SAIN MARTON. Nincs királyi út!
|
|
- Kinga Budainé
- 10 évvel ezelőtt
- Látták:
Átírás
1 SAIN MARTON Nincs királyi út!
2
3 SAIN MÁRTON Nincs királyi út! Matematikatörténet GONDOLAT. BUDAPEST, 1986
4 Szakmailag ellenőrizte VEKERDI LÁSZLÓ ANDRÉKA HAJNAL SAIN ILDIKÓ ISBN Sain Márton, 1986
5 TARTALOM Előmagyarázkodás 11 AZ ÓKOR 13 A számirás előtt 15 Mezopotámia. 17 A 60-as számrendszer 17 A mezopotámiai számolástechnika 21 A babiloni aritmetika 24 A babiloni algebra 27 A babiloni geometria 32 Egyiptom 35 Ó-Egyiptom történetének áttekintése 35 A matematikai tartalmú egyiptomi papiruszok 36 Az óegyiptomi számírás 40 Az óegyiptomi számolás 44 Az óegyiptomi geometria 56 Az óegyiptomi algebra 59 Görögország 62 A krétai és a mükénéi kultúra 62 Az ógörög számírás és számolás 69 A görög matematika alapjainak lerakása 74 Thalész 74 Püthagorasz és a püthagoreusok 78 A püthagoreusok zeneelmélete 81 A püthagoreusok számelmélete 85 A püthagoreusok geometriája 94 A kockakettőzés, körnégyszögesítés és szögharmadolás A híres ókori görög feladatok 101 Hippokratész 101 Hippiasz 106 Deinosztratosz és Menaikhmosz 107 Arkhütasz 114 Arkhimédész, Eratoszthenész és Apollóniosz megoldásai 119 A bizánci Philón 123 Nikomédész 124 Dioklész 127 5
6 Muhjiaddín al-magribi (1260 körül) kockakettőzése és Bolyai János ( ) szögharmadolása 128 Az euklideszi szerkesztéssel való megoldhatóság 130 A nagy görög matematikusok 134 A knidoszi Eudoxosz 134 Az alexandriai Eukleidész 144 Egy kis nem felesleges filozófiai kitérő 167 A filozófia és a matematika 172 A szürakuszai Arkhimédész 178 A pergéi Apollóniosz 215 Miért állt meg az ógörög matematika fejlődése? 236 A görög csillagászok trigonometriája" 241 A görög csillagászat kezdetei 241 A szamoszi Arisztarkhosz 243 Az ógörög trigonometria 244 A kürénéi Eratoszthenész 251 Poszeidóniosz 253 Hipparkhosz 254 Az alexandriai Menelaosz 256 Ptolemaiosz Klaudiosz 263 A görög matematika hanyatló kora 268 A görög hétköznapok matematikája 268 Az alexandriai Hérón 269 Az alexandriai Diophantosz 273 Az alexandriai Papposz 279 Az antik görög geometria színpadán legördül a függöny, 287 A KELETI KÖZÉPKOR 293 Kína 295 Történelmi vázlat matematikai vonatkozásokkal 295 A kínai számírás 305 A Szuan csing 310 Vang Hsziao-tung 337 Csin Csiu-sao 338 Szun-ce 340 Csang Csiu-csien 340 Csen Luan 342 LiJe 342 CsuSi-csie 343 Jang Huj 344 A kínai mértékegységek 344 A kínai matematika korszakai India 348 India ősi kultúrája 348 Az indoárja kultúra 351 A hindu számírás 355 Az indiai számírás elterjedése. A magyar számírás A hindu matematika 362 Árjabhatta 364
7 Brahmagupta 366 Ácsárja Bhászkara 369 Srínivásza Aijangár Ramanudzsan 376 Az arabok 380 A kultúramentő arabok 380 Rövid történelmi vázlat 381 Az arab matematika korszakai 387 Az arab matematikusok 387 Al-Hvárizmi 387 Ibn Türk al-kutalli 395 Abu Kamii 395 Szabit ibn Kurra 395 Al-Battáni 397 Abul-Vafa 399 Al-Karadzsi 400 Al-Bírúni 400 Al-Haiszam 402 Ibn Júnisz 405 Al-Bagdádi 405 Omar Hajjám 405 Násziraddín at-túszi 409 AI-Kási A maják 420 A maja számirás 420 AZ EURÓPAI MATEMATIKA KÖZÉPKORA 433 A középkori Európa 435 Valóban olyan sötét? 435 Az V-IX. század kiemelkedő matematikusai: Boethius, Beda Venerabilis, Alcuinus, Gerbert 436 Európa megérett a tudományok befogadására (Adelard, Gherardo, Róbert of Chester, Leonardo Pisano, Jordanus Nemorarius, Bradwardine, d'oresme) 445 A matematika reneszánsza 468 A reneszánsz kori matematikusok: Regiomontanus, Chuquet, Widmann, Luca Pacioli, Cardano, Oronce Fine, Gemma Frisius, del Ferro, Fontana, Bombelli, von Lauchen (Rháticus), Stevin, Stifel, Bürgi, Napier, Briggs, Vlacq, Mercator, Viéte, Girard, Harriot, Pitiscus, Galilei, Kepler 468 Európa új matematikát teremt 527 A barokk kor kultúrtörténeti áttekintése 527 Tárgyalásmódot változtatunk 537 A MATEMATIKA FŐBB ÁGAINAK FEJLŐDÉSE 539 A geometria 541 A projektív (szintetikus) geometria (Desargues, Pascal, Monge, Carnot, Brianchon, Poncelet, Feuerbach, Gergonne, Steiner, Chasles, Staudt, Cayley) 541 7
8 Az analitikus geometria fejlődése (Descartes, Beeckman, Fermat, Wallis, Witt, Lahire, Stirling, Clairaut) 560 A differenciálgeometria (Minding, Beltrami, Lamé, Saint- Venant, Bonnet, Frenet, Serret, Weingarten, Peterszon) 580 A szintetikus és az analitikus geometria házassága (Möbius, Plücker) 596 Az analitikus geometria és a vektorok (Hamilton, Grassmann) 601 A geometria axiomatikus megalapozásának története Az V. posztulátum 605 Bolyai Farkas 606 Az V. posztulátum bizonyítási kísérletei 608 A nemeuklideszi geometria felfedezése 614 Bolyai János 616 Nyikolaj Ivanovics Lobacsevszkij 621 A Scientia Spatii 623 A Bolyai-Lobacsevszkij-geometria hatása (Klein, Riemann, Pasch, Peano, Hilbert) A topológia fejlődése (Poinsot, Listing, Peano, Poincaré, Brouwer, Weyl) 646 A diszkrét geometria 662 A matematikai analízis története (Cavalieri, Torricelli, Pascal, Fermat, Wallis, Gregory, Barrow) 663 Newton és Leibniz 676 Newton után Angliában (Berkeley, Maclaurin, Taylor) Leibniz után a Kontinensen (A Bernoulli család, a Bernoulli testvérek, Euler) 688 A függvényfogalom fejlődése (Descartes, Leibniz, Euler, Fourier, Dirichlet, Bolzano, Fréchet, Riesz, Hilbert) 697 A sorelmélet fejlődése (Mercator, Lagrange, Cauchy, Fourier, Fejér, Weierstrass) 702 A differenciálhányados fogalmának fejlődése Euler után (d'alembert, L'Huillier, Lacroix, Cauchy, Weierstrass) Az integrál fogalmának fejlődése Leibniz és Newton után (Euler, Laplace, Clairaut, Lagrange, Riemann, Lebesgue, Stieltjes, Riesz) 711 A differenciálegyenletek (Johann Bernoulli, Riccati, Lagrange, Dániel Bernoulli, d'alembert, Taylor, Lipschitz, Euler, Laplace, Poisson, Gauss, Green, Osztrogradszkij, Ljapunov, Cauchy, Lie, Poincaré, Birkhoff, Petzval, Beké, Kármán) 715 A variációszámítás kialakulása (Euler, a Bernoulli testvérek, Lagrange, Haar) 723
9 A számelmélet fejlődése 727 A számfogalom kialakulása (Argand, Gauss, Hamilton, Peirce, Frobenius, Cartan, Grassmann, Clifford, Fermat, Dirichlet, Kummer, Cantor, Liouville, Kürschák, Méray) 727 A számelmélet néhány problémája (Fermat, Waring, Sierpinski, Euler, Gauss, Csebisev, Minkowski, Hajós, Erdős, Goldbach, Vinogradov) 734 Az algebra fejlődése (Diophantosz, Al-Hvárizmi, Fibonacci, Chuquet, Pacioli, Widmann, Cardano, Viéte, Descartes, Newton, Euler, d'alembert, Gauss, Lagrange, Ruffini, Ábel, Galois, Cauchy, Kronecker, Jordán, Klein, Lie, Boole, Huntington, Dedekind, Steinitz, Noether, van der Waerden, Birkhoff, Neumann János, MacLane, matematikai logika, automataelmélet, Rados, Kürschák, Haar, Szele, Kalmár) 744 A halmazelmélet kialakulása (Dedekind, Bolzano, Cantor, Zermelo, Frege, Burali-Forti, Russell, Richárd, Brouwer, Fraenkel, Neumann János, Gödel, Cohen, Kőnig, Haar, Kalmár) 768 A valószínűségszámítás fejlődése (Pacioli, Cardano, Dániel Bernoulli. Pascal, Fermat, Jacob Bernoulli, Moivre, Laplace, Buffon, Bayes; Poisson, Bunyakovszkij, Csebisev, Markov; Ljapunov, Morgan, Czuber, Boole, Mises, Bernstein, Hincsin, Borel, Kolmogorov, Rényi, Jordán Károly, Wiener, Neumann János) 783 A számítógép-tudomány fejlődése (Lullus, Schickard, Pascal, Leibniz, Odhner, Prony, Babbage, Jacquard, Hollerith, Zuse, Aiken, Wiener, Neumann János, Lebegyev, Colmerauer, Turing, Church, Kalmár, McCarthy) 795 Utószó 809 Felhasznált és ajánlott irodalom 811 Névmutató 819
10
11 ELŐMAGYARÁZKOD.ÁS Szeretném mindjárt az első pillanatban kiábrándítani vagy megvigasztalni a kedves olvasót - kit hogyan. Aki ettől a könyvtől korszakalkotóan új tudománytörténeti felfedezéseket vár, az csalódni fog. Aki azt hiszi, hogy ez a könyv egy nagy matematikus munkája érthetetlen szak-tolvaj-nyelven, és a szerző magához méltónak sem tartja az elemi ismeretekkel való foglalkozást, az szintén csalatkozni fog. A könyv összeállításánál legfőbb célul azt tűztem ki, hogy a matematikatörténet felfedezéseit, tehát magát a matematikát - amennyire ez lehetséges - közel hozzam az olvasóhoz. Tegyem pedig mindezt történelmi keretben egyrészt azért, hogy szembeszökő legyen a matematikai gondolkozásnak és eredményeknek a ma eléggé meg nem becsült kulturális értéke, másrészt azért, mert szeretném az érdeklődést felébreszteni egy nagyon szellemes tudomány és annak története iránt. Sok igen értékes tudománytörténeti mű éppen mert rendszerint azokat az illető tudomány tudósai írták, csak a kiválasztottak számára élvezhető. Ezt a könyvet azonban elsősorban nem a matematikát művelő tudósoknak szántam, hanem a matematika iránt érdeklődő és ezen a területen legalább középiskolás műveltséggel rendelkező olvasóknak. Az viszont természetes, hogy külön öröm számomra, ha az előzetes figyelmeztetés ellenére tudós matematikusok is kézbe veszik. Az előzőekből talán kiviláglik, hogy a szíves olvasó ismeretterjesztő matematikatörténeti áttekintést tart a kezében, amely kezdetben részletes, és mindinkább csak átfogó jellegű, amint a jelenkori felsőbb matematikai ismeretek megszületéséhez közeledünk. Amint a megfelelő helyeken erre a figyelmet külön is felhívom, a könnyebb érthetőség kedvéért bátorkodtam a komoly tudomány számára megengedhetetlen eszközökkel is élni. Ez azonban - véleményem szerint - nem égbekiáltó bűn. Nem jelent többet annál, mint hogy a középiskolában szokásos jelöléseket használom, hogy néhány tételnek csak az egyszerűbb esetére tértem ki, vagy hogy segítségül hívtam például a koordinátageometriát, illetve más középiskolai ismeretet stb. Úgy vélem azonban, hogy ez sohasem megy az eredeti gondolatmenet szépségének a rovására, hanem inkább annak a könnyebb meglátását segíti elő. Néhol alkalmam 11
12 nyílt néhány önálló gondolat kifejtésére és alkalmazására; az olvasó elnézését kérem, ha ilyenkor nem tudtam a kísértésnek ellenállni. Az eddigiekből sejthető', hogy ez nem matematika-tankönyv, hanem csak a történelem folyamán született legfontosabb és legérdekesebb matematikai gondolatmenetek vázlatos ismertetése. A könyvben szereplő tételek szabatos bizonyításai tankönyvekben és más kézikönyvekben keresendők. Abban a reményben, hogy a népszerűsítés érdekében követett módszerbeli eljárásom megértésre talál, ajánlom munkámat minden olyan kedves olvasónak, aki középiskolás tanulmányai során megszerette a matematikát, vagy legalábbis nem okoztak számára a matematikaórák elviselhetetlen gyötrelmeket. Végül kedves kötelességemnek teszek eleget, amikor köszönetet mondok azért a sok önzetlen segítségért, amely nélkül ez a könyv meg sem születhetett volna. Elsőként Gerner Józsefnek, a könyv szerkesztőjének köszönöm lelkes támogatását és gondos javító szerkesztő munkáját. Köszönöm a lektoroknak a kötelességszerű bírálatot messze túlhaladó segítségét. Nemcsak kritizáltak, hanem megmutatták a hibák javításának módját is. Hálával tartozom nem hivatalos lektoraimnak is, Németi Istvánnak, Weszely Tibornak és magukat megnevezni nem akaró segítőimnek, akik egy-egy rész elolvasásával, értékes megjegyzéseikkel baráti módon támogattak. Nagyon igazságtalan lennék, ha nem mondanék hálás köszönetet feleségemnek is, aki gondoskodásával és türelmével biztosította a munkához szükséges nyugalmat, sőt gépelési munkájával számomra időt és fáradságot takarított meg. Budapest, 1985 Sain Márton 12
Név- és tárgymutató. Typotex Kiadó. Cauchy, A., 173 Cauchy Bunyakovszkij Schwarz-egyenlőtlenség,
Név- és tárgymutató A algebra alaptétele, 117 Anaxagorász, 42, 49, 171 Appel, K., 29, 146 Arisztotelész, 43, 48 Arkhimédesz, 189 atomisztikus szerkezet, 42 azonosság, 102 Á átmérő, 175 átmérős befoglaló
Középkori matematika
Fizikatörténet Középkori matematika Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Bevezetés Láttuk korábban: A természettudomány forradalmát a középkor társadalmi, technikai és tudományos eredményei készítik
Milyen a modern matematika?
Milyen a modern matematika? Simonovits Miklós Milyen a modern matematika? p.1 Miért rossz ez a cím? Nem világos, mit értek modern alatt? A francia forradalom utánit? Általában olyat tanulunk, amit már
Záróvizsga tételek matematikából osztatlan tanárszak
Záróvizsga tételek matematikából osztatlan tanárszak A: szakmai ismeretek; B: szakmódszertani ismeretek Középiskolai specializáció 1. Lineáris algebra A: Lineáris egyenletrendszerek, mátrixok. A valós
Miért érdekes a görög matematika?
2016. március Tartalom 1 Bevezetés 2 Geometria 3 Számelmélet 4 Analízis 5 Matematikai csillagászat 6 Következtetések Bevezetés Miért éppen a görög matematika? A középiskolások sok olyan matematikai témát
Matematika emelt szint a 11-12.évfolyam számára
Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka
A RENESZÁNSZ MATEMATIKA EGYIK LEGSZEBB EREDMÉNYE
A RENESZÁNSZ MATEMATIKA EGYIK LEGSZEBB EREDMÉNYE Szabó Péter Gábor PhD, egyetemi adjunktus, u Görög előzmények A matematika az ókori görögök révén vált és Mezopotámia matematikai tárgyú emlé kei arról
Typotex Kiadó. Keith Devlin
Név- és tárgymutató a posteriori valószínűség, 266 a priori valószínűség, 265 Abelcsoport, 188 absztrakt jelölés, 11 Adams, John Couch, 288 Adleman, Leonard, 42, 44 Akhilleusz és a teknősbéka, 102 Alexander,
Tárgymutató. (A dőlt betűs oldalszámok a Számítástechnika Függelékre vonatkoznak.)
Tárgymutató (A dőlt betűs oldalszámok a Számítástechnika Függelékre vonatkoznak.) e 101, 546 π 197, 551 Abel-átrendezés 382 Abel-egyenlőtlenség 381 abszolút érték 45, 425 abszolút folytonos függvény 475
Fejezetek a Matematika
Fejezetek a Matematika Kultúrtörténetéből Dormán Miklós Szegedi Tudományegyetem TTIK Bolyai Intézet 2013 október 25 Az ókori Görögország matematikája 2 rész Éliszi Hippiász (kb 420 körül): az egyik szögharmadoló
A Szekszárdi I. Béla Gimnázium Helyi Tanterve
A Szekszárdi I. Béla Gimnázium Helyi Tanterve Matematika Készítette: a gimnázium reál szakmai munkaközössége 2015. Tartalom Emelt szintű matematika képzés... 3 Matematika alapóraszámú képzés... 47 Matematika
NÉHÁNY GONDOLAT A MŰSZAKI FŐISKOLAI MATEMATIKA OKTATÁSRÓL SOME IDEAS ON MATHEMATICS TEACHING IN ENGINEERING. 1. Bevezetés KOVÁCS JUDIT
KOVÁCS JUDIT NÉHÁNY GONDOLAT A MŰSZAKI FŐISKOLAI MATEMATIKA OKTATÁSRÓL SOME IDEAS ON MATHEMATICS TEACHING IN ENGINEERING A mérnök szakos hallgatók oktatásában így a mérnöktiszt képzésben is a matematika
Matematika. Specializáció. 11 12. évfolyam
Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes
1 NEM, mert az csupa elavult, ma már egyszerűen mosolyra fakasztó. 2 Talán IGEN, bár az csak színes, érdekes epizódokat, történeteket
Bevezetés. Érdemes-e tudománytörténettel foglalkozni? Fejezetek a matematika kultúrtörténetéből. Bevezető Gondolatok. Klukovits Lajos TTIK Bolyai Intézet 2015. szeptember 2. Négy lehetséges válasz. 1 NEM,
A végtelen a matematikában Dr. Németh József egyetemi docens SZTE TTIK Bolyai Intézet.
A végtelen a matematikában Radnóti Gimnázium 203. 04. 23. Dr. Németh József egyetemi docens SZTE TTIK Bolyai Intézet Analízis Tanszék http://www.math.u-szeged.hu/ nemethj 2 Pólya György: Ha a tudomány
projektív geometria avagy
A probléma eredete. Előzmények. Egy művészetből született tudomány, a projektív geometria avagy Hogyan lett a barackmagból atommag? Klukovits Lajos TTIK Bolyai Intézet 2015. november 17. A képzőművészeti
E könyvet drága szüleim emlékének ajánlom TARTALOMJEGYZÉK. I. kötet
E könyvet drága szüleim emlékének ajánlom TARTALOMJEGYZÉK I. kötet Elıszó 4 0. A lineáris algebra rövid története 6 1. Testek 11 2. Vektortér 17 3. Alterek 23 4. Bázis és dimenzió 36 5. Lineáris leképezések
Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest. 2015. június 20.
A görbületek világa 1 Kristály Sándor Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest 2015. június 20. 1 Az MTA Bolyai János Kutatói Ösztöndíj által támogatott kutatás. Eukleidészi világnézet
Molnár Zoltán. A matematika reneszánsza
Molnár Zoltán A matematika reneszánsza Művelődéstörténeti korszak, korstílus, stílusirányzat 1350/1400-1600. (XV-XVI. század) A szó (renaissance) jelentése: újjászületés Visszatérés az antikvitáshoz (ókori
J~( ~&,{ ÉRDEKES MATEMATIKAI. , GYAKORLÓ FELADATOK IV.
J~( ~&,{ ÉRDEKES MATEMATIKAI., GYAKORLÓ FELADATOK IV. A1Ao3 KÖZÉPISKOLAI SZAKKÖRI FOZETEK,, ERDEKES MATEMATIKAI, GYAKORLO FELADATOK IV. VÁLOGATÁS A KÖZÉPISKOLAI MATEMATIKAI LAPOK 1925-1931. ÉVFOLYAMAIBÓL
Történetek fizikusokról és matematikusokról
Történetek fizikusokról és matematikusokról Történetek fizikusokról és matematikusokról Második, javított kiadás Sz. G. Gingyikin TYPOT E X Kiadó Budapest, 2004 A második kiadást a Varga Tamás Tanítványainak
TARTALOM. Ismétlő tesztek...248 ÚTMUTATÁSOK ÉS EREDMÉNYEK...255
TARTALOM. SZÁMHALMAZOK...5.. Természetes kitevőjű hatványok...5.. Negatív egész kitevőjű hatványok...6.. Racionális kitevőjű hatványok...7.4. Irracionális kitevőjű hatványok...0.5. Négyzetgyök és köbgyök...
Valószín ségszámítás. Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes 2018/2019.
Valószín ségszámítás Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes agnes@cs.elte.hu 2018/2019. szi félév A valószín ségszámítás kurzus céljai a statisztika megalapozása: a véletlen
A SZÁMÍTÁSTECHNIKA TÖRTÉNETE
Összeállította: Dr. Rutkovszky Edéné AZ EGYIPTOMI SZÁMÍRÁSTÓL... Bevezetés Számolás, számírás Számolási segédeszközök A mechanikus számológépek korszaka Az elektromosság kora Az első generációs elektronikus
Matematikus mesterszak. ELTE TTK jan. 22.
Matematikus mesterszak ELTE TTK 2019. jan. 22. Miért menjek matematikus mesterszakra? Lehetséges válaszok: 1. Mert érdekel a matematika. 2. Mert szeretnék doktori fokozatot szerezni. 3. Mert külföldre
Matematika a középkorban ( )
Matematika a középkorban (476-1492) 1) A középkori matematika fejlődésének területei a) Kína b) India c) Iszlám d) Európa e) Magyarország 2) A klasszikus indiai matematika a) Korát meghazudtoló eredményei
Fejezetek az algebra történetéb l Az algebra alaptétele. Szakdolgozat. Eötvös Lóránd Tudományegyetem Természettudományi Kar
Fejezetek az algebra történetéb l Az algebra alaptétele Szakdolgozat Készítette: Kecskés Regina Matematika BSc Elemz szakirány Témavezet : Ágoston István egyetemi docens Algebra és Számelmélet Tanszék
Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február
Helyi tanterv Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február 1 A TANTERV SZERKEZETE Bevezető Célok és feladatok Fejlesztési célok és kompetenciák Helyes
A görög klaszikus kor.
Történeti áttekintés. Történeti mérföldkövek A görög klaszikus kor. Logisztika (aritmetika) és számelmélet. Klukovits Lajos TTIK Bolyai Intézet 2014. március 4. A folyammenti kultúrák hanyatlása a II.
I. Fejezetek a klasszikus analízisből 3
Tartalomjegyzék Előszó 1 I. Fejezetek a klasszikus analízisből 3 1. Topológia R n -ben 5 2. Lebesgue-integrál, L p - terek, paraméteres integrál 9 2.1. Lebesgue-integrál, L p terek................... 9
Sorozatok? Deriválás? Integrál?
Sorozatok? Deriválás? Integrál? Mivel kezdjük az analízist? Vagy a kalkulust? Hujter Bálint Budapesti Fazekas Mihály Gyakorló Ált. Isk. és Gimn. 2019. július 4. Hujter Bálint (Fazekas) Sorozatok? Deriválás?
Modern matematikai paradoxonok
Modern matematikai paradoxonok Juhász Péter ELTE Matematikai Intézet Számítógéptudományi Tanszék 2013. január 21. Juhász Péter (ELTE) Modern paradoxonok 2013. január 21. 1 / 36 Jelentés Mit jelent a paradoxon
Hajnal Péter. Bolyai Intézet, TTIK, SZTE, Szeged április 8.
Fibonacci- számok és tányérok Hajnal Péter Bolyai Intézet, TTIK, SZTE, Szeged 2017. április 8. A Fibonacci-sorozat A Fibonacci-sorozat Rekurzív definíció F 0 = 0, F 1 = 1, F n = F n 1 + F n 2. A Fibonacci-sorozat
MATEMATIKA Emelt szint 9-12. évfolyam
MATEMATIKA Emelt szint 9-12. évfolyam évfolyam 9. 10. 11. 12. óra/tanév 216 216 216 224 óra/hét 6 6 6 7 Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről
Elhangzott tananyag óránkénti bontásban
TTK, Matematikus alapszak Differenciálegyenletek (Előadás BMETE93AM03; Gyakorlat BME TE93AM04) Elhangzott tananyag óránkénti bontásban 2016. február 15. 1. előadás. Közönséges differenciálegyenlet fogalma.
dr. Szalkai István: Ki fedezte fel?
Haladvány Kiadvány (szerk.hujter Mihály) http://www.math.bme.hu/~hujter/halad.htm, 2015.07.20. http://www.math.bme.hu/~hujter/150720.pdf dr. Szalkai István: Ki fedezte fel? szalkai@almos.uni-pannon.hu
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés)
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés) Kötelez tárgyak, szakdolgozat (mindegyik tárgy teljesítend ) M1101 Lineáris és analitikus geometria 1. M1102 Lineáris
jjtejutej NtTEHITIItilt H 1 DR. CZEIZEL ENDRE MRTEMRTIHUS-GÉNIUSZOK ELEMZÉSE MHGYRR teljesítményének DR. TUSNADY GÁBOR
DR. CZEIZEL ENDRE NtTEHITIItilt H 1 jjtejutej H MHGYRR MRTEMRTIHUS-GÉNIUSZOK ELEMZÉSE DR. TUSNADY GÁBOR A vizsgált teljesítményének elméleti matematikusok rövid értelmezése GR LEN US KIR 0Ö 2011 TMLOOTZÉIÍ
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Kétszakos matematikatanár szak (régi képzés)
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Kétszakos matematikatanár szak (régi képzés) Kötelezı tárgyak, szakdolgozat (mindegyik tárgy teljesítendı, a szakdolgozat írható a másik szakból) kód tárgynév kredit
MATEMATIKA A KÖZGAZDASÁGI ALAPKÉPZÉS SZÁMÁRA SZENTELEKINÉ DR. PÁLES ILONA ANALÍZIS PÉLDATÁR
MATEMATIKA A KÖZGAZDASÁGI ALAPKÉPZÉS SZÁMÁRA SZENTELEKINÉ DR. PÁLES ILONA ANALÍZIS PÉLDATÁR Budapest, 2018 Szerző: SZENTELEKINÉ DR. PÁLES ILONA főiskolai docens 978-963-638-542-2 Kiadja a SALDO Pénzügyi
Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév
Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Az informatika története (ebből a fejezetből csak a félkövér betűstílussal szedett részek kellenek) 1. Számítástechnika
YBL - SGYMMAT2012XA Matematika II.
YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
Diplomamunka. Miskolci Egyetem. Leghosszabb szériák vizsgálata. Készítette: Selling István Mérnök Informatikus MSc jelölt
Diplomamunka Miskolci Egyetem Leghosszabb szériák vizsgálata Készítette: Selling István Mérnök Informatikus MSc jelölt Témavezető: Dr. Karácsony Zsolt egyetemi docens Miskolc, 2013 Miskolci Egyetem Gépészmérnöki
Geometriai axiómarendszerek és modellek
Verhóczki László Geometriai axiómarendszerek és modellek ELTE TTK Matematikai Intézet Geometriai Tanszék Budapest, 2011 1) Az axiómákra vonatkozó alapvető ismeretek Egy matematikai elmélet felépítésének
DIFFERENCIÁLSZÁMÍTÁS TANÍTÁSA KÖZÉPISKOLÁBAN
Eötvös Loránd Tudományegyetem Természettudományi Kar Matematikai Intézet DIFFERENCIÁLSZÁMÍTÁS TANÍTÁSA KÖZÉPISKOLÁBAN SZAKDOLGOZAT Készítette: Nagy Veronika matematika tanár szakos hallgató Témavezető:
hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
a geometria axiómái Vincze Csaba Debreceni Egyetem szeptember 27.
Semmiből egy új, más világot: a geometria axiómái Vincze Csaba Kutatók éjszakája 2017 Debreceni Egyetem 2017. szeptember 27. Babits Mihály: Bolyai Isten elménket bezárta a térbe. Szegény elménk e térben
nappali tagozat, tanítói szak TAN05MSZ Szigorlati követelmények és tételek Vizsgatematika A szigorlat követelményei:
Matematika Tanszék Matematika műveltségi terület, nappali tagozat, tanítói szak TAN05MSZ Szigorlati követelmények és tételek A szigorlat követelményei: Vizsgatematika A hallgató legyen képes 15-20 perces
Válogatott fejezetek a matematikából
Válogatott fejezetek a matematikából ---- ---- Simon Péter Válogatott fejezetek a matematikából Egyetemi jegyzet IK ISBN 978-963-489-068-3 Simon Péter --- simon_valogatott_matematika_borito.indd 1 2019.03.19.
képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert fogalmakat és tételeket változatos
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
Többváltozós Függvények Analízise; Differenciálegyenletek Tantárgyi tájékoztató, 2014/2015 tavaszi félév
Többváltozós Függvények Analízise; Differenciálegyenletek Tantárgyi tájékoztató, 214/215 tavaszi félév Kurzus adatai: Tárgy előadója: Gyakorlatvezető: Kurzus neve: Kurzus típusa: Kurzus kódja: Bessenyei
ARANYMETSZÉS. - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka június 11.
ARANYMETSZÉS - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka 2014. június 11. Zenta TARTALMI ÁTTEKINTÉS Az aranymetszés fogalma eredete és előfordulása
HELYI TANTERV MATEMATIKA GIMNÁZIUMI OSZTÁLYOK
HELYI TANTERV MATEMATIKA GIMNÁZIUMI OSZTÁLYOK 1 MATEMATIKA (4+4+4+4) Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről és mint sajátos emberi megismerési,
Érdekes pitagoraszi számokról
Érdekes pitagoraszi számokról Tuzson Zoltan Ebben a dolgozatban különböző érdekes tulajdonsággal rendelkező pitagoraszi számhármasokról, szám négyesekről és szám n-esekről írtam. A leírtak alapján is beláthatjuk,
Matematika az építészetben
Matematika az építészetben Molnár-Sáska Katalin Főisk.docens YMÉK Bevezetés - Történeti áttekintés - A geometria helye a főiskolai képzésben - Újraindítás és körülményei Részletes tanmenet Megjegyzések:
Matematika. A vizsgáztatói és felkészítő gyakorlatra vonatkozó kérdőív:
Matematika Kérjük, hogy válaszoljon az alábbi kérdésekre! A vizsgáztatói és felkészítő gyakorlatra vonatkozó kérdőív: 1. A kétszintű érettségi vizsgarendszer 2005. évi bevezetése óta hány május-júniusi
VIZSGATEMATIKA Diszkrét Matematika BSC A szakirány, I. évfolyam 2016/2017 őszi szemeszter
VIZSGATEMATIKA Diszkrét Matematika BSC A szakirány, I. évfolyam 2016/2017 őszi szemeszter Jelölés: D: definíció, T: tétel, TB: tétel bizonyítással. A betűméret a téma prioritását jelzi, a legnagyobb betűvel
Öltözködéskultúra Technikusi osztályok
OV Öltözködéskultúra Technikusi osztályok 10. évfolyam /10. a, 11. e osztályok/ heti 1 óra A vizsgára vonatkozó szabályok: A vizsga típusa: szóbeli - A tanuló több kérdésből álló feladatlapot kap adott
- Matematikus szeptemberétől
- Matematikus Matematika alapszak - Tanári szakirányok mintatanterve 2006. szeptemberétől "A" típusú tantárgyak 7 8 9 10 Környezettani alapismeretek AIB1004 2 0 K 2 KT Dr. Kiss Ferenc X Általános gazdasági
értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják
A Baktay Ervin Gimnázium alap matematika tanterve a 6 évfolyamos gimnáziumi osztályok számára 7. 8. 9. 10. 11. 12. heti óraszám 3 cs. 3 cs. 3 cs. 4 4 4 éves óraszám 108 108 108 144 144 120 (cs.: csoportbontásban)
Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék
III 1. Aritmetika 1 1.1. Elemi számolási szabályok............................... 1 1.1.1. Számok..................................... 1 1.1.1.1. Természetes, egész és racionális számok.............. 1
Gazdasági matematika II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdálkodási és menedzsment, pénzügy és számvitel szakok távoktatás tagozat Gazdasági matematika II. Tantárgyi útmutató 2016/17 tanév II. félév 1/6 A KURZUS ALAPADATAI Tárgy
Tóth János - Simon L. Péter - Csikja Rudolf. Differenciálegyenletek feladatgyűjtemény
Tóth János - Simon L. Péter - Csikja Rudolf Differenciálegyenletek feladatgyűjtemény 2011 Támogatás: Készült a TÁMOP 4.1.2.A/1 11/1 2011 0064 számú, a Természettudományos (matematika és fizika) képzés
- Matematikus. tanszék/ Tantárgyfelelős oktató neve szeptemberétől
- Matematikus Matematika alapszak - Tanári szakirányok mintatanterve "A" típusú tantárgyak 2006. szeptemberétől 7 8 9 10 tanszék/ oktató neve Környezettani alapismeretek AIB1004 2 0 K 2 KT Dr. Kiss Ferenc
2010-2011 Őszi félév. Heizlerné Bakonyi Viktória HBV@elte.hu
2010-2011 Őszi félév Heizlerné Bakonyi Viktória HBV@elte.hu Felmentés Tárgybeszámítási kérelemhez TO-ról tárgybeszámítási kérelem Régi index Régi tárgy tematikája Dr Zsakó László, ELTE IK Média és Oktatásinformatika
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Matematikus szak (régi képzés)
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Matematikus szak (régi képzés) Kötelezı tárgyak, diplomamunka (mindegyik tárgy teljesítendı) M1101 Lineáris és analitikus geometria 1. M1102 Lineáris és analitikus
KÜRSCHÁK JÓZSEF ( ): SZÁZ ÉV A MATEMATIKA TÖRTÉNETÉBŐL MAGYARORSZÁGON 1 ( )
KÜRSCHÁK JÓZSEF (1864 1933): SZÁZ ÉV A MATEMATIKA TÖRTÉNETÉBŐL MAGYARORSZÁGON 1 (1825 1925) Digitalizálták a Magyar Tudománytörténeti Intézet munkatársai, Gazda István vezetésével. Ha a magyar matematikus
A számolás és a számítástechnika története. Feladat:
A számolás és a számítástechnika története Kezdetektől, a huszadik század közepéig Feladat: Milyen eszközöket használtak a számoló/számítógépek megjelenése elo tt a számolás segítésére? Kik készítettek
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Logikai Emberi ágens tudás és problémái gépi reprezentálása Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS BUDAPEST 2013 Matematikus mesterszak 2013 Szakleírás Képzési idı: 4 félév A szak indításának tervezett idıpontja: 2013.
Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.
YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
Jacquard szövőgépe, vezérlési modulok használata 1805 lyukkártyás vezérlés
Az emberek ősidők óta törekednek arra, hogy olyan eszközöket állítsanak elő, melyek könnyebbé teszik a számolást, ilyen pl.: kavicsok, fadarabok, zsinórokra kötött csomók, fák, földre vésett jelek voltak.
Osztályozó- és javítóvizsga Történelem tantárgyból 2014-2015
Osztályozó- és javítóvizsga Történelem tantárgyból 2014-2015 A félévi vizsga szóbeli vizsga az első félévre megadott témakörökből. Az év végi vizsga írásbeli vizsga (feladatlap) az egész évre megadott
A SZÁMVITELI INFORMÁCIÓS RENDSZER KORLÁTAI ÉS HATÁSA AZ ADÓZÁSRA DR. KENYERES SÁNDOR
A SZÁMVITELI INFORMÁCIÓS RENDSZER KORLÁTAI ÉS HATÁSA AZ ADÓZÁSRA DR. KENYERES SÁNDOR MINDEN SZAKMA ÖSSZEESKÜVÉS A LAIKUSOK ELLEN GEORGE BERNARD SHAW A SZÁMVITELI INFORMÁCIÓS RENDSZER Kialakulása, leírása
NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó
FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart
Tantárgyi tematikák 2004/2005
DEBRECENI EGYETEM MATEMATIKAI INTÉZET Levélcím: 4032 Debrecen Pf. 12., e-mail: office@math.klte.hu Tel: 36 52/512 900/2504 Fax: 36 52/416-857 Tantárgyi tematikák 2004/2005 A3460 Projektív geometria 2...
Megemlékezés. Kürschák Józsefről (1864-1933) Kántor Tünde. Kántor Tünde, December 2, 2008 - p. 1/40
0 1 Megemlékezés Kürschák Józsefről (1864-1933) Kántor Tünde Kántor Tünde, December 2, 2008 - p. 1/40 Megemlékezés Megemlékezés Kántor Tünde, December 2, 2008 - p. 2/40 Megemlékezés Megemlékezés 75 éve
1. Halmazok, halmazműveletek. Nevezetes ponthalmazok a síkban és a térben. (x eleme az A halmaznak, x az A halmazhoz tartozik),
1. Halmazok, halmazműveletek. Nevezetes ponthalmazok a síkban és a térben Halmazok A halmaz a matematikában nem definiált fogalom. A halmazt alapfogalomnak tekintjük, nem tudjuk egyszerűbb fogalmakkal
OKLEVÉLKÖVETELMÉNYEK. MATEMATIKA ALAPKÉPZÉSI SZAK (2013 és 2014 kezdéssel)
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKA ALAPKÉPZÉSI SZAK (2013 és 2014 kezdéssel) Matematika képzés Az alapképzés (BSc) célja, hogy
ALGEBRA Lineáris algebra. Csoportok. Gyűrűk. Testek. Univerzális algebra. Hálók.
Érvényes: 2009-től ALGEBRA Lineáris algebra. Lineáris transzformációk és mátrixok. Bázistranszformációk. Bilineáris függvények, kvadratikus alakok négyzetösszeggé való transzformálása. Euklideszi tér,
Fizikatörténet. Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve Erlichné Dr. Bogdán Katalin Tantárgyfelelős beosztása Főiskolai docens
Tantárgy neve Fizikatörténet Tantárgy kódja FIB2405 Meghirdetés féléve 2 Kreditpont 2 Összóraszám (elm+gyak) 2+0 Számonkérés módja kollokvium Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve Erlichné
Vályi Gyula Emlékkonferencia
Vályi Gyula Emlékkonferencia Vályi Gyula Emlékkonferencia Kolozsvár, 2004. november 11 12. Erdélyi Múzeum-Egyesület Kolozsvár 2005 Erdélyi Múzeum-Egyesület Matematikai és Informatikai Szakosztály Farkas
2019-01-24 http://www.math.u-szeged.hu/bolyai/klista.phtml Balázs Csenge (demonstrátor) MBNXK112G Diszkrét matematika II. gy. (informatikus 2017) 2 gy Vályi cs 18 20 Balázs István (tudományos segédmunkatárs)
16. modul: ALGEBRAI AZONOSSÁGOK
MATEMATIK A 9. évfolyam 16. modul: ALGEBRAI AZONOSSÁGOK KÉSZÍTETTE: VIDRA GÁBOR, DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 16. modul: ALGEBRAI AZONOSSÁGOK Tanári útmutató 2 A modul célja Időkeret Ajánlott
SZTE TTIK Bolyai Intézet
Néhány érdekes végtelen összegről Dr. Németh József SZTE TTIK Bolyai Intézet Analízis Tanszék http://www.math.u-szeged.hu/ nemethj Háttéranyag: Németh József: Előadások a végtelen sorokról (Polygon, Szeged,
A LOGIKA ELEMEI. Bóta László
Bóta László MÉDIAINFORMATIKAI KIADVÁNYOK Bóta László Eger, 2011 Lektorálta: CleverBoard Interaktív Eszközöket és Megoldásokat Forgalmazó és Szolgáltató Kft. A projekt az Európai Unió támogatásával, az
BEVEZETÉS. Dr. Madaras Lászlóné 1
Szolnoki Tudományos Közlemények XIV. Szolnok, 2010. Dr. Madaras Lászlóné 1 A 19. SZÁZADI GEOMETRIAI FORRADALOM MAI SZEMMEL Százötven évvel ezelőtt halt meg Bolyai János, a 19. századi geometriai forradalom
A MATEMATIKAI ANALÍZIS TÖRTÉNETE A 17-18. SZÁZADBAN
A MATEMATIKAI ANALÍZIS TÖRTÉNETE A 17-18. SZÁZADBAN Szakdolgozat Készítette: Lukács Mónika Szak: Matematika Bsc Tanári szakirány Témavezető: Besenyei Ádám, egyetemi tanársegéd Alkalmazott Analízis és Számításmatematikai
Szakdolgozat. A matematika nagy pillanatai. Matematikatörténeti feladatok. Rózsa Bianka Matematika Bsc Elemz szakirány.
A matematika nagy pillanatai Matematikatörténeti feladatok Szakdolgozat Készítette: Rózsa Bianka Matematika Bsc Elemz szakirány Témavezet : Szabó Csaba egyetemi docens Algebra és Számelmélet Tanszék Eötvös
Költségvetési alapokmány
Költségvetési alapokmány 1) Fejezet száma és megnevezése: Fejezet száma: XXXIII. Fejezet megnevezése: Magyar Tudományos Akadémia 2.) Költségvetési szerv: a.) Azonosító adatai: Törzskönyvi nyilvántartási
TANTÁRGYFELELŐS INTÉZET: Építőmérnöki Intézet. címe:
Tantárgy rövid neve (Matematika II.) Tantárgy teljes neve (Matematika II.) Tantárgy neve angolul (Mathematics II.) Neptun kódja (SGYMMAT2012XA) Szak (Építőmérnöki szak, Menedzser szak) Tagozat (Nappali
Autonóm egyenletek, dinamikai rendszerek
238 8. Autonóm egyenletek, dinamikai rendszerek 8.8. tétel. (Andronov Witt) 5 6 Ha a Γ periodikus pálya karakterisztikus multiplikátorainak abszolút értéke 1-nél kisebb, akkor a Γ pálya stabilis határciklus.
Alkalmazott matematikus mesterszak MINTATANTERV
Alkalmazott matematikus mesterszak MINTATANTERV Tartalom A MESTERSZAK SZERKEZETE... 1 A KÉPZÉSI PROGRAM ÁTTEKINTŐ SÉMÁJA... 1 NAPPALI TAGOZAT... 2 ESTI TAGOZAT... 6 0BA mesterszak szerkezete Alapozó ismeretek
OKLEVÉLKÖVETELMÉNYEK
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK OSZTATLAN MATEMATIKATANÁR SZAK (2013 és 2014 kezdéssel) Matematikatanár szak A szak megnevezése: matematikatanár
Minden matematikai elmélet fogalmak és állítások gyűjteményeként fogható fel. Az
Az euklideszi geometria axiomatikus felépítése 1) Az axiómákra vonatkozó alapvető ismeretek Egy matematikai elmélet felépítésének alapelvei Minden matematikai elmélet fogalmak és állítások gyűjteményeként
Tematika. FDB 2208 Művelődéstörténet I. (ID 2551 Egyetemes művelődéstörténet)
Tematika FDB 2208 Művelődéstörténet I. (ID 2551 Egyetemes művelődéstörténet) 1. hét: Az emberiség őstörténete, az őskor művészete 2. hét: Az ókori Közel-Kelet 3. hét: Az ókori Egyiptom 4. hét: A minósziak
Görög csillagászat az alexandriai korszakban. A kopernikuszi fordulat március 3
Görög csillagászat az alexandriai korszakban A kopernikuszi fordulat 2015. március 3 Az alexandriai korszak A várost Nagy Sándor alapította i.e. 332-ben A hellenisztikus világ központja több száz évig
Görög csillagászat az alexandriai korszakban. A csillagászat története november 8
Görög csillagászat az alexandriai korszakban A csillagászat története 1. 2017. november 8 Az alexandriai korszak A várost Nagy Sándor alapította i.e. 332-ben A hellenisztikus világ központja többszáz évig
Osztályozó- és javítóvizsga Történelem tantárgyból 2015-2016
Osztályozó- és javítóvizsga Történelem tantárgyból 2015-2016 A félévi vizsga szóbeli vizsga az első félévre megadott témakörökből. Az év végi vizsga írásbeli vizsga (feladatlap) az egész évre megadott
A folyammenti kultúrák. (a, b, c) N 3 Pithagoraszi számhármas, ha. Pithagoraszi számhármasok, a Fermat problémakör. a 2 + b 2 = c 2.
Pithagoraszi számhármasok, Klukovits Lajos TTIK Bolyai Intézet 016. április 7. Definíciók. (a, b, c) N 3 Pithagoraszi számhármas, ha a + b = c. Az x + y = z egyenletet szokás Pithagoraszi egyenletnek nevezni.