Matematikus mesterszak. ELTE TTK jan. 22.
|
|
- Rebeka Mészáros
- 6 évvel ezelőtt
- Látták:
Átírás
1 Matematikus mesterszak ELTE TTK jan. 22.
2 Miért menjek matematikus mesterszakra? Lehetséges válaszok: 1. Mert érdekel a matematika. 2. Mert szeretnék doktori fokozatot szerezni. 3. Mert külföldre szeretnék menni. 4. Mert könnyen szeretnék álláshoz jutni. 5. Mert szeretnék sok pénzt keresni. 6. Mert híres szeretnék lenni. 7. (kitöltendő)..
3 1. Érdekel a matematika Mégis: Mit lehet tanulni a matematikus mesterszakon, és hogyan? Mit? Majdnem mindent Algebrát, analízist, kombinatorikát, számelméletet, topológiát, geometriát, valószínűségszámítást, operációkutatást, differenciálegyenleteket Hogyan? Kurzusok hallgatásával, szemináriumokon való részvétellel, egyéni kutatómunkával, diplomamunka írásával És (szinte) nincsenek kötöttségek!
4 A mesterszak szerkezete 4 félév választéka: A) 15 tárgy az alapozásban (általában nem kell) B) 23 tárgy a szakmai törzsanyagban C) 100 tárgy a differencált szakmai anyagban Megszerzendő: (15 kredit) + 40 kredit + 39 kredit + 6 kredit + 20 kredit A B C szabad szakdolgozat
5 Néhány mesterszakos szakdolgozat 1. Rangfüggvények a Baire α függvényosztályokon (valós analízis) 2. Galois-reprezentációk (algebra) 3. Szimmetrikus szubmoduláris függvények és alkalmazásaik (kombinatorikus optimalizálás) 4. Integrálgeometriai formulák (geometria) 5. Hiperfelület-szingularitások és invariánsaik (differenciáltopológia, algebrai geometria) 6. Elliptikus görbék (algebrai számelmélet) 7. Modellelméleti spektrumfüggvények és algebrai logika (algebrai logika) 8. Egész Carathéodory tulajdonság matroid bázisaira (kombinatorika) 9. Törtrendű Szoboljev-terek (funkcionálanalízis)
6 Előnyök és hátrányok Előnyök: kötetlen tárgyválasztás, korlátlan szabadság széles ismeretanyagot ad (hasznos a későbbiekben) gyakorlat a problémamegoldásban jól előkeszít a doktori képzésre, állásra Hátrányok:??????
7 2. A doktori iskola Matematika doktori iskola (ELTE): matematikus alkalmazott matematikus tanári A matematikus mesterszaknak a doktori iskola szinte egyenes folytatása. A mesterszakos kutatás folytatható, vagy új témát is lehet kezdeni, akár alkalmazott matematikusként is.
8 3. Külföldi lehetőségek Erasmus a mesterszak idejében doktori ösztöndíjak szinte bármely külföldi egyetemre a kutatás gyorsan elkezdhető: a doktori programokban szokásos vizsgák letételéhez ( qualifying exam ) a mesterképzés jó alapot ad.
9 4. Álláslehetőségek Nemcsak az elméleti kutatásban!!!!! Állások az ipari, üzleti vagy a pénzügyi szférában, magyar vagy nemzetközi cégeknél. A matematikus hivatás bizonyos fölmérések szerint az öt legvonzóbb között van.
10 5. Pénzkereseti lehetőség: Milleniumi Problémák Birch és Swinnerton-Dyer sejtés Hodge-sejtés Navier Stokes-egyenletek P=NP probléma Poincaré-sejtés - (Grigorij Jakovlevics Perelman már megoldotta, de a pénzt nem vette át) Riemann-sejtés Yang Mills-elmélet A Clay Matematikai Intézet bármelyik probléma megoldásáért dollárt fizet. (Mint tudjuk, csak az első egymillió megszerzése nehéz.)
11 Nemzetközi díjak: 6. Hírnév Wolf díj (Erdős Pál, Lovász László) Abel díj (Szemerédi Endre) Ostrowski díj (Laczkovich Miklós) Gödel díj (Babai László, Szegedy Márió, Tardos Éva) Hazai elismerések: Széchenyi-díj (38 matematikus kapta meg) Prima díj (Szemerédi Endre, Pósa Lajos, Pintz János) Kis szerencsével akár valamelyik túlélő-show-ba is be lehet kerülni
12 Addig is Nyári iskola: június Téma: topológia, algebrai geometria ELTE-hallgatóknak ingyenes
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS BUDAPEST 2013 Matematikus mesterszak 2013 Szakleírás Képzési idı: 4 félév A szak indításának tervezett idıpontja: 2013.
Alkalmazott matematikus mesterszak MINTATANTERV
Alkalmazott matematikus mesterszak MINTATANTERV Tartalom A MESTERSZAK SZERKEZETE... 1 A KÉPZÉSI PROGRAM ÁTTEKINTŐ SÉMÁJA... 1 NAPPALI TAGOZAT... 2 ESTI TAGOZAT... 6 0BA mesterszak szerkezete Alapozó ismeretek
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS BUDAPEST 2013 ALKALMAZOTT MATEMATIKUS MESTERSZAK (2013 ) Képzési idő: 4 félév A szak indításának tervezett
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Alkalmazott matematikus szak (régi képzés)
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Alkalmazott matematikus szak (régi képzés) A három A modul és a két B modul közül egyet-egyet kell választani. Kötelezı tárgyak, diplomamunka, szakmai gyakorlat
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés)
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés) Kötelez tárgyak, szakdolgozat (mindegyik tárgy teljesítend ) M1101 Lineáris és analitikus geometria 1. M1102 Lineáris
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Matematikus szak (régi képzés)
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Matematikus szak (régi képzés) Kötelezı tárgyak, diplomamunka (mindegyik tárgy teljesítendı) M1101 Lineáris és analitikus geometria 1. M1102 Lineáris és analitikus
Milyen a modern matematika?
Milyen a modern matematika? Simonovits Miklós Milyen a modern matematika? p.1 Miért rossz ez a cím? Nem világos, mit értek modern alatt? A francia forradalom utánit? Általában olyat tanulunk, amit már
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Kétszakos matematikatanár szak (régi képzés)
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Kétszakos matematikatanár szak (régi képzés) Kötelezı tárgyak, szakdolgozat (mindegyik tárgy teljesítendı, a szakdolgozat írható a másik szakból) kód tárgynév kredit
Matematika alapszak (BSc) 2015-től
Matematika alapszak (BSc) 2015-től módosítva 2015. 08. 12. Nappali tagozatos képzés A képzési terv tartalmaz mindenki számára kötelező tárgyelemeket (MK1-3), valamint választható tárgyakat. MK1. Alapozó
MATEMATIKA SZEGEDI TUDOMÁNYEGYETEM
SZEGEDI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI ÉS INFORMATIKAI KAR MATEMATIKA Matematika alapszak (BSc) Matematika szakos tanár Matematikus mesterszak (MSc) Alkalmazott matematikus mesterszak (MSc) Matematika-
- Matematikus szeptemberétől
- Matematikus Matematika alapszak - Tanári szakirányok mintatanterve 2006. szeptemberétől "A" típusú tantárgyak 7 8 9 10 Környezettani alapismeretek AIB1004 2 0 K 2 KT Dr. Kiss Ferenc X Általános gazdasági
Alkalmazott matematikus mesterszak
Alkalmazott matematikus mesterszak Szakirányok: alkalmazott analízis, operációkutatás, számítástudomány, sztochasztika Képzési idő: 4 félév A szak indításának időpontja: 2009. 09. 01. A szakért felelős
- Matematikus. tanszék/ Tantárgyfelelős oktató neve szeptemberétől
- Matematikus Matematika alapszak - Tanári szakirányok mintatanterve "A" típusú tantárgyak 2006. szeptemberétől 7 8 9 10 tanszék/ oktató neve Környezettani alapismeretek AIB1004 2 0 K 2 KT Dr. Kiss Ferenc
DEBRECENI EGYETEM TERMÉSZETTUDOMÁNYI ÉS TECHNOLÓGIAI KAR MATEMATIKAI INTÉZET
DEBRECENI EGYETEM TERMÉSZETTUDOMÁNYI ÉS TECHNOLÓGIAI KAR MATEMATIKAI INTÉZET A matematika tanár szakos levelező képzés konzultációinak beosztása a 2017/2018-as tanév I. félévében Az alábbi órarendben elkülönítve
ELTE, matematika alapszak
Matematika alapszak szerkezete 1. év ELTE, matematika alapszak NORMÁL Kb 60 fő (HALADÓ) Kb 40 fő INTENZÍV Kb 30 fő Zempléni András oktatási igazgatóhelyettes Matematikai Intézet matematikai elemző 2. és
Nem tanári mesterképzést követően ugyanazon szakmából a középiskolai tanári szakképzettség megszerzése 2 félév, 60 kredit
Tantárgykód Tanári felkészítés Gyakorlat Nem tanári mesterképzést követően ugyanazon szakmából a középiskolai tanári szakképzettség megszerzése Tantárgynév 2 félév, 60 kredit Számon- kérés Kredit kreditszáma
Fizikus Analízis 1 ea Meteorológus Analízis 1 ea Tanári Analízis 2 ea. Fizikus Analízis 1 gyak Meteorológus Analízis 1 gyak Tanári Analízis 2 gyak
KÖZÖS: BSc-s tantárgy Ekvivalens tantárgy megnevezése szintje kódja megnevezése kódja Bevezető matematika mm1n2bm1 Kizárólag a megfelelően megírt félév eleji teszt ad felmentést. Analizis 1 ea Analízis
ELTE, matematika alapszak. Zempléni András oktatási igazgatóhelyettes Matematikai Intézet
ELTE, matematika alapszak Zempléni András oktatási igazgatóhelyettes Matematikai Intézet Matematika alapszak szerkezete 1. év NORMÁL Kb 60 fő (HALADÓ) Kb 50 fő INTENZÍV Kb 30 fő matematikai elemző 2. és
Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam
Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az
A DE Matematika- és Számítástudományok Doktori Iskola képzési terve
A DE Matematika- és Számítástudományok Doktori Iskola képzési terve (érvényes a 2016. szeptember 1-től belépő doktoranduszokra) A DI és programjai Az 1993-ban létrehozott Matematika Doktori Programból
Matematika MSc záróvizsgák (2015. június )
Június 23. (kedd) H45a 12.00 13.00 Bizottság: Simonovits András (elnök), Simon András, Katona Gyula Y., Pap Gyula (külső tag) 12.00 Bácsi Marcell Közelítő algoritmusok és bonyolultságuk tv.: Friedl Katalin
MATEMATIKA. www.ttik.hu/felvi
Matematika alapszak (BSc) Matematika-X tanárszak (osztatlan) Matematikus mesterszak (MSc) Alkalmazott matematikus mesterszak (MSc) Matematika- és Számítástudományok Doktori Iskola (PhD) www.ttik.hu/felvi
A mesterképzésbe történő belépésnél előzményként elfogadott szakok: A mesterképzésbe való belépéshez szükséges minimális kreditek száma 65
Mesterképzési alkalmazott matematikus Biológus fizikus mesterképzés A mesterképzésbe történő belépésnél előzményként elfogadott ok: matematika alapképzési A mesterképzésbe való belépéshez szükséges minimális
Véges geometria és ami mögötte van
Véges geometria és ami mögötte van Bogya Norbert Bolyai Intézet, Szegedi Tudományegyetem Doktori Nyílt Nap 2015. október 2. Bogya Norbert (Bolyai Intézet) Véges geometria és... Doktori Nyílt Nap 1 / 30
ELTE, matematika alapszak
ELTE, matematika alapszak Mire készít fel a matematika szak? Matematikai gondolkodásra Ez az élet szinte minden területén nagyon hasznos Tipikus elhelyezkedési lehetőségek: Matematikus: kutató, egyetemi
A matematikatanári szak kredit alapú szakmai tanterve a 2002/2003 tanévtől, felmenő rendszerben
A matematikatanári szak kredit alapú szakmai tanterve a 2002/2003 tanévtől, felmenő rendszerben Szak : matematikatanári szak Tagozat: nappali Képzési idő: 8 félév Az oktatás nyelve: magyar A megszerezhető
Költségvetési alapokmány
Költségvetési alapokmány 1) Fejezet száma és megnevezése: Fejezet száma: XXXIII. Fejezet megnevezése: Magyar Tudományos Akadémia 2.) Költségvetési szerv: a.) Azonosító adatai: Törzskönyvi nyilvántartási
MATEMATIKA. Osztatlan tanárképzés
MATEMATIKA Osztatlan tanárképzés MINTATANTERV közös 6 félév Színmagyarázat: piros matematika BSc szakkal közös kurzus zöld pedagógiai és pszichológiai kurzusok kék közös kurzus a második szakasz 8 féléves
Matematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti
Matematika 9. nyelvi előkészítő évfolyam Témakörök Gondolkodási és megismerési módszerek Számtan, algebra Összefüggések, függvények, sorozatok Geometria, mérés Statisztika, valószínűség Év végi összefoglaló
2.2 Logisztorik (Gindilla Orsolya) 2012. szeptember 2.3 Barangolás a nagyotmondók földjén (Gindilla Orsolya) 3. Halmazelmélet
Tartalomjegyzék Az Ön könyve tartalmazza Tartalomjegyzék Szerzők Használati útmutató A megjelenés dátuma A GONDOLKODÁSI MÓDSZEREK 2. Logika 2.1 Képes sudoku kezdőknek (Tariné Berkes Judit Katalin) 2.2
Képzéseinkről. Mesterképzések (4 félév) Alapképzés (6 félév)
alapszak (BSc) MATEMATIKUS mesterszak (MSc) ALKALMAZOTT MATEMATIKUS mesterszak (MSc) TANÁR mesterszak (MA) - ÉS SZÁMÍTÁSTUDOMÁNYOK Doktori Iskola (PhD) A BSc képzés célja: olyan elméleti és alkalmazott
értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják
A Baktay Ervin Gimnázium alap matematika tanterve a 6 évfolyamos gimnáziumi osztályok számára 7. 8. 9. 10. 11. 12. heti óraszám 3 cs. 3 cs. 3 cs. 4 4 4 éves óraszám 108 108 108 144 144 120 (cs.: csoportbontásban)
Adatlap alapszak megnevezése Matematika alapképzési szak szakképzettség Alapokleveles matematikus szakirány
I. Adatlap 3. Az indítandó alapsza megnevezése: Matematia alapépzési sza 4. Az olevélben szereplő szaépzettség megnevezése: Alapoleveles matematius 5. Az indítani tervezett szairány(o) megnevezése: matematia-x
Mesterszintű operációkutatási szakemberképzés a BME-n
Mesterszintű operációkutatási szakemberképzés a BME-n A BME-n 2013 őszén induló szakirányú továbbképzési program Magyarország egyetlen operációkutatási posztgraduális képzése. A programot a BME TTK Operációkutatási
A Szekszárdi I. Béla Gimnázium Helyi Tanterve
A Szekszárdi I. Béla Gimnázium Helyi Tanterve Matematika Készítette: a gimnázium reál szakmai munkaközössége 2015. Tartalom Emelt szintű matematika képzés... 3 Matematika alapóraszámú képzés... 47 Matematika
2019-01-24 http://www.math.u-szeged.hu/bolyai/klista.phtml Balázs Csenge (demonstrátor) MBNXK112G Diszkrét matematika II. gy. (informatikus 2017) 2 gy Vályi cs 18 20 Balázs István (tudományos segédmunkatárs)
MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények
MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,
A programozó matematikus szak kredit alapú szakmai tanterve a 2004/2005. tanévtől, felmenő rendszerben
A programozó matematikus szak kredit alapú szakmai tanterve a 2004/2005. tanévtől, felmenő rendszerben Szak neve: programozó matematikus szak Tagozat: nappali Képzési idő: 6 félév Az oktatás nyelve: magyar
Programtervező informatikus. Tanári. szakirányok mintatanterve. 2006. szeptemberétől
Programtervező informatikus alapszak - - Programtervező informatikus Tanári szakirányok mintatanterve 2006. szeptemberétől "A" típusú tantárgyak oktató neve Diszkrét matematika PMB1101 2 2 K 5 MI Dr. Kurdics
A differenciálegyenletek csodálatos világa
A differenciálegyenletek csodálatos világa Besenyei Ádám badam@cs.elte.hu Alkalmazott Analízis és Számításmatematikai Tanszék Matematikai Intézet Eötvös Loránd Tudományegyetem, Budapest ELTE TTK Nyílt
TMBE0301 Trigonometria és koord. geom. 2 E 2 1 Matematika BSc közös köt Vincze Csaba M426 Sz 12-14
Kód Tárgy kred it Ea/ Gyak Matematikai Intézet Óra szá m Évfo lyam Szakirány Oktató Terem Időpont TMBE0301 Trigonometria és koord. geom. 2 E 2 1 Matematika BSc közös köt Vincze Csaba M426 Sz 12-14 TMBG0301
A programozó matematikus szak kredit alapú szakmai tanterve a 2003/2004. tanévtől, felmenő rendszerben
A programozó matematikus szak kredit alapú szakmai tanterve a 2003/2004. tanévtől, felmenő rendszerben Szak neve: programozó matematikus szak Tagozat: levelező Képzési idő: 6 félév Az oktatás nyelve: magyar
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Eötvös Loránd Tudományegyetem Természettudományi Kar Matematikai Intézet. Matematikus mesterképzési szak indítására irányuló kérelem
Eötvös Loránd Tudományegyetem Természettudományi Kar Matematikai Intézet Matematikus mesterképzési szak indítására irányuló kérelem ELTE TTK Matematikai Intézet 2007 Tartalomjegyzék I. Adatlap... 3 II.
2006. szeptemberétől. kódja
- Programtervező informatikus Programtervező informatikus alapszak - Tanári szakirányok mintatanterve 2006. szeptemberétől "A" típusú tantárgyak 1 2 3 4 5 6 7 8 9 10 Tantágy neve Tantárgy kódja Heti Tantárgyfelelős
A matematika legszebb kihívásai
A matematika legszebb kihívásai Szegedy Balázs, MTA Rényi intézet 2018. február 21. Matematika és szépség Mi a matematika? Matematika és szépség Mi a matematika? A matematika azon állítások gyüjteménye
1. Az informatika alapjai (vezetője: Dr. Dömösi Pál, DSc, egyetemi tanár) Kredit
2. MELLÉKLET Az oktatási koncepciója 1. Az informatika alapjai (vezetője: Dr. Dömösi Pál, DSc, egyetemi tanár) Az informatika alapjai Tud. Min. 1 Automata hálózatok 2 V Dr. Dömösi Pál DSc 2 Automaták és
Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február
Helyi tanterv Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február 1 A TANTERV SZERKEZETE Bevezető Célok és feladatok Fejlesztési célok és kompetenciák Helyes
Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból
Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.
Matematikai Intézet intézeti tanács határozatok január 1-től
Matematikai Intézet intézeti tanács határozatok 2014. január 1-től Ülés időpontja 2014. január 9. Döntés A Matematikai Intézet Intézeti Tanácsa úgy döntött, hogy Karátson János egyetemi tanári pályázatát
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató
Tantárgyi adatlapok. Matematika alapszak
Tantárgyi adatlapok Matematika alapszak ELTE Matematikai Intézet 2010 ELTE Matematika alapszak BSc tantervi háló az 1-6. félévekre 2010 őszétől felmenő rendszerben érvényes A képzéssel kapcsolatos napra
nappali tagozat, tanítói szak TAN05MSZ Szigorlati követelmények és tételek Vizsgatematika A szigorlat követelményei:
Matematika Tanszék Matematika műveltségi terület, nappali tagozat, tanítói szak TAN05MSZ Szigorlati követelmények és tételek A szigorlat követelményei: Vizsgatematika A hallgató legyen képes 15-20 perces
A mesterfokozat és a szakképzettség szempontjából meghatározó ismeretkörök:
Vállalkozásfejlesztés MSc szak A képzés célja olyan szakemberek képzése, akik nemzetközi összehasonlításban is versenyképes, korszerű és magas színvonalú elsajátított elméleti és módszertani ismeretanyag
A híres Riemann-sejtés
A híres Riemann-sejtés Szakács Nóra Bolyai Intézet, Szegedi Tudományegyetem Egyetemi Tavasz 205. 04. 8. A Riemann-sejtés története Tartalom A Riemann-sejtés története 2 A n s alakú összegek 3 Komplex számok
E L T E I K I N F O R M A T I K A T A N Á R I S Z A K N A P P A L I T A G O Z A T B U D A P E S T, 2003.
E L T E I K I N F O R M A T I K A T A N Á R I S Z A K N A P P A L I T A G O Z A T B U D A P E S T, 2003. I. A képzés általános leírása Az Informatika tanár szakképzettség megszerzése a 166/1997.(X.3.)
Záróvizsga tételek matematikából osztatlan tanárszak
Záróvizsga tételek matematikából osztatlan tanárszak A: szakmai ismeretek; B: szakmódszertani ismeretek Középiskolai specializáció 1. Lineáris algebra A: Lineáris egyenletrendszerek, mátrixok. A valós
Neme nő Születési dátum 26/10/1988 Állampolgárság magyar
SZEMÉLYI ADATOK Nagy Noémi Magyarország, 1165 Budapest, Újszász utca 45/B K. ép. I. lph. 3. em. 2. 06 70 340 7335 matnagyn@uni-miskolc.hu http://uni-miskolc.hu/~matnagyn Neme nő Születési dátum 26/10/1988
B S C M A T E M A T I K A T A N Á R I S Z A K I R Á N Y E L T E T T K Az alábbiakban összefoglaljuk az ELTE TTK matematika alapszak (más
B S C M A T E M A T I K A T A N Á R I S Z A K I R Á N Y E L T E T T K 2 0 0 8 Az alábbiakban összefoglaljuk az ELTE TTK matematika alapszak (más néven matematika BSc) tanári szakirányára vonatkozó legfontosabb
A 2018-as Modellező (A) specializáció tanegységei. Számítógépes rendszerek
Programtervező informatikus Sc 2017,,, 2008 illetve programtervező informatikus 2018 Modellező (), Szoftvertervező (), Szoftverfejlesztő (), esti () inak tantárgyi lefedései 2017-es 2017-es 2017-es 2008-as
Matematika. A vizsgáztatói és felkészítő gyakorlatra vonatkozó kérdőív:
Matematika Kérjük, hogy válaszoljon az alábbi kérdésekre! A vizsgáztatói és felkészítő gyakorlatra vonatkozó kérdőív: 1. A kétszintű érettségi vizsgarendszer 2005. évi bevezetése óta hány május-júniusi
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005
2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus
I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)
MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,
INFORMATIKA OKTATÁS A KLTE-N 1
INFORMATIKA OKTATÁS A KLTE-N 1 Juhász István, pici@math.klte.hu KLTE, Matematikai és Informatikai Intézet, Információ Technológia Tanszék Abstract The Institute of Mathematics and Informatics of Kossuth
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin
MATEMATIKA. www.ttik.hu/felvi
Matematika alapszak (BSc) Matematika-X tanárszak (osztatlan) Matematikus mesterszak (MSc) Alkalmazott matematikus mesterszak (MSc) Matematika- és Számítástudományok Doktori Iskola (PhD) www.ttik.hu/felvi
Matematika emelt szint a 11-12.évfolyam számára
Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka
Tisztelt Végzős Hallgatónk!
Tisztelt Végzős Hallgatónk! Jelen kérdőív kitöltésével Ön hozzájárul aoz, hogy az ELTE Informatikai Kara oktatási tevékenységétán folyó képzéseket és a hallgatók igényeihez optimálisan illeszkedő A kérdőívek
Zsakó László Informatikai képzések a ELTE-n ELTE Informatikai Kar zsako@ludens.elte.hu
Zsakó László Informatikai képzések a -n Informatikai Kar zsako@ludens.elte.hu Informatikai képzések az Informatikai karán Felsőfokú szakképzések Informatikai alapszakok Informatikai mesterszakok Szakirányú
Mérnök informatikus (BSc)
Mérnök informatikus (BSc) Az informatika dinamikusan fejlődő, a mindennapokat szorosan átszövő tudomány. Ha érdekel milyen módon lehet informatika rendszereket tervezni, üzemeltetni, szakunkon elsajátíthatod
Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma
Az osztályozóvizsgák követelményrendszere 9.Ny osztály Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Algebra és számelmélet Alapműveletek az egész és törtszámok körében Műveleti sorrend,
Pákh György a Szent Margit Gimnázium tanára Budapest, 2015. augusztus 27.
Pákh György a Szent Margit Gimnázium tanára Budapest, 2015. augusztus 27. Mit Kinek Hogyan Informatikai /digitális/ bennszülöttek ; Facebookon szocializálódott, plázákban identifikálódott, marketing tekintetű
OKLEVÉLKÖVETELMÉNYEK. MATEMATIKA ALAPKÉPZÉSI SZAK (2013 és 2014 kezdéssel)
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKA ALAPKÉPZÉSI SZAK (2013 és 2014 kezdéssel) Matematika képzés Az alapképzés (BSc) célja, hogy
Szakmai önéletrajz január 2. Családi állapot: nős, 3 gyermek (2007. június 6., szeptember 14., május 7.)
Szakmai önéletrajz Zábrádi Gergely 2018. január 2. Név: Zábrádi Gergely Születési hely és idő: Győr, 1982. február 24. Állampolgárság: Magyar Családi állapot: nős, 3 gyermek (2007. június 6., 2009. szeptember
MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY
MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY Heti 4 óra Évi 148 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató 1 / 5 I. Az általános iskolai ismeretek ismétlése 1. óra: Műveletek
MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI
A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja
I. Adatlap. Berzsenyi Dániel Főiskola fizika alapképzési (Bachelor) szak indítási kérelme
I. Adatlap 3. Indítandó alapszak megnevezése: fizika alapképzési szak 4. Az oklevélben szereplő szakképzettség megnevezése: alapokleveles fizikus (szakiránnyal) 5. Az indítani tervezett szakirány megnevezése:
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
Matematikus, matematika a mai időkben
Matematikus, matematika a mai időkben Simonovits Miklós 2017 május 14 (nem-léptetős változat) A szakértő és a filozófus 2 Miért tudunk mi mindent jobban? Bocsánat, Ez az a lap, ahol elnézést kérek azért,
TANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
I. Fejezetek a klasszikus analízisből 3
Tartalomjegyzék Előszó 1 I. Fejezetek a klasszikus analízisből 3 1. Topológia R n -ben 5 2. Lebesgue-integrál, L p - terek, paraméteres integrál 9 2.1. Lebesgue-integrál, L p terek................... 9
MATEMATIKUS MSc. mesterképzés
MATEMATIKUS MSc mesterképzés Tájékoztató a Szegedi Tudományegyetem Természettudományi és Informatikai Karáról A Szegedi Tudományegyetem Természettudományi és Informatikai Kara 1921-ben kezdte meg működését,
TBL05A01 Bevezetés a matematikába. 2 7 m K I.
TBL05A01 Bevezetés a matematikába 2 7 m K I. CÉL: A matematikatanítás feladatainak, lehetőségeinek megismertetése. A legfontosabb matematikai alapok felfrissítése, a hallgatók matematikai kompetenciájának
A szakmagyakorlási jogosultságok és a továbbképzés követelményrendszerének változásai
A szakmagyakorlási jogosultságok és a továbbképzés követelményrendszerének változásai A 266/2013.(VII.11.) Korm. rendelet sok változást hozott: egyértelműbbek a jogosultságok EU konform több jogosultság
TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
Matematika. Specializáció. 11 12. évfolyam
Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes
MAGISTER GIMNÁZIUM TANMENET
MAGISTER GIMNÁZIUM TANMENET 2012-2013 10. osztály Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Év eleji ismétlés 1. óra: Számhalmazok és számok 2. óra: Algebrai
OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY
OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY ALGEBRA ÉS SZÁMELMÉLET Halmazok Halmazműveletek Halmazok elemszáma Logikai szita Számegyenesek intervallumok Gráfok Betűk használata a matematikában Hatványozás. A
Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 9-12./3.3.2.2.
1 Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Matematika készült a 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 9-12./3.3.2.2. alapján 9-12. évfolyam 2 Az iskolai matematikatanítás célja, hogy
MATEMATIKUS MSc. mesterképzés
MATEMATIKUS MSc mesterképzés Tájékoztató a Szegedi Tudományegyetem Természettudományi és Informatikai Karáról A Szegedi Tudományegyetem Természettudományi és Informatikai Kara 1921-ben kezdte meg működését,
IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata
IKP-9010 Számítógépes számelmélet 1. EA IK Komputeralgebra Tsz. IKP-9011 Számítógépes számelmélet 2. EA IK Komputeralgebra Tsz. IKP-9021 Java technológiák IK Prog. Nyelv és Ford.programok Tsz. IKP-9030
Tartalom: 1 A PHD KÉPZÉS ELEMEI
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Matematika- és Számítástudományok Doktori Iskola Képzési terv a 2016. szeptember 1 után induló doktori képzésre Tartalom: 1. A PHD KÉPZÉS ELEMEI 2. ELSAJÁTÍTANDÓ
Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz
MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.
Összeállította Horváth László egyetemi tanár
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011
Az ELTE tanári mesterszakos képzésének matematikatanári moduljai
Az ELTE tanári mesterszakos képzésének matematikatanári moduljai Mint ismeretes, a tanári mesterszakos képzés (vagy más néven a tanári MA képzés) modulokból tevődik össze. A képzés során a szakterületi
25 éves a MAT Az aktuárius egy életen át tanul!
25 éves a MAT Az aktuárius egy életen át tanul! Miért érdemes akkor aktuáriussá lenni? Dr. Kovács Erzsébet 3 Az aktuárius hivatás Érdekes: a gazdaság és a piac működését megérteni, a változásokhoz alkalmazkodni,
Jedlik Ányos Gépész-, Informatikai és Villamosmérnöki Intézet
T A N T Á R G Y I L I S T A Kötelező tantár: JÁI - 42. bszf. krp af if 1. NGB_AG001_1 Általános géptan 2 0 0 f 4 1 1 2. NGB_AG003_1 Gépszerkezettan 2 2 0 f 4 1 1 3. NGB_AJ025_1 Fémtan, anyagvizsgálat 2
2.2 Logisztorik (Gindilla Orsolya) szeptember 2.3 Barangolás a nagyotmondók földjén (Gindilla Orsolya) 3. Halmazelmélet
Tartalomjegyzék Az Ön könyve tartalmazza Tartalomjegyzék Szerzők Használati útmutató A megjelenés dátuma A GONDOLKODÁSI MÓDSZEREK 2. Logika 2.1 Képes sudoku kezdőknek (Tariné Berkes Judit Katalin) 2.2
I. Adatlap. NYÍREGYHÁZI FŐISKOLA 7 Fizika BSc
I. Adatlap 3. Az indítandó alapszak megnevezése fizika alapszak 4. Az oklevélben szereplő szakképzettség megnevezése fizikus 5. Az indítani tervezett szakirány(ok) megnevezése tanári alkalmazott környezetfizikai
Kódszám egyenlőségjellel: a megadott kurzus párhuzamos felvétele.. * : Az alapozó képzés tárgyainak elvégzése után vehető fel a tárgy.
TANEGYSÉGLISTA (MA) Jelek, rövidítések: EF = egyéni felkészülés G = gyakorlati jegy K = kollokvium Sz = szigorlat V = vizsga Z = szakzáróvizsga kon = konzultáció k = kötelező tanegység kv = kötelezően