5. előadás: Véges nagyságú idomok geodéziai ábrázolása
5. előadás: Véges nagyságú idomok geodéziai ábrázolása 5. előadás: Véges nagyságú idomok geodéziai ábrázolása A geodéziai és a földrajzi ábrázolás különbözősége Eddig elemi nagyságú idomok torzulásait
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Koordináta - geometria I.
Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor
Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk.
Síkidomok Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. A határoló vonalak által bezárt síkrész a síkidom területe. A síkidomok határoló vonalak szerint lehetnek szabályos
13. előadás: Vetületi átszámítások
13. előadás: Vetületi átszámítások 13. előadás: Vetületi átszámítások Magarországon a geodéziai alapok többszöri (általában indokolt) megváltoztatása az alkalmazott vetületi rendszerek sokféleségét eredménezte.
[MECHANIKA- HAJLÍTÁS]
2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.
Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk
Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának
3. KÖRGEOMETRIA. 3.1. Körrel kapcsolatos alapismeretek
3. KÖRGEOMETRIA Hajós György: Bevezetés a geometriába, Tankönyvkiadó, Budapest, 89 109. és 121. oldal. Pelle Béla: Geometria, Tankönyvkiadó, Budapest, 86 97. és 117 121. oldal. Kovács Zoltán: Geometria,
ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra
ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA Három háztartási fogyasztót kapcsoltunk egy feszültségforrásra (hálózati feszültségre: 230V), vagyis közös kapocspárra, tehát párhuzamosan. A PÁRHUZAMOS KAPCSOLÁS ISMÉRVE:
1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi
1 Mélyhúzott edény teríték méretének meghatározása 1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi A mélyhúzott edény kiindulási teríték átmérőjének meghatározása a térfogat-állandóság alapján
Síkvetületek alkalmazása a topokartográfiában
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Síkvetületek alkalmazása a topokartográfiában SZAKDOLGOZAT FÖLDTUDOMÁNYI ALAPSZAK Készítette: Varga Ferenc térképész és geoinformatikus szakirányú hallgató
BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály
5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,
Földrajzi helymeghatározás
A mérés megnevezése, célkitűzései: Földrajzi fokhálózat jelentősége és használata a gyakorlatban Eszközszükséglet: Szükséges anyagok: narancs Szükséges eszközök: GPS készülék, földgömb, földrajz atlasz,
Másodrendű felületek
Azon pontok halmaza a térben, melyek koordinátái kielégítik az egyenletet, ahol feltételezzük, hogy az a, b, c, d, e, f együtthatók egyszerre nem tűnnek el. Minden másodrendű felülethez hozzárendelünk
Vetületi rendszerek és átszámítások
Vetületi rendszerek és átszámítások PhD értekezés Dr. Varga József Budapesti Műszaki és Gazdaságtudománi Egetem Építőmérnöki Kar Általános- és Felsőgeodézia Tanszék Budapest, 007 Nilatkozat Alulírott Varga
Tartószerkezetek I. (Vasbeton szilárdságtan)
Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.09.27. Hajlított vasbeton keresztmetszetek vizsgálata 2 3 Jelölések, elnevezések b : a keresztmetszet szélessége h : a keresztmetszet magassága
Vektoralgebrai feladatok
Vektoralgebrai feladatok 1. Vektorok összeadása és szorzatai, azok alkalmazása 1.1 a) Írja fel a és vektorokat az és átlóvektorok segítségével! b) Milyen hosszú az + ha =1? 1.2 Fejezze ki az alábbi vektorokat
VETÜLETI ÁTSZÁMÍTÁSOK AUSZTRIA ÉS MAGYARORSZÁG KÖZÖTT GPS ALKALMAZÁSÁVAL
VETÜLETI ÁTSZÁMÍTÁSOK AUSZTRIA ÉS MAGYARORSZÁG KÖZÖTT GPS ALKALMAZÁSÁVAL Dr.Völgyesi Lajos, a Budapesti Műszaki és Gazdaságtudományi Egyetem Általános és Felsőgeodézia Tanszékének egyetemi docense Dr.Varga
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria II.
Geometria II. Síkidomok, testek: A sík feldarabolásával síkidomokat, a tér feldarabolásával testeket kapunk. Törött vonal: A csatlakozó szakaszok törött vonalat alkotnak. DEFNÍCIÓ: (Sokszögvonal) A záródó
Azonosító jel: Matematika emelt szint
I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012
A parabola és az egyenes, a parabola és kör kölcsönös helyzete
66 A paraola 00 egyen a keresett kör középpontja Az pont koordinátái: ( y) Ekkor felírhatjuk a következô egyenletet: ( - ) + ( y- ) = mert a kör sugara > 0 Innen rendezéssel: ( y- ) = 6 - A mértani hely
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű
Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 <
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 011/01 Matematika I. kategória (SZKKÖZÉPISKOL) Döntő 1. Határozza meg az összes olyan egész számot, amely eleget tesz az egyenlőtlenségnek! log
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.
TRANZISZTOROS KAPCSOLÁSOK KÉZI SZÁMÍTÁSA
TRNZSZTOROS KPSOLÁSOK KÉZ SZÁMÍTÁS 1. gyenáramú számítás kézi számításokhoz az ábrán látható egyszerű közelítést használjuk: = Normál aktív tartományban a tranzisztort bázis-emitter diódáját az feszültségforrással
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
Elektronikus tananyag MATEMATIKA 10. osztály II. félév
Elektronikus tananyag MATEMATIKA 0. osztály II. félév A hasonlósági transzformáció és alkalmazásai. Párhuzamos szelők és szelőszakaszok A párhuzamos szelők tétele TÉTEL: Ha egy szög szárait párhuzamos
A döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Lécgerenda. 1. ábra. 2. ábra
Lécgerenda Egy korábbi dolgozatunkban melynek címe: Karimás csőillesztés már szóltunk arról, hogy a szeezetek számításaiban néha célszerű lehet a diszkrét mennyiségeket folyto - nosan megoszló mennyiségekkel
BETONACÉLOK HAJLÍTÁSÁHOZ SZÜKSÉGES l\4"yomaték MEGHATÁROZÁSÁNAK EGYSZERŰ MÓDSZERE
BETONACÉLOK HAJLÍTÁSÁHOZ SZÜKSÉGES l\4"yomaték MEGHATÁROZÁSÁNAK EGYSZERŰ MÓDSZERE BACZY"SKI Gábor Budape?ti 1Iűszaki Egyetem, Közlekedésmérnöki Kar Epítő- és Anyagmozgató Gépek Tanszék Körkeresztmetszet{Í
Javítóvizsga témakörei matematika tantárgyból
9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő
Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség
Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,
1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév
MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT ) dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A
A skatulya-elv alkalmazásai
1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely
4. elıadás KRISTÁLYTANI ALAPOK
4. elıadás KRISTÁLYTANI ALAPOK SZTEREOGRAFIKUS VETÜLET Cél: a térbeli kristályt síkban tudjuk ábrázolni. Más szóval: a háromdimenziós poliédert két dimenzióban ábrázoljuk. Lépések: 1. A kristályt egy gömb
Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Relációk Waldhauser Tamás 2014 őszi félév Relációk reláció lat. 1. kapcsolat, viszony; összefüggés vmivel 2. viszonylat, vonatkozás reláció lat. 3. mat halmazok elemei
BOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály
5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály
3. osztály Két szám összege 33. Mennyi ennek a két számnak a különbsége, ha az egyik kétszerese a másiknak? Hány olyan háromjegyű szám van, amelyben a számjegyek összege legalább 25? 4. osztály A Zimrili
2. előadás: További gömbi fogalmak
2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással
(térképi ábrázolás) Az egész térképre érvényes meghatározása: Definíció
Az egész térképre érvényes meghatározása: A térkép hossztartó vonalain mért távolságnak és a valódi redukált vízszintes távolságnak a hányadosa. M = 1 / m, vagy M = 1 : m (m=méretarányszám) A méretarány
Matematikai geodéziai számítások 4.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 4. MGS4 modul Vetületi átszámítások SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló gimnáziuma) Térgeometria III.
Térgeometria III. 1. Szabályos háromoldalú gúla alapéle 1 cm, oldaléle 1 cm. Milyen magas a gúla? Tekintsük a következő ábrát: Az alaplap szabályos ABC, így a D csúcs merőleges vetülete a háromszög S súlypontja.
Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
Analízis előadások. Vajda István. 2013. február 10. Neumann János Informatika Kar Óbudai Egyetem
Analízis előadások Vajda István Neumann János Informatika Kar Óbudai Egyetem 013. február 10. Vajda István (Óbudai Egyetem) Analízis előadások 013. február 10. 1 / 3 Az elemi függvények csoportosítása
A szintvonalas eljárásról. Bevezetés
A szintvonalas eljárásról Bevezetés A tetőket építő ács a kötőács napi munkájának része leet a fedélidom - közepelés is. Ennek során megszerkeszti a tető felülnézeti képét, ennek birtokában pedig a további
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny. MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták) Javítási-értékelési útmutató Kérjük a javító tanárokat,
Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium
26 Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam gimnázium szövegértés Előállítás ideje: 27.3.. 12:28:21
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész
Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x
Térgeometria feladatok. 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504 cm 2. Mekkora a testátlója és a térfogata?
Térgeometria feladatok Téglatest 1. Egy téglatest éleinek aránya 2 : 3 : 5, felszíne 992 cm 2. Mekkora a testátlója és a 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉPSZINT Koordináta-gomtria szürkíttt háttrű fladatrzk nm tartoznak az érinttt témakörhöz azonban szolgálhatnak fontos információval az érinttt fladatrzk mgoldásához! 1)
Ábrahám Gábor A háromszög és a terület Feladatok. Feladatok
I. Klasszikus, bevezető feladatok Feladatok 1. Az alábbi feladatokban hányad része a satírozott rész területe az eredeti négyszög területének? a) Egy paralelogramma valamely belső pontját összekötjük a
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
Henger körüli áramlás. Henger körüli áramlás. Henger körüli áramlás 2015.03.02. ρ 2. R z. R z = 2 2. c A. = 4c. c p. = 2c. y/r 1.5.
5.3.. Henger körüli áramlás y/r.5.5.5 x/r.5 3 3 R w z + z R R iϑ e r R R z ( os ϑ + i sin ϑ ) Henger körüli áramlás ( os ϑ i sin ϑ ) r R + [ ϑ + sin ϑ ] ( ) ( os ) r R r R os ϑ + os ϑ + sin ϑ 444 3 r R
Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek!
1 Mindannyiunk életében előfordulnak jelentős évek, amikor is egy-egy esemény hatására a sorsunk új irányt vesz. Bár ezen események többségének ott és akkor kevésbé tulajdonítunk jelentőséget, csak idővel,
Város Polgármestere ELŐTERJESZTÉS
Város Polgármestere 2051 Biatorbágy, Baross Gábor utca 2/a Telefon: 06 23 310-174/233 mellék Fax: 06 23 310-135 E-mail:polgarmester@biatorbagy.hu www.biatorbagy.hu ELŐTERJESZTÉS a torbágyi temető zajvédelméről
MATEMATIKA HETI 3 ÓRA
EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Másodfokú egyenletek. Ismétlés 1. óra: Másodfokú egyenletek,
Puskás Tivadar Távközlési Technikum
27 Puskás Tivadar Távközlési Technikum Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam szakközépiskola matematika Előállítás ideje: 28.3.6. 6:48:31 197 Budapest,
Mágneses szuszceptibilitás vizsgálata
Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Osztályozó vizsga kérdések. Mechanika. I.félév. 2. Az erőhatás jellege, jelölések, mértékegységek
Osztályozó vizsga kérdések Mechanika I.félév 1. Az erő fogalma, jellemzői, mértékegysége 2. Az erőhatás jellege, jelölések, mértékegységek 4 A 4. 4 3. A statika I., II. alaptörvénye 4. A statika III. IV.
Kollimáció hiba hatása Távcsőállás fok perc mp perc mp fok perc mp mp 10 I 209 00 00 08 07 208 59 54-14 42 II 28 59
KRITÉRIUM FELDTHOZ Kollimáció Vízszintes körleolvasások Irányérték hiba hatása Távcsőállás fok perc mp perc mp fok perc mp mp 10 I 09 00 00 08 07 08 59 54-14 4 II 8 59 59 41 40 Közepelés: (09-00-10 + 09-00-07)/=09-00-08
DEME FERENC okl. építőmérnök, mérnöktanár IGÉNYBEVÉTELEK
weblap : www.hild.gyor.hu DEE FERENC okl. építőmérnök, mérnöktanár email : deme.ferenc1@gmail.com STATIKA 30. IGÉNYBEÉTELEK A terhelő erők és az általuk ébresztett támaszerők a tartókat kívülről támadják,
VASÚTI PÁLYA DINAMIKÁJA
VASÚTI PÁLYA DINAMIKÁJA Dynamics of the railway track Liegner Nándor BME Út és Vasútépítési Tanszék A vasúti felépítmény szerkezeti elemeiben ébredő igénybevételek A Zimmermann Eisenmann elmélet alapján
118. Szerencsi Többcélú Kistérségi Társulás
BAZ MTrT TERVEZŐI VÁLASZ 118. Szerencsi Többcélú Kistérségi Társulás 1. Szakmai szempontból elhibázott döntésnek tartjuk a Tokaji Borvidék Világörökségi terület közvetlen környezetében erőmű létesítését.
Jelentéskészítő TEK-IK () Válaszadók száma = 610
Jelentéskészítő TEK-IK () Válaszadók száma = 0 Általános mutatók Szak értékelése - + átl.=. Felmérés eredmények Jelmagyarázat Kérdésszöveg Válaszok relatív gyakorisága Bal pólus Skála Átl. elt. Átlag Medián
Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat) f(x) = 2x 2 x 4. 2x 2 x 4 = 0, x 2 (2 x 2 ) = 0.
Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat). Feladat. Végezzük el az f(x) = x x 4 ) Értelmezési tartomány: x R. ) A zérushelyet az f(x) = 0 egyenlet megoldásával kapjuk: amiből
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot
Útmutató a vízumkérő lap kitöltéséhez
Útmutató a vízumkérő lap kitöltéséhez A vízumkérő lap ( Visa application form of the People s Republic of China, Form V. 2013 ) az egyik legfontosabb dokumentum, amit a kínai vízumra való jelentkezésnél
Kör kvadratúrája. Ezzel a címmel találtunk egy ábrát [ 1 ] - ben 1. ábra. 1. ábra
1 Kör kvadratúrája Ezzel a címmel találtunk egy ábrát [ 1 ] - ben 1. ábra. 1. ábra Ez az ábra hibás, hiába javított kiadásról van szó. Nézzük, miért! Az ábrázolt kék kör és rózsaszín négyzet területe egyenlő.
ORSZÁGOS KÖRNYEZETEGÉSZSÉGÜGYI INTÉZET AEROBIOLÓGIAI MONITOROZÁSI OSZTÁLY
Budapest, 2013-09-11 36. hét A 36. HÉT ELSŐ FELÉBEN az előző vasárnaphoz képest alacsonyabb volt a pollenterhelés, a HÉT KÖZEPÉTŐL azonban ismét felerősödött, VASÁRNAP volt a legmagasabb. Továbbra is a
Radon, Toron és Aeroszol koncentráció viszonyok a Tapolcai Tavas-barlangban
Radon, Toron és Aeroszol koncentráció viszonyok a Tapolcai Tavas-barlangban Kutatási jelentés Veszprém 29. november 16. Dr. Kávási Norbert ügyvezetı elnök Mérési módszerek, eszközök Légtéri radon és toron
Programozható irányítóberendezések és szenzorrendszerek ZH. Távadók. Érdemjegy
Név Neptun-kód Hallgató aláírása 0-15 pont: elégtelen (1) 16-21 pont: elégséges (2) 22-27 pont: közepes (3) 28-33 pont: jó (4) 34-40 pont: jeles (5) Érzékelők jellemzése Hőmérsékletérzékelés Erő- és nyomásmérés
FORTE MAP 5.0 Felhasználói tájékoztató
FORTE MAP 5.0 Felhasználói tájékoztató InterMap Kft 2010 Tartalom FORTE MAP 5.0 Felhasználói tájékoztató... 0 A kezelőfelület ismertetése... 1 Navigálás a térképen... 1 Objektum kijelölése... 3 Jelmagyarázat...
Korszerű geodéziai adatfeldolgozás Kulcsár Attila
Korszerű geodéziai adatfeldolgozás Kulcsár Attila Nyugat-Magyarországi Egyetem Geoinformatikai Főiskolai Kar Térinformatika Tanszék 8000 Székesfehérvár, Pirosalma -3 Tel/fax: (22) 348 27 E-mail: a.kulcsar@geo.info.hu.
7. előadás: Lineármodulus a vetületi főirányokban és a területi modulus az azimutális vetületeken
7 előadás: Lineármodulus a vetületi főirányokban és a területi modulus az azimutális vetületeken Mivel az azimutális vetületeken normális elhelyezésben a meridiánok és a paralelkörök, más elhelyezésben
INFORMÁCIÓS MEMORANDUM
INFORMÁCIÓS MEMORANDUM Kőkút út 7., Hrsz.: 2939/1 3200 GYÖNGYÖS MAGYARORSZÁG INGATLAN SZ.: 008 2011. július Rev.01 Page 1 of 6 Megye Régió Heves Mátra / Gyöngyös Lakosság száma Kb. 35.000 Autópálya csatlakozás
1. Metrótörténet. A feladat folytatása a következő oldalon található. Informatika emelt szint. m2_blaha.jpg, m3_nagyvaradter.jpg és m4_furopajzs.jpg.
1. Metrótörténet A fővárosi metróhálózat a tömegközlekedés gerincét adja. A vonalak építésének története egészen a XIX. század végéig nyúlik vissza. Feladata, hogy készítse el a négy metróvonal történetét
Folyószabályozási térképek geodéziai alapja
Eötvös Loránd Tudományegyetem Informatikai Kar Térképtudományi és Geoinformatikai Tanszék Mészáros János Folyószabályozási térképek geodéziai alapja Doktori értekezés Eötvös Loránd Tudományegyetem Földtudományi
INFORMÁCIÓS MEMORANDUM
INFORMÁCIÓS MEMORANDUM Külterület, hrsz.: 0226/8 5430 TISZAFÖLDVÁR MAGYARORSZÁG INGATLAN SZÁMA: 023 2011. július Rev.01 Page 1 of 7 Megye Régió Jász-Nagykun-Szolnok Szolnok / Tiszaföldvár Lakosság száma
Három dimenziós barlangtérkép elkészítésének matematikai problémái
Szegedi Tudományegyetem Természettudományi és Informatikai Kar Bolyai Intézet Geometria Tanszék Három dimenziós barlangtérkép elkészítésének matematikai problémái Szakdolgozat Írta: Pásztor Péter Matematika
[GVMGS11MNC] Gazdaságstatisztika
[GVMGS11MNC] Gazdaságstatisztika 4 előadás Főátlagok összehasonlítása http://uni-obudahu/users/koczyl/gazdasagstatisztikahtm Kóczy Á László KGK-VMI Viszonyszámok (emlékeztető) Jelenség színvonalának vizsgálata
1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!
1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.
Vetülettani és térképészeti alapismeretek
Vetülettani és térképészeti alapismeretek A geodéziában - mint ismeretes - a földalak első megközelítője a geoid. Geoidnak nevezzük a nehézségi erőtér potenciáljának azt a szintfelületét, amelynek potenciálértéke
Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai
A VETÜLETEK ALAP- ÉS KÉPFELÜLETE Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai A geodézia, a térinformatika és a térképészet a görbült földfelületen elhelyezkedő geometriai alakzatokat
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika emelt szint írásbeli
6) Határozza meg a következő halmazokat! A= {deltoidok} {téglalapok}; B= {négyzetek} {húrnégyszögek} (2pont)
(8/1) Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz, melyik hamis! a) Van olyan rombusz, amely téglalap is. (1pont) b) Minden paralelogrammának pontosan két szimmetriatengelye
AZ EOMA SZINTEZÉSI HÁLÓZAT KIEGYENLÍTÉSE
AZ EOMA SZINTEZÉSI HÁLÓZAT KIEGYENLÍTÉSE Virág Gábor Földmérési és Távérzékelési Intézet Kozmikus Geodéziai Obszervatórium PENC, 2010. 11. 16. ELŐZMÉNYEK ELŐZMÉNYEK Nadap Magassági ősjegy Terebesfejérpatak
Egységes jelátalakítók
6. Laboratóriumi gyakorlat Egységes jelátalakítók 1. A gyakorlat célja Egységes feszültség és egységes áram jelformáló áramkörök tanulmányozása, átviteli karakterisztikák felvétele, terhelésfüggőségük
7. előadás. Vektorok alkalmazásai
7. előadás Vektorok alkalmazásai Terület Tétel: Ha egy tetraéder lapjaira merőlegesen olyan kifelé mutató vektorokat állítunk, melyek hossza arányos az adott lap területével, akkor az így kapott 4 vektor
CSÁNY KÖZSÉG ÖNKORMÁNYZATÁNAK 12/2003.(XI.27.) RENDELETE A MAGÁNSZEMÉLYEK KOMMUNÁLIS ADÓJÁRÓL. Adókötelezettség 1.
CSÁNY KÖZSÉG ÖNKORMÁNYZATÁNAK 12/2003.(XI.27.) RENDELETE A MAGÁNSZEMÉLYEK KOMMUNÁLIS ADÓJÁRÓL Csány Községi Önkormányzat a helyi adókról szóló 1990. évi C. törvény (a továbbiakban: Htv.) 1. -ának (1) bekezdésében
Ablakok használata. 1. ábra Programablak
Ha elindítunk egy programot, az egy Ablakban jelenik meg. A program az üzeneteit szintén egy újabb ablakban írja ki számunkra. Mindig ablakokban dolgozunk. Az ismertetett operációs rendszer is az Ablakok
Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc
Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Geodéziai alapismeretek II. 25.lecke Vízszintes szögmérés Teodolit: Az egy pontból
Párhuzamos programozás
Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák