OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Matematikus szak (régi képzés)
|
|
- Árpád Szekeres
- 8 évvel ezelőtt
- Látták:
Átírás
1 OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Matematikus szak (régi képzés) Kötelezı tárgyak, diplomamunka (mindegyik tárgy teljesítendı) M1101 Lineáris és analitikus geometria 1. M1102 Lineáris és analitikus geometria 1. gyakorlat 2 M110 Lineáris és analitikus geometria 2. M110 Lineáris és analitikus geometria 2. gyakorlat 2 M1201 Algebra és számelmélet M1202 Algebra és számelmélet gyakorlat 2 M220 Algebra 1. M220 Algebra 2. M2205 Számelmélet 5 M101 Analízis 1. M102 Analízis 1. gyakorlat 2 M10 Analízis 2. M10 Analízis 2. gyakorlat 2 M205 Analízis. 5 M206 Differenciálegyenletek 5 M208 Mérték és integrál M201 Komplex függvénytan M20 Funkcionálanalízis 1. M20 Funkcionálanalízis 2. M102 Geometria 5 M202 Differenciálgeometria 1. M20 Differenciálgeometria 2. M20 Geometriák és modelljeik M1501 Valószínőségszámítás 1. M1502 Valószínőségszámítás 1. gyakorlat 2 M2506 Valószínőségszámítás 2. M2507 Sztochasztikus folyamatok M150 Statisztika 1. M250 Numerikus analízis 1. M2505 Operációkutatás 1. I1201 Az informatika alapjai I1211 Programnyelvek M1602 vagy Matematikai logika vagy M161 Matematikai logika és halmazelmélet 1. M1701 Analízis szigorlat M270 Algebra és számelmélet szigorlat M270 Analízis és geometria szigorlat 6 M2705 Alkalmazott matematika szigorlat M90 Diplomamunka M905 Diplomamunka
2 M906 Diplomamunka. 15 M907 Diplomamunka. 15 Kötelezıen választható szakmai tárgyak (80 kredit teljesítendı, mindegyik sávból legalább 10 kredit) Algebra és számelmélet sáv M201 Kommutatív algebra M202 Csoportalgebrák M20 Automaták algebrai elmélete M20 Algebrai számelmélet M205 Diofantikus approximáció M206 Diofantikus egyenletek M207 Modern algebra M208 Véges dimenziós algebrák M210 Csoportalgebrák egységcsoportja M21 Csoportreprezentáció elmélet M219 Klasszikus kétváltozós diofantoszi egyenletek M220 vagy Additív számelmélet vagy M27 Klasszikus additív számelmélet M221 vagy Elemi és kombinatorikus számelmélet vagy M26 Kombinatorikus számelmélet M21 Véges testek és alkalmazásaik 2 M22 Számítógép a számelméletben 2 M2 Magma M25 Elliptikus görbék M28 Mátrixcsoportok M29 Rekurzív sorozatok M22 Egységek és egységegyenletek M252 Alkalmazott algebra M255 Bevezetés a homologikus algebrába M258 Hatványösszegek és polinomok Analízis sáv M0 C* algebrák M0 Parciális differenciálegyenletek M05 Ortogonális sorok M06 Fixponttételek M11 Approximációelmélet M12 Függvényegyenletek M1 Függvényegyenlıtlenségek M1 Disztribúciók és integráltranszformációk 5 M16 Konvex analízis M2 Nemsima analízis M2 Absztrakt harmonikus analízis M25 Fejezetek a valós analízisbıl M27 Banach algebrák 2
3 M28 Szublineáris analízis M Diszkrét középértékek Geometria sáv M01 Differenciálható sokaságok M02 Riemann geometria M0 Nemeuklideszi geometria M0 Általános topológia M05 Algebrai topológia M06 Projektív geometria 1. M07 Ábrázoló geometria 2 M08 Differenciálgeometriai terek M12 Lie csoportok M1 Finsler geometria M15 Geometriai szerkesztések elmélete M19 Variációszámítás M20 Vektoranalízis M26 Konvex geometria M0 Geometriai transzformációcsoportok M5 Felületelmélet Alkalmazott matematika sáv M2508 Sztochasztikus folyamatok gyakorlat 2 M50 Statisztika 2. M508 Operációkutatás 2. M515 Felújításelmélet M516 Valószínőségszámítás alkalmazásai M517 Információelmélet M518 Numerikus analízis 2. M519 Idısorok analízise M51 Pénzügyi matematika 1. M52 Pénzügyi matematika 2. M5 Biztosítási matematika 1. M5 Biztosítási matematika 2. Informatika sáv I1202 vagy Adatszerkezetek és algoritmusok vagy I1222 Adatszerkezetek és programjaik I120 Programozás 1. 5 I1205 Programozás 2. 5 I120 Operációs rendszerek 1. 5 I2201 Operációs rendszerek 2. 5 I1207 Adatbázisrendszerek 5 I101 Hardver 1. I2101 Programozáselmélet 1. 5 I10 Programozáselmélet 2.
4 I2102 Mesterséges intelligencia 1. 5 I2105 Mesterséges intelligencia 2. I210 Nyelvek és automaták 1. 5 I210 Algoritmuselmélet I202 Bevezetés a számítógépi grafikába I02 Komputergrafika I2111 Algoritmusok I10 Komputeralgebra 1. I72 Komputeralgebra 2. 2 I601 Rendszerelmélet 1. I602 Rendszerelmélet 2. I72 Kriptográfia 1. I750 Kriptográfia 2. 2 Egyik sávba se tartozó, de kötelezıen választható szakmai tárgyak M1611 Kombinatorika és gráfelmélet 5 M1612 vagy M100 Halmazelmélet vagy Matematikai logika és halmazelmélet 2. M20 Fák, hálózatok, folyamok M25 Diszkrét optimalizálás M257 Leszámlálási problémák és halmazrendszerek 5 vagy Szabadon választható szakmai tárgyak (15 kredit teljesítendı) Ide elszámolhatók a kötelezıen választható szakmai tárgyaknál elıírt krediteken felül teljesített tárgyak, valamint az alábbi tárgyak: M209 Modern algebra szeminárium 2 M211 Konstruktív algebrai számelmélet M212 Diofantikus egyenletek 2. (effektív módszerek) M21 Diofantikus egyenletek. (numerikus módszerek) M215 Keresztcsoportalgebrák elmélete M216 Nilpotens és feloldható csoportok M217 Klasszikus győrőelmélet M218 Lie algebrák M222 Analitikus számelmélet 1. M22 Analitikus számelmélet 2. M22 Lie-típusú egyszerő csoportok M225 vagy Exponenciális diofantikus egyenletek M2 M226 Válogatott fejezetek a számelméletbıl M227 Diofantoszi egyenletek végesen generált győrők felett M228 Elemi prímszámelmélet M229 Kombinatorikus módszerek a számelméletben M2 Ideálelmélet M20 Linear Forms in Logarithms and Diophantine Equations M21 Rekurzív sorozatok 2.
5 M2 Csoportelméleti algoritmusok M25 vagy Algebrai kódelmélet vagy M70 Kódelmélet M259 Effektív módszerek a szuperelliptikus egyenletek elméletében M260 Algebrai algoritmusok és alkalmazásaik M07 Ortogonális sorok 2. M15 A von Neumann algebrák elméletének alapjai M17 Uniform terek M18 Extrémum problémák M20 Halmazértékő analízis M21 Konvolúciókalkulus M22 Integrálelmélet M26 Operátoralgebrák leképezései M0 Analízis számítógéppel M1 Függvényegyenletek stabilitása M2 Függvényegyenletek és -egyenlıtlenségek szeminárium 2 M Parciálisan rendezett halmazok M5 Diszkrét differenciaegyenletek M6 Absztrakt dinamikai rendszerek M8 Analitikus testmodellek M9 Diszkrét középértékek és egyenlıtlenségek M5 Függvényegyenletek feladatokban M55 Információmértékek M56 Alkalmazott analízis M206 vagy I01 Számítógépes geometria vagy Komputergeometria 5 vagy M09 Szövetgeometria M10 Téridı geometria M11 Konnexióelmélet M1 Differenciáltopológia M16 Szemléletes geometria M17 Analízis sokaságokon M18 Kinematikai geometria M21 Véges geometriák M22 Differenciálgeometriai terek 2. M2 Spektrálgeometria M2 Sík- és térgeometriai feladatok megoldása vetítéssel M25 Összegzı fejezetek a geometriából M27 Elemi nemeuklideszi geometriák M28 Tér- és síkgeometria M29 Quasigroups and Geometry M51 Stabilitáselmélet M5 Túlhatározott parciális differenciálegyenletrendszerek M505 vagy Többváltozós statisztika M56 M506 Térstatisztikák 2 M509 Játékelmélet M511 Martingálelmélet M512 Valószínőségszámítás. vagy 5
6 M51 Sztochasztikus integrálok M520 Fejezetek az idısoranalízis alkalmazásaiból 2 M521 Numerikus analízis problémák absztrakt terekben M522 Bevezetés a sorbanállási elméletbe és alkalmazásaiba M52 Valószínőségszámítási problémák M525 Kaotikus jelenségek 2 M526 Portfólió- és kockázatmenedzsment 2 M57 Opcióelmélet M551 Sztochasztikus algoritmusok M606 Általános statisztika M608 Nemlineáris programozás 1 M616 Általános statisztika 2. M705 Valószínőségszámítás a fizikában 2 M707 Numerikus módszerek a gyakorlatban 2 M708 Kombinatorikus optimalizálás A60 Projektív geometria 2. A8 Válogatott gyakorlatok projektív geometriából 2 M1600 Matematikai fogalmak angol nyelven 2 M160 A Course in Modal Logic M160 Non-Classical Logic M2602 Kiválasztási axióma függetlensége M806 Matematika története M808 Az analízis fejlıdése I109 Nem-klasszikus logikák Kötelezıen választható nem szakmai, természettudományi tárgyak (20 kredit teljesítendı) Ajánlottak a következık: F1120 Általános fizika II/1. F1121 Általános fizika II/1. gyakorlat 2 F1122 Általános fizika II/2. F112 Általános fizika II/2. gyakorlat 2 F1212 Bevezetés az elméleti fizikába 1. F121 Bevezetés az elméleti fizikába 2. F12 Anyagszerkezet alapjai F261 Számítógépes fizika Egyéb szabadon választható tárgyak, értelmiségi modul (15 kredit teljesítendı) 9 kredit természettudományi és 6 kredit nem természettudományi tárgy 6
7 Megjegyzések: 1. Az oklevélkövetelmények ezen módosított változata a 2009/2010-es tanév II. félévében vagy azt követıen abszolutóriumot szerzıkre maradéktalanul vonatkozik. (A 2009/2010-es tanév I. félévében végzı hallgatók megfelelıen indokolt esetben kezdeményezhetik a felsoroltakon kívül korlátozott számú tárgy beszámítását. A továbbiakban viszont a felsoroltakon kívül más tárgyak elfogadására nincs mód.) 2. Minden tantárgy csak egy helyre számolható el.. Az alábbi tárgyak beszámítására (pl. szakváltás vagy párhuzamosan végzett szakok esetén) tárgyelfogadási kérelem benyújtása után van lehetıség. Fontos, hogy a leckekönyv hátuljában az elfogadás tényével együtt a matematikus szak oklevélkövetelményeiben szereplı kód is megjelenjen. más szak tárgya matematikus szak tárgya M2206: Számelmélet M2205: Számelmélet M205: Differenciálgeometria M202: Differenciálgeometria 1. M2509: Sztochasztikus folyamatok M2507: Sztochasztikus folyamatok M1601+M161: Kombinatorika és M1611: Kombinatorika és gráfelmélet gráfelmélet M251: Fák és hálózatok M20: Fák, hálózatok, folyamok M256: Algoritmusok diofantikus egyenletek megoldására M219: Klasszikus kétváltozós diofantikus egyenletek. Új, BSc-s vagy MSc-s kódú (TMBE, TMBG, TMME, TMMG) tantárgy beszámítására nincs lehetıség. A Matematikai Intézet igyekszik a tárgyakat a régi képzés kódjaival is rendszeresen meghirdetni. A régi és új képzés elsı közös féléveiben elıfordulhatott ennek elmaradása, ezért ha valamelyik tárgy ilyen kóddal lett teljesítve, akkor tárgyelfogadási kérelmet kell benyújtani. Itt is fontos, hogy a leckekönyv hátuljában az elfogadás tényével együtt a matematikus szak oklevélkövetelményeiben szereplı kód is megjelenjen. Debrecen, december 11. Dr. Pintér Ákos s.k. intézetigazgató 5. A 2002-ben vagy korábban felvételt nyert matematikus szakos hallgatókra az akkori oklevélkövetelmények alapján a fentiek a következı módosítással érvényesek: A kötelezıen választható szakmai tárgyakból 50 kredit teljesítendı (mindegyik sávból legalább 8 kredit), a szabadon választható szakmai tárgyak közül pedig 9 kredit. (Kötelezıen választható nem szakmai, természettudományi tárgyak esetükben nincsenek, az értelmiségi modulból 20 kredit teljesítendı.) Debrecen, február 1. Dr. Pintér Ákos s.k. intézetigazgató 7
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Alkalmazott matematikus szak (régi képzés)
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Alkalmazott matematikus szak (régi képzés) A három A modul és a két B modul közül egyet-egyet kell választani. Kötelezı tárgyak, diplomamunka, szakmai gyakorlat
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Kétszakos matematikatanár szak (régi képzés)
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Kétszakos matematikatanár szak (régi képzés) Kötelezı tárgyak, szakdolgozat (mindegyik tárgy teljesítendı, a szakdolgozat írható a másik szakból) kód tárgynév kredit
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés)
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés) Kötelez tárgyak, szakdolgozat (mindegyik tárgy teljesítend ) M1101 Lineáris és analitikus geometria 1. M1102 Lineáris
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS BUDAPEST 2013 Matematikus mesterszak 2013 Szakleírás Képzési idı: 4 félév A szak indításának tervezett idıpontja: 2013.
A DE Matematika- és Számítástudományok Doktori Iskola képzési terve
A DE Matematika- és Számítástudományok Doktori Iskola képzési terve (érvényes a 2016. szeptember 1-től belépő doktoranduszokra) A DI és programjai Az 1993-ban létrehozott Matematika Doktori Programból
Alkalmazott matematikus mesterszak MINTATANTERV
Alkalmazott matematikus mesterszak MINTATANTERV Tartalom A MESTERSZAK SZERKEZETE... 1 A KÉPZÉSI PROGRAM ÁTTEKINTŐ SÉMÁJA... 1 NAPPALI TAGOZAT... 2 ESTI TAGOZAT... 6 0BA mesterszak szerkezete Alapozó ismeretek
- Matematikus szeptemberétől
- Matematikus Matematika alapszak - Tanári szakirányok mintatanterve 2006. szeptemberétől "A" típusú tantárgyak 7 8 9 10 Környezettani alapismeretek AIB1004 2 0 K 2 KT Dr. Kiss Ferenc X Általános gazdasági
- Matematikus. tanszék/ Tantárgyfelelős oktató neve szeptemberétől
- Matematikus Matematika alapszak - Tanári szakirányok mintatanterve "A" típusú tantárgyak 2006. szeptemberétől 7 8 9 10 tanszék/ oktató neve Környezettani alapismeretek AIB1004 2 0 K 2 KT Dr. Kiss Ferenc
TMBE0301 Trigonometria és koord. geom. 2 E 2 1 Matematika BSc közös köt Vincze Csaba M426 Sz 12-14
Kód Tárgy kred it Ea/ Gyak Matematikai Intézet Óra szá m Évfo lyam Szakirány Oktató Terem Időpont TMBE0301 Trigonometria és koord. geom. 2 E 2 1 Matematika BSc közös köt Vincze Csaba M426 Sz 12-14 TMBG0301
1. Az informatika alapjai (vezetője: Dr. Dömösi Pál, DSc, egyetemi tanár) Kredit
2. MELLÉKLET Az oktatási koncepciója 1. Az informatika alapjai (vezetője: Dr. Dömösi Pál, DSc, egyetemi tanár) Az informatika alapjai Tud. Min. 1 Automata hálózatok 2 V Dr. Dömösi Pál DSc 2 Automaták és
Fizikus Analízis 1 ea Meteorológus Analízis 1 ea Tanári Analízis 2 ea. Fizikus Analízis 1 gyak Meteorológus Analízis 1 gyak Tanári Analízis 2 gyak
KÖZÖS: BSc-s tantárgy Ekvivalens tantárgy megnevezése szintje kódja megnevezése kódja Bevezető matematika mm1n2bm1 Kizárólag a megfelelően megírt félév eleji teszt ad felmentést. Analizis 1 ea Analízis
Matematika alapszak (BSc) 2015-től
Matematika alapszak (BSc) 2015-től módosítva 2015. 08. 12. Nappali tagozatos képzés A képzési terv tartalmaz mindenki számára kötelező tárgyelemeket (MK1-3), valamint választható tárgyakat. MK1. Alapozó
A programozó matematikus szak kredit alapú szakmai tanterve a 2003/2004. tanévtől, felmenő rendszerben
A programozó matematikus szak kredit alapú szakmai tanterve a 2003/2004. tanévtől, felmenő rendszerben Szak neve: programozó matematikus szak Tagozat: levelező Képzési idő: 6 félév Az oktatás nyelve: magyar
A programozó matematikus szak kredit alapú szakmai tanterve a 2004/2005. tanévtől, felmenő rendszerben
A programozó matematikus szak kredit alapú szakmai tanterve a 2004/2005. tanévtől, felmenő rendszerben Szak neve: programozó matematikus szak Tagozat: nappali Képzési idő: 6 félév Az oktatás nyelve: magyar
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS BUDAPEST 2013 ALKALMAZOTT MATEMATIKUS MESTERSZAK (2013 ) Képzési idő: 4 félév A szak indításának tervezett
2006. szeptemberétől. kódja
- Programtervező informatikus Programtervező informatikus alapszak - Tanári szakirányok mintatanterve 2006. szeptemberétől "A" típusú tantárgyak 1 2 3 4 5 6 7 8 9 10 Tantágy neve Tantárgy kódja Heti Tantárgyfelelős
Nem tanári mesterképzést követően ugyanazon szakmából a középiskolai tanári szakképzettség megszerzése 2 félév, 60 kredit
Tantárgykód Tanári felkészítés Gyakorlat Nem tanári mesterképzést követően ugyanazon szakmából a középiskolai tanári szakképzettség megszerzése Tantárgynév 2 félév, 60 kredit Számon- kérés Kredit kreditszáma
Egyetemi szintű Közgazdasági programozó matematikus szak nappali tagozat (GEEP)
Egyetemi szintű Közgazdasági programozó matematikus szak nappali tagozat (GEEP) Tárgykód Félév Tárgynév Ea. Gy. Köv. Kr. GEIAL211N 1 Programozás alapjai I. 2 2 G 5 - METES001GE1 1 Testnevelés 0 2 A 0 GEMAN151N
2019-01-24 http://www.math.u-szeged.hu/bolyai/klista.phtml Balázs Csenge (demonstrátor) MBNXK112G Diszkrét matematika II. gy. (informatikus 2017) 2 gy Vályi cs 18 20 Balázs István (tudományos segédmunkatárs)
A 2018-as Modellező (A) specializáció tanegységei. Számítógépes rendszerek
Programtervező informatikus Sc 2017,,, 2008 illetve programtervező informatikus 2018 Modellező (), Szoftvertervező (), Szoftverfejlesztő (), esti () inak tantárgyi lefedései 2017-es 2017-es 2017-es 2008-as
Alkalmazott matematikus mesterszak
Alkalmazott matematikus mesterszak Szakirányok: alkalmazott analízis, operációkutatás, számítástudomány, sztochasztika Képzési idő: 4 félév A szak indításának időpontja: 2009. 09. 01. A szakért felelős
Matematikus mesterszak. ELTE TTK jan. 22.
Matematikus mesterszak ELTE TTK 2019. jan. 22. Miért menjek matematikus mesterszakra? Lehetséges válaszok: 1. Mert érdekel a matematika. 2. Mert szeretnék doktori fokozatot szerezni. 3. Mert külföldre
Kurzuskód Kurzus címe, típusa (ea, sz, gy, lab, konz stb.) Tárgyfelelős Előfeltétel (kurzus kódja) típusa
Az Intézet minden előadás és gyakorlatból álló tárgyánál az előadás és a gyakorlat párhuzamos felvétele, az előadások vizsgáinak a gyakorlat teljesítettsége feltétel. Szak neve: Programtervező informatikus
MATEMATIKA. Osztatlan tanárképzés
MATEMATIKA Osztatlan tanárképzés MINTATANTERV közös 6 félév Színmagyarázat: piros matematika BSc szakkal közös kurzus zöld pedagógiai és pszichológiai kurzusok kék közös kurzus a második szakasz 8 féléves
Záróvizsga tételek matematikából osztatlan tanárszak
Záróvizsga tételek matematikából osztatlan tanárszak A: szakmai ismeretek; B: szakmódszertani ismeretek Középiskolai specializáció 1. Lineáris algebra A: Lineáris egyenletrendszerek, mátrixok. A valós
INFORMATIKA OKTATÁS A KLTE-N 1
INFORMATIKA OKTATÁS A KLTE-N 1 Juhász István, pici@math.klte.hu KLTE, Matematikai és Informatikai Intézet, Információ Technológia Tanszék Abstract The Institute of Mathematics and Informatics of Kossuth
DEBRECENI EGYETEM TERMÉSZETTUDOMÁNYI ÉS TECHNOLÓGIAI KAR MATEMATIKAI INTÉZET
DEBRECENI EGYETEM TERMÉSZETTUDOMÁNYI ÉS TECHNOLÓGIAI KAR MATEMATIKAI INTÉZET A matematika tanár szakos levelező képzés konzultációinak beosztása a 2017/2018-as tanév I. félévében Az alábbi órarendben elkülönítve
Adatlap alapszak megnevezése Matematika alapképzési szak szakképzettség Alapokleveles matematikus szakirány
I. Adatlap 3. Az indítandó alapsza megnevezése: Matematia alapépzési sza 4. Az olevélben szereplő szaépzettség megnevezése: Alapoleveles matematius 5. Az indítani tervezett szairány(o) megnevezése: matematia-x
A matematikatanári szak kredit alapú szakmai tanterve a 2002/2003 tanévtől, felmenő rendszerben
A matematikatanári szak kredit alapú szakmai tanterve a 2002/2003 tanévtől, felmenő rendszerben Szak : matematikatanári szak Tagozat: nappali Képzési idő: 8 félév Az oktatás nyelve: magyar A megszerezhető
Matematika MSc záróvizsgák (2015. június )
Június 23. (kedd) H45a 12.00 13.00 Bizottság: Simonovits András (elnök), Simon András, Katona Gyula Y., Pap Gyula (külső tag) 12.00 Bácsi Marcell Közelítő algoritmusok és bonyolultságuk tv.: Friedl Katalin
Összeállította Horváth László egyetemi tanár
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011
ELTE, matematika alapszak
ELTE, matematika alapszak Mire készít fel a matematika szak? Matematikai gondolkodásra Ez az élet szinte minden területén nagyon hasznos Tipikus elhelyezkedési lehetőségek: Matematikus: kutató, egyetemi
Kurzus címe, típusa (ea, sz, gy, lab, konz stb.) Tárgyfelelős Előfeltétel (kurzus kódja) Előfeltétel típusa
Az Intézet minden előadás és gyakorlatból álló tárgyánál az előadás és a gyakorlat párhuzamos felvétele, az előadások vizsgáinak a gyakorlat teljesítettsége feltétel. Szak neve: Programtervező informatikus
A levelezős konzultációs rend formátuma
A levelezős konzultációs rend formátuma Programtervező informatikus Szak I. Évfolyam 2010/2011/2 Tanév/félév 02.04. 8.-11. PMB 1208 L Hálózati architektúrák és osztott rendszerek D7 11.-16. PMB 1205 L
IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata
IKP-9010 Számítógépes számelmélet 1. EA IK Komputeralgebra Tsz. IKP-9011 Számítógépes számelmélet 2. EA IK Komputeralgebra Tsz. IKP-9021 Java technológiák IK Prog. Nyelv és Ford.programok Tsz. IKP-9030
IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata
IKP-9010 Számítógépes számelmélet 1. EA IK Komputeralgebra Tsz. IKP-9011 Számítógépes számelmélet 2. EA IK Komputeralgebra Tsz. IKP-9021 Java technológiák IK Prog. Nyelv és Ford.programok Tsz. IKP-9030
Önéletrajz. Burai Pál Debreceni Egyetem, Informatikai Kar Alkalmazott Matematika és Valószín ségszámítás Tanszék
Önéletrajz Burai Pál Debreceni Egyetem, Informatikai Kar Alkalmazott Matematika és Valószín ségszámítás Tanszék Személyes adatok Név: Burai Pál Végzettség: Okleveles matematikus (2003, DE-TTK) Tudományos
Programtervező informatikus MSc nappali tagozat ajánlott tanterv 2018
Előadás Előadás Programtervező informatikus MSc nappali tagozat ajánlott tanterv 2018 Szoftvertechnológia specializáció (törzsanyaggal együtt) Törzsanyag IPM-18KMTGY Kutatásmódszertan 0 2 Gy 1 3 1 0+2+1
Programtervező informatikus MSc nappali tagozat ajánlott tanterv 2018
Előadás Előfeltétel Előadás Előfeltétel Programtervező informatikus MSc nappali tagozat ajánlott tanterv 018 Szoftvertechnológia specializáció (törzsanyaggal együtt) Törzsanyag IPM-18KMTGY Kutatásmódszertan
OKLEVÉLKÖVETELMÉNYEK. MATEMATIKA ALAPKÉPZÉSI SZAK (2013 és 2014 kezdéssel)
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKA ALAPKÉPZÉSI SZAK (2013 és 2014 kezdéssel) Matematika képzés Az alapképzés (BSc) célja, hogy
Programtervező informatikus BSc 2018, Szoftverfejlesztő specializáció ajánlott tantervi háló. Törzsanyag. Konzultáció Kredit
Programtervező informatikus BSc 2018, Szoftverfejlesztő specializáció ajánlott tantervi háló Törzsanyag IP-18SZGREG Számítógépes rendszerek 2 X 2 Gy 1 5 1 2+2+1 Informatika IP-18PROGEG Programozás 2 X
A mesterképzésbe történő belépésnél előzményként elfogadott szakok: A mesterképzésbe való belépéshez szükséges minimális kreditek száma 65
Mesterképzési alkalmazott matematikus Biológus fizikus mesterképzés A mesterképzésbe történő belépésnél előzményként elfogadott ok: matematika alapképzési A mesterképzésbe való belépéshez szükséges minimális
Tartalom: 1 A PHD KÉPZÉS ELEMEI
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Matematika- és Számítástudományok Doktori Iskola Képzési terv a 2016. szeptember 1 után induló doktori képzésre Tartalom: 1. A PHD KÉPZÉS ELEMEI 2. ELSAJÁTÍTANDÓ
Tantárgyi tematikák 2004/2005
DEBRECENI EGYETEM MATEMATIKAI INTÉZET Levélcím: 4032 Debrecen Pf. 12., e-mail: office@math.klte.hu Tel: 36 52/512 900/2504 Fax: 36 52/416-857 Tantárgyi tematikák 2004/2005 A3460 Projektív geometria 2...
ELTE, matematika alapszak
Matematika alapszak szerkezete 1. év ELTE, matematika alapszak NORMÁL Kb 60 fő (HALADÓ) Kb 40 fő INTENZÍV Kb 30 fő Zempléni András oktatási igazgatóhelyettes Matematikai Intézet matematikai elemző 2. és
Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam
Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az
Oktatott tárgyak a 2017/18. tanév I. félévében
Oktatott tárgyak a 2017/18. tanév I. félévében Tanító szak A felépítés és a működés kapcsolata a természetben A matematikai nevelés elméleti alapjai I. A pedagógus mesterség információ- és kommunikáció
Programtervező informatikus. Tanári. szakirányok mintatanterve. 2006. szeptemberétől
Programtervező informatikus alapszak - - Programtervező informatikus Tanári szakirányok mintatanterve 2006. szeptemberétől "A" típusú tantárgyak oktató neve Diszkrét matematika PMB1101 2 2 K 5 MI Dr. Kurdics
Programtervező informatikus BSc, Modellalkotó informatikus (A) szakirány, 2008-tól
Programtervező informatikus BSc, Modellalkotó informatikus (A) szakirány, 2008-tól IP-08MATAG Matematikai alapozás 2 HFE -1 1-1 0+2 HFE IP-08aAN1E Analízis 1 2 K 1 3 IP-08MATA 2 2+0 K IP-08aAN1G Analízis
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKUS MESTERKÉPZÉSI SZAK
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKUS MESTERKÉPZÉSI SZAK Matematikus mesterszak Az oklevélben szereplı megnevezés: okleveles matematikus
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKUS MESTERKÉPZÉSI SZAK
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKUS MESTERKÉPZÉSI SZAK Általános tudnivalók Felvételi: Matematikus MSc szakra feltétel nélkül jelentkezhetnek
E L T E I K I N F O R M A T I K A T A N Á R I S Z A K N A P P A L I T A G O Z A T B U D A P E S T, 2003.
E L T E I K I N F O R M A T I K A T A N Á R I S Z A K N A P P A L I T A G O Z A T B U D A P E S T, 2003. I. A képzés általános leírása Az Informatika tanár szakképzettség megszerzése a 166/1997.(X.3.)
A Magyar Tudomány Ünnepe Messze látó tudomány: felelős válaszok a jövőnek
Debreceni Egyetem, Természettudományi és Technológiai Kar, Matematikai Intézet A Debreceni Akadémiai Bizottság Matematikai Munkabizottsága A Magyar Tudomány Ünnepe Messze látó tudomány: felelős válaszok
MATEMATIKA alapszak Szakindítási kérelem
MATEMATIKA alapszak Szakindítási kérelem Baccalaureus képzés 005 III. Az alapképzési szak tanterve és a tantárgyi programok leírása 1. A szak tantervét táblázatban összefoglaló, krediteket is megadó, óra
Eötvös Loránd Tudományegyetem Természettudományi Kar Matematikai Intézet. Matematikus mesterképzési szak indítására irányuló kérelem
Eötvös Loránd Tudományegyetem Természettudományi Kar Matematikai Intézet Matematikus mesterképzési szak indítására irányuló kérelem ELTE TTK Matematikai Intézet 2007 Tartalomjegyzék I. Adatlap... 3 II.
Csomós Petra. Loránd Tudományegyetem, Budapest. függvénytan, valós és komplex vonalintegrál)
Oktatási és témavezetői tevékenység Csomós Petra 1. Oktatás 2001.09 12. 2003.09 12. 2001.02 06. 2003.02 06. 2002.09 12. 2004.09 12. 2003.02 06. 2005.02 06. Analízis I. gyakorlat meteorológus és geofizikus
PROGRAMTERVEZŐ INFORMATIKUS ALAPKÉPZÉSI SZAK
PROGRAMTERVEZŐ INFORMATIKUS ALAPKÉPZÉSI SZAK 1. Az alapképzési szak megnevezése: programtervező informatikus (Computer Science) 2. Az alapképzési szakon szerezhető végzettségi szint és a szakképzettség
Számonkérés Tárgyfelelős Előfeltétel JEL ó kr ó kr ó kr ó kr ó kr ó kr ó kr ó kr ó kr ó kr
MBNX122uje MBNX122ujg Közös képzési szakasz 168 182 Össz 30 30 28 31 30 33 26 31 25 27 29 30 0 0 0 0 0 0 0 0 Pusztai Béla Kalkulus I. fizikusoknak ea gy 4 4 koll. gyj. 1 SZ1 4 4 Gábor FTN102g Fizikai praktikum
Matematika. Specializáció. 11 12. évfolyam
Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Int 1.4 Szakterület
2.2 Logisztorik (Gindilla Orsolya) 2012. szeptember 2.3 Barangolás a nagyotmondók földjén (Gindilla Orsolya) 3. Halmazelmélet
Tartalomjegyzék Az Ön könyve tartalmazza Tartalomjegyzék Szerzők Használati útmutató A megjelenés dátuma A GONDOLKODÁSI MÓDSZEREK 2. Logika 2.1 Képes sudoku kezdőknek (Tariné Berkes Judit Katalin) 2.2
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉSI SZAK
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉSI SZAK Alkalmazott matematikus mesterszak Az oklevélben szereplı megnevezés:
1. ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉSI SZAK 1. A mesterképzési szak megnevezése: alkalmazott matematikus 2. A mesterképzési szakon szerezhető
1. ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉSI SZAK 1. A mesterképzési szak megnevezése: alkalmazott matematikus 2. A mesterképzési szakon szerezhető végzettségi szint és a szakképzettség oklevélben szereplő
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKUS MESTERKÉPZÉSI SZAK
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKUS MESTERKÉPZÉSI SZAK Általános tudnivalók Felvételi: Matematikus MSc szakra feltétel nélkül jelentkezhetnek
Csomós Petra. Loránd Tudományegyetem, Budapest. függvénytan, valós és komplex vonalintegrál)
Oktatási és témavezetői tevékenység Csomós Petra 1. Oktatás 2001.09 12. 2003.09 12. 2001.02 06. 2003.02 06. 2002.09 12. 2004.09 12. 2003.02 06. 2005.02 06. Analízis I. gyakorlat meteorológus és geofizikus
A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok.
ZÁRÓVIZSGA TÉMAKÖRÖK egyetemi szintű közgazdasági programozó matematikus szakon A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. 2. Függvények, függvények folytonossága.
B S C M A T E M A T I K A T A N Á R I S Z A K I R Á N Y E L T E T T K Az alábbiakban összefoglaljuk az ELTE TTK matematika alapszak (más
B S C M A T E M A T I K A T A N Á R I S Z A K I R Á N Y E L T E T T K 2 0 0 8 Az alábbiakban összefoglaljuk az ELTE TTK matematika alapszak (más néven matematika BSc) tanári szakirányára vonatkozó legfontosabb
Véges geometria és ami mögötte van
Véges geometria és ami mögötte van Bogya Norbert Bolyai Intézet, Szegedi Tudományegyetem Doktori Nyílt Nap 2015. október 2. Bogya Norbert (Bolyai Intézet) Véges geometria és... Doktori Nyílt Nap 1 / 30
ALAPKÉPZÉS SZAKINDÍTÁS
I. A KÉPZÉS TARTALMA I.1 A képzés programja; a szak tanterve (az óra és vizsgaterv táblázatos összegzése) ismeretkörök a *KKK. 8.1. alapján félévek tantárgy számonkérés és tantárgyaik 1. 2. 3. 4. 5. 6.
Matematika emelt szint a 11-12.évfolyam számára
Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka
Matematika Doktori Iskola
Matematika Doktori Iskola Tudományág megnevezése: matematikai és számítástudományok Képzési forma: doktori (Ph.D.) képzés Képzési cél: a tudományos fokozat megszerzésére való felkészítés, felsőoktatási
ALGEBRA Lineáris algebra. Csoportok. Gyűrűk. Testek. Univerzális algebra. Hálók.
Érvényes: 2009-től ALGEBRA Lineáris algebra. Lineáris transzformációk és mátrixok. Bázistranszformációk. Bilineáris függvények, kvadratikus alakok négyzetösszeggé való transzformálása. Euklideszi tér,
Kérelem matematika alapképzési szak létesítésére. Szakirányok: matematikus szakirány matematika-x szakos tanári szakirány
2004/3/II/3 sz MAB határozat Útmutató Kérelem matematika alapképzési szak létesítésére Szakirányok: matematikus szakirány matematika-x szakos tanári szakirány 1 200457 1 számú útmutató A felsőoktatási
Szak neve: Gazdaságinformatikus MSc Szakfelelős: Csendes Tibor Nappali tagozat félévek
Az Intézet minden előadás és gyakorlatból álló tárgyánál az előadás és a gyakorlat párhuzamos felvétele, az előadások vizsgáinak a gyakorlat teljesítettsége feltétel. Szak neve: Gazdaságinformatikus MSc
Óbudai Egyetem. Neumann János Informatikai Kar Alkalmazott Matematikus mesterszak Szakindítási kérelem
Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Matematikus mesterszak Szakindítási kérelem Budapest, 2012 1 Tartalom I. BEVEZETÉS... 3 II. ADATLAP... 4 II.1 SZENÁTUS TÁMOGATÓ HATÁROZATA... 6
Milyen a modern matematika?
Milyen a modern matematika? Simonovits Miklós Milyen a modern matematika? p.1 Miért rossz ez a cím? Nem világos, mit értek modern alatt? A francia forradalom utánit? Általában olyat tanulunk, amit már
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
A számítástechnika-tanári szak kredit alapú szakmai tanterve a 2002/2003 tanévtől, felmenő rendszerben
A számítástechnika-tanári szak kredit alapú szakmai tanterve a 2002/2003 tanévtől, felmenő rendszerben Szak : számítástechnika-tanári Tagozat: nappali Képzési idő: 8 félév Az oktatás nyelve: magyar A megszerezhető
Tárgyfelelős kódja, címe)
Az Intézet minden előadás és gyakorlatból álló tárgyánál az előadás és a gyakorlat párhuzamos felvétele, az előadások vizsgáinak a gyakorlat teljesítettsége feltétel. Szak neve: Mérnök informatikus BSc
Matematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti
Matematika 9. nyelvi előkészítő évfolyam Témakörök Gondolkodási és megismerési módszerek Számtan, algebra Összefüggések, függvények, sorozatok Geometria, mérés Statisztika, valószínűség Év végi összefoglaló
6. INFORMATIKA DOKTORI ISKOLA. Informatikai Kar
6. INFORMATIKA DOKTORI ISKOLA Informatikai Kar Tudományág megnevezése: Képzési forma: Képzési cél: Képzési idő: Tagozat: Finanszírozás: A képzésbe történő belépés követelménye: Nyelvi követelmények: A
OKLEVÉLKÖVETELMÉNYEK. ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉSI SZAK (2015 és 2016 kezdéssel)
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉSI SZAK (2015 és 2016 kezdéssel) Általános tudnivalók Felvételi: Alkalmazott
MATEMATIKA - STATISZTIKA TANSZÉK
MATEMATIKA - STATISZTIKA TANSZÉK 1. A Kodolányi János Főiskolán végzett kutatások Tananyagfejlesztés A kutatási téma címe, rövid leírása Várható eredmények vagy célok; részeredmények Kutatás kezdete és
Önéletrajz SZILÁGYI BRIGITTA SZEMÉLYES ADATOK:
Önéletrajz SZILÁGYI BRIGITTA SZEMÉLYES ADATOK: KÉPZETTSÉG: Születési hely és idő: Debrecen, 1973. 11. 03. Állampolgárság: magyar Email: szilagyi@math.bme.hu Honlap: www.math.bme.hu/~szilagyi 1992 1997:
MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok
MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve
A Magyar Tudomány Ünnepe Emberközpontú tudomány
DEBRECENI EGYETEM, TERMÉSZETTUDOMÁNYI ÉS TECHNOLÓGIAI KAR, MATEMATIKAI INTÉZET DEBRECENI AKADÉMIAI BIZOTTSÁG, MATEMATIKAI MUNKABIZOTTSÁG A Magyar Tudomány Ünnepe Emberközpontú tudomány A matematika felfedezése
MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI
A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja
INFORMATIKAI TUDOMÁNYOK DOKTORI ISKOLA MINŐSÉGBIZTOSÍTÁSI TERVE
INFORMATIKAI TUDOMÁNYOK DOKTORI ISKOLA MINŐSÉGBIZTOSÍTÁSI TERVE Prof. Dr. Pethő Attila, egyetemi tanár vezetője Debrecen, 2008 Az minőségbiztosításának tervezete Az programjaiban szervezett képzésre nappali
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKATANÁRI MESTERKÉPZÉSI SZAK
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKATANÁRI MESTERKÉPZÉSI SZAK Matematikatanári mesterszak A mesterképzési szak megnevezése: tanári
Tanulmányi és Vizsgaszabályzat Társadalomtudományi Kar. Melléklet
Tanulmányi és Vizsgaszabályzat Társadalomtudományi Kar Melléklet I. a nemzetközi kapcsolatok szakos közgazdász, politológus-közgazdász, szociológusközgazdász, szociálpolitikus-közgazdász, nemzetközi tanulmányok,
nappali tagozat, tanítói szak TAN05MSZ Szigorlati követelmények és tételek Vizsgatematika A szigorlat követelményei:
Matematika Tanszék Matematika műveltségi terület, nappali tagozat, tanítói szak TAN05MSZ Szigorlati követelmények és tételek A szigorlat követelményei: Vizsgatematika A hallgató legyen képes 15-20 perces
,,BABEŞ-BOLYAI TUDOMÁNYEGYETEM LINEÁRIS ALGEBRA
,,BABEŞ-BOLYAI TUDOMÁNYEGYETEM Andrei Mărcuş LINEÁRIS ALGEBRA ii ELŐSZÓ A lineáris algebra tárgya a lineáris terek és leképezések vizsgálata. Eredete a vektorok és a lineáris egyenletrendszerek tanulmányozására
Mérnök informatikus mesterképzési szak. képzési és kimeneti követelményei
Mérnök informatikus mesterképzési szak képzési és kimeneti követelményei 1. A mesterképzési szak megnevezése: mérnök informatikus (Engineering Information Technology) 2. A mesterképzési szakon szerezhető
Mérnök informatikus BSc szak nappali tagozat tanterve a nagykanizsai képzési helyen
Mérnök informatikus BSc szak nappali tagozat tanterve a nagykanizsai képzési helyen Elfogadta a MIK Kari Tanácsa a 2008. május 7-i ülésén Érvényes: A 2007/08-as tanévtıl kezdve felmenı szerben, valamint
OKLEVÉLKÖVETELMÉNYEK. MATEMATIKA ALAPKÉPZÉSI SZAK (2006 vagy 2007 kezdéssel)
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKA ALAPKÉPZÉSI SZAK (2006 vagy 2007 kezdéssel) Matematika képzés Az alapképzés (BSc) célja, hogy
Az ELTE tanári mesterszakos képzésének matematika szakterületi moduljai, 2012
Az ELTE tanári mesterszakos képzésének matematika szakterületi moduljai, 2012 Mint ismeretes, a tanári mesterszakos képzés modulokból áll össze. A képzés során a szakterületi modul(ok) mellett a hallgatóknak
MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények
MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,