E könyvet drága szüleim emlékének ajánlom TARTALOMJEGYZÉK. I. kötet
|
|
- Vilmos Bakos
- 8 évvel ezelőtt
- Látták:
Átírás
1 E könyvet drága szüleim emlékének ajánlom TARTALOMJEGYZÉK I. kötet Elıszó 4 0. A lineáris algebra rövid története 6 1. Testek Vektortér Alterek Bázis és dimenzió Lineáris leképezések Mátrixok Determinánsok Lineáris egyenletrendszerek 146 Irodalom 170 Tárgymutató 172 3
2 ELİSZÓ Ez a jegyzet a Berzsenyi Dániel Tanárképzı Fıiskola matematika és számítástechnika szakos hallgatói számára készült és az "Algebra" címő tantárgy lineáris algebrai témájú elıadásainak anyagát tartalmazza kibıvített formában. Az anyag egy részére az elıadásokon csupán utalás történik, továbbá egyes tételek csak bizonyítás nélkül szerepelnek. A jegyzetben olyan részek is találhatók, amelyek egyéni, illetve speciálkollégium keretében történı feldolgozása segítséget adhat a téma iránt érdeklıdı hallgatók tanulmányaihoz. További ismeretek győjtésére ad lehetıséget a jegyzet végén található irodalomjegyzék is, amelyben több magyar és idegen nyelvő munkát soroltunk fel. A jegyzetben a lineáris algebra bevezetı fejezeteit tárgyaljuk. Az I. kötetben egy rövid történelmi áttekintés után összefoglaljuk a testekkel kapcsolatos alapvetı ismereteket, majd megalapozzuk a test feletti vektorterek elméletét. Ezután a vektorterek közötti lineáris leképezéseket vizsgáljuk meg, majd a mátrixok, a determinánsok és a lineáris egyenletrendszerek elméletével foglalkozunk. A II. kötetben ismerkedhetünk meg a lineáris transzformációk normálalakjával, a bilineáris leképezésekkel, majd pedig a kvadratikus és hermitikus formákkal. Az utolsó fejezetben párhuzamos felépítésben tárgyaljuk az euklideszi és az unitér vektorterek elméletének legfontosabb eredményeit. Az anyag tárgyalása során ismertnek tekintjük az "Algebra" címő tárgy alapozó részében feldolgozott halmazelméleti alapismereteket, a relációk, leképezések és permutációk tulajdonságait, végül a közismert algebrai struktúrákra vonatkozó legfontosabb ismereteket. Az egyes eredményekre való hivatkozás megkönnyítése céljából a tételeket sorszámmal láttuk el. Az i-edik fejezet j-edik tétele az i.j. tételként szerepel, a bizonyítások végét pedig a szimbólum jelöli. A definíciók számozását mellıztük, de a bevezetett új fogalmakat dılt betükkel írva hangsúlyoztuk ki. E fogalmak könnyen felkereshetık az egyes kötetek végén végén található tárgymutató segítségével. Minden fejezet végén a feldolgozott anyag megértését könnyítı gyakorló feladatok találhatók. 4
3 A jegyzetet tematikája alapján fıiskolánk hallgatóin kívül elsısorban a többi tanárképzı fıiskola, illetve a tudományegyetemek matematika szakos hallgatóinak ajánlhatjuk. Végül a szerzı köszönetét fejezi ki dr. Megyesi László egyetemi docensnek a jegyzet lektorálásáért, hasznos javaslataiért és tanácsaiért, továbbá dr. Nagy Péter egyetemi docensnek támogatásáért és segítségéért. Szombathely, május hó. Péntek Kálmán 5
4 0. A LINEÁRIS ALGEBRA RÖVID TÖRTÉNETE A lineáris algebra a matematika két klasszikus nagy fejezetébıl, az analitikus geometriából és a lineáris egyenletrendszerek elméletébıl alakult ki a XIX. század közepén. A geometriai problémák algebrai megoldásával foglalkozó analitikus geometria kezdetei az ókorba nyúlnak vissza. Apollóniosz (i.e. 260?-190?) "Kónika" (Kúpszeletek) címő munkájában a kúpszeletek értelmezésére alkalmas tulajdonságot következetesen két konjugált átmérı egyenesére vonatkoztatta, s az így nyert összefüggésbıl új tulajdonságokat vezetett le. Ezzel tulajdonképpen ferdeszögő koordinátarendszert alkalmazott anélkül, hogy bevezette volna ezt a fogalmat. Ptolemaiosz Klaudiosz (100?-170?) a földrajzi helyek meghatározásának kézenfekvı eszközeként említi a koordináták alkalmazását, amelyet Hipparkhosztól (i.e. 180?-125?) vett át. A mozgások sebességének idıbeli változását Nicole d'oresme ( ) már derékszögő koordinátarendszerben ábrázolta. René Descartes du Peron ( ) francia matematikus és filozófus a derékszögő koordinátarendszer segítségével következetesen alkalmazta a geometriára az algebra jelöléseit és eljárásait. Ezzel követendı példát mutatott az algebrai és geometriai módszerek együttes használatára. A "Discours de la méthode" (Értekezések a módszerrıl) címő 1637-ben megjelent mővének "La géométrie" (A geometria) címő függelékében megkísérelte az algebrát és a geometriát egységes "mathesis universalis" elméletté alakítani. Descartes eredményeinek megszületésével egyidıben hasonló gondolatokat vetett fel Pierre Fermat ( ) francia mőkedvelı matematikus is. Az "Ad locus planos et solidos isagoge" (Bevezetés a síkbeli és térbeli mértani helyek elméletébe) címő munkája levelezıtársai elıtt már 1636-ban ismeretes volt, de nyomtatásban csak 1679-ben jelent meg. Ebben az értekezésben Fermat bizonyos tekintetben túl is haladta Descartes gondolatait, mert már következetesen használta a derékszögő koordinátarendszert a kúpszeletek vizsgálatára. Nem csak a kúpszeletek egyenletét vezette le, hanem a fordított feladattal is foglalkozott: az elsı- és másodfokú egyenletek általános alakját vizsgálva megállapította, hogy azok a koordinátákon végrehajtott alkalmas transzformációkkal kanonikus alakra hozhatók. Az angol John Wallis ( ) "Arithmetica infinitorum" (A végtelenek aritmetikája) címő 1655-ben kiadott mővében a Descartes-féle analitikus geometria módszereivel tárgyalta a kúpszeleteket. Jan Witt ( ) holland 6
5 matematikus "Elementa linearum carvarum" (A görbe vonalak elemei) címő 1659-ben megjelent munkája volt az elsı rendszeres analitikus geometria kézikönyv. A francia Philippe de Lahire ( ) elsınek írta fel "Nouveaux éléments des sections coniques" (A kúpszeletek új elmélete) címő mővében egy felület egyenletét, s ezzel sikerült egy térbeli alakzatot megragadni analitikus geometriai eszközökkel. Sylvestre Francois Lacroix ( ) francia matematikustól származik az analitikus geometria elnevezés. Sir Isaac Newton ( ) angol matematikus és fizikus a Descartes-féle analitikus geometriát a harmadrendő görbék tanulmányozásához használta fel. E görbéket leíró egyenleteik fokszáma szerint osztályozta, s vizsgálataival megvetette az algebrai geometria alapjait, amelynek tárgya az algebrai görbék és felületek kutatása. Newton a Descartes-féle koordinátarendszert már a ma közismert formában használta: mindkét tengelyt negatív felével együtt tekintette, s a tengelyek egymással teljesen egyenértékő szerepet játszottak. A francia Alexis Claude Clairaut ( ) "Recherches sur les courbes à double courbure" (Tanulmányok a kettıs görbülető görbékrıl) címő ben kiadott mőve az elsı analitikus térgeometria. Az elsı igazán mai értelemben vett analitikus geometriát a svájci származású Leonhard Euler ( ) írta meg, rendszerezve benne a már korábban feltárt, s az általa felfedezett ismereteket. Az 1748-ban megjelent "Introductio in analysis infinitorum" (Bevezetés a végtelenek analízisébe) címő mővének II. kötetében olvashatjuk a sík és a tér részletesen és tervszerően felépített analitikus geometriáját. Vizsgálatai során alkalmazott derékszögő, ferdeszögő és polár koordinátarendszereket, s meghatározta a koordináták transzformációjának képleteit. Foglalkozott algebrai geometriával, kidolgozta a trigonometria ma is használatos rendszerét. Analitikus geometriai úton bevezette az affin transzformációkat, s felírta a nem elfajuló másodrendő felületek egyenleteit is. A német August Ferdinand Möbius ( ) "Der baryzentrische Kalkül" (A baricentrikus számítás) címő munkájával a homogén koordináták használatát vezette be az analitikus geometriába. Ezt a munkát folytatta Julius Plücker ( ) szintén német matematikus több mővében is. A "System der analytischen Geometrie" (Az analitikus geometria rendszere) címő ben megjelent könyvében a többdimenziós analitikus geometriát homogén koordinátákkal tárgyalta, a "Theorie der algebraische Curven" (Az algebrai görbék elmélete) címő 1839-ben kiadott munkájában pedig kidolgozta homo- 7
6 gén koordinátákat alkalmazva a kúpszeletek és az algebrai görbék rendszeres elméletét. A lineáris egyenletrendszerek elméletének történetét tanulmányozva megállapíthatjuk, hogy a XIX. század utolsó negyedéig csak megegyezı számú egyenletet és ismeretlent tartalmazó egyenletrendszereket vizsgáltak a kutatók. Az ilyen típusú lineáris egyenletrendszerekre vonatkozó megoldóképlettel három egyenlet és három ismeretlen esetén Gottfried Wilhelm Freiherr von Leibniz ( ) német matematikus egy 1693-ban kelt, L'Hospital francia matematikushoz írt levelében tett említést, bár a módszer számára már 1678-ban ismert volt. Az általa adott megoldóképletben bukkant fel elıször a determináns, ám fejtegetései csakhamar feledésbe merültek. Így a determinánsok igazi felfedezıjének Gabriel Cramer ( ) svájci filozófia tanárt kell tekintenünk, aki 1750-ben megjelent "Introduction à l'analyse des lignes courbes algébriques" (Bevezetés az algebrai görbék analízisébe) címő munkájában megadta az n egyenletet és n ismeretlent tartalmazó lineáris egyenletrendszer megoldóképletét. E megoldóképletet igyekezett minél egyszerőbb formában megfogalmazni, s így jutott el a determináns fogalmához. A francia Étienne Bézout ( ) 1764-ben, Pierre Simon Laplace ( ) 1772-ben, továbbá Alexandre Théophile Vandermonde ( ) szintén 1772-ben tovább egyszerősítették Cramernak a determinánsokra vonatkozó jelöléseit. A determinánsok értékének a Cramer-féle definíció alapján történı kiszámítása nagyobb n értékek esetén igen nehézkes. Ezért a determinánsokkal foglalkozó matematikusok mindenekelıtt arra törekedtek, hogy ennél egyszerőbb kiszámítási módszereket találjanak. Ilyen módszert tetszıleges n-ed rendő determináns esetén Laplace dolgozott ki, s eredményeit a "Recherches sur le calcul intégral" (Tanulmányok az integrálszámításról) címő munkájában 1772-ben hozta nyilvánosságra. Joseph Louis Lagrange ( ) francia matematikus 1773-ban felfedezte a 3-ad rendő determináns alapvetı tulajdonságait, s bevezette a reciprok determináns fogalmát. Carl Friedrich Gauss ( ) német matematikustól származik a determináns elnevezés. Nála a kvadratikus alakok transzformációinak vizsgálata során bukkantak fel ezek a sajátos kifejezések. A francia Augustin Louis Cauchy ( ) összefoglalta a determinánsokra vonatkozó addigi ismereteket, s neki tulajdoníthatjuk a determinánsok önálló elméletének megalapozását. Egy 1812-ben megtartott elıadásában, 8
7 amelynek anyaga nyomtatásban csak 1815-ben jelent meg, Cauchy az alternáló függvényekbıl kiindulva meghatározta az n-ed rendő determinánsok tulajdonságait, s igazolta a determinánsok szorzási tételét is. Carl Gustav Jacob Jacobi ( ) német matematikus és fizikus ben írt "De formatione et proprietatibus determinantium" (A determinánsok alakjáról és tulajdonságairól) címő értekezése ráirányította a matematikusok figyelmét a determinánsok fontosságára, elınyeire, továbbá az analízis és a geometria területén való alkalmazhatóságára is. Elérkeztünk a XIX. század közepéhez, amikor az analitikus geometriából és a lineáris egyenletrendszerek elméletébıl egy német és egy ír tudós munkái nyomán megszületett a lineáris algebra, illetve a vektorszámítás módszere. Hermann Grassmann ( ) német matematikus, fizikus és nyelvész 1844-ben publikálta a "Die lineare Ausdehnungslehre, ein neuer Zweig der Mathematik" (A lineáris kiterjedéstan, a matematika egy új ága) címő értekezését. Ez a mő a vektorszámításnak tetszıleges véges dimenzió számú térre alkalmas formalizmussal történı kifejtését tartalmazta, bár Grassmann csupán a legfeljebb 3-dimenziós tér elméletét tekintette geometriának. Az ben kiadott "Die Ausdehnungslehre" (A kiterjedéstan) címő mőve az elızınek tökéletesített, bıvített és részletesebben kifejtett változata volt. Grassmann eredményeitıl függetlenül az ír William Rowan Hamilton ( ) 1833-ban terjesztette fel az Ír Akadémiának a komplex számokról, mint rendezett valós számpárok algebrájáról szóló értekezését, majd mintegy tíz éves munkával megalkotta a kvaterniók, mint rendezett valós számnégyesek algebráját. Az 1853-ban megjelent "Lectures on Quaternions" (Elıadások a kvaterniókról) címő mővével egy minden tekintetben kész rendszerrel lepte meg a tudományos világot. A mő tökéletesített változatát 1866-ban "Elements of Quaternions" (A kvaterniók elemei) címmel adták ki. Érdekes párhuzam Grassmann és Hamilton között az is, hogy mindketten foglalkoztak a matematikán kívül nyelvészettel is. Megjegyezzük még, hogy a skalár és a vektor elnevezés Hamiltontól származik ben az angol Arthur Cayley ( ) megalapozta a mátrixok elméletét, amelyet a szintén angol James Joseph Sylvester ( ) fejlesztett tovább. Cayleytıl származik egyébként a determinánsok mai jelölése is. Georg Frobenius ( ) német matematikus Cayley eredményeire alapozva bevezette a mátrix rangjának fogalmát és megalkotta a lineáris egyenletrendszerek általános elméletét. 9
8 A fentieken kívül jelentıs eredményeket értek el a lineáris algebra kiépítésében a német Karl Theodor Wilhelm Weierstrass ( ) és Leopold Kronecker ( ), továbbá a francia Charles Hermite ( ) és Camille Jordan ( ). Josiah Willard Gibbs ( ) "Elements of Vector Analysis" (A vektoranalízis elemei) címő, az években megjelent munkájában elsısorban Grassmann és Hamilton eredményeit felhasználva kidolgozta a vektorszámítás jelenlegi formáját. Az olasz Giuseppe Peano ( ) 1888-ban axiomatikus úton alapozta meg a vektorterek elméletét. Ernst Steinitz ( ) német matematikus pedig az "Algebraischer Theorie der Körper" (A testek algebrai elmélete) címő 1910-ben megjelent mővében axiomatikusan megalapozta a testelméletet, s így vált lehetıvé a tetszıleges test feletti vektorterek tanulmányozása. A lineáris algebra korszerő elméletének kidolgozása azzal a törekvéssel függött össze, hogy tételeit véges dimenziós vektorterekrıl végtelen dimenziós vektorterekre is kiterjesszék. Ez által lehetıség nyílt a lineáris algebra eredményeinek a funkcionálanalízisben való alkalmazására is. Jelentıs eredményeket értek el ezen a téren Otto Toeplitz ( ) és David Hilbert ( ) német matematikusok, továbbá úttörı jelentıségő a magyar Riesz Frigyes ( ) 1913-ban megjelent "Les systèmes d'équation linéaires à une infinité d'inconnues" (Végtelen sok ismeretlenes lineáris egyenletrendszerek) címő munkája. A lineáris algebrával több magyar kutató is foglalkozott. Hunyadi Jenı ( ) és Scholtz Ágoston ( ) a determinánsok elméletében, Réthy Mór ( ), Zemplén Gyızı ( ) és Farkas Gyula ( ) a vektoralgebra és a vektoranalízis területén, Egerváry Jenı ( ) a mátrixelméletben értek el jelentıs eredményeket. 10
Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája
Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Tasnádi Tamás 2014. szeptember 11. Kivonat A tárgy a BME Fizika BSc szak kötelező, alapozó tárgya a képzés 1. félévében. A tárgy
,,BABEŞ-BOLYAI TUDOMÁNYEGYETEM LINEÁRIS ALGEBRA
,,BABEŞ-BOLYAI TUDOMÁNYEGYETEM Andrei Mărcuş LINEÁRIS ALGEBRA ii ELŐSZÓ A lineáris algebra tárgya a lineáris terek és leképezések vizsgálata. Eredete a vektorok és a lineáris egyenletrendszerek tanulmányozására
Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0
Tantárgy neve Lineáris algebra I Tantárgy kódja MTB1004 Meghirdetés féléve 2 Kreditpont 3k Összóraszám elm+gyak 2+0 Számonkérés módja kollokvium Előfeltétel tantárgyi kód MTB1003 Tantárgyfelelős neve Kurdics
Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013
UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,
Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus
Térbeli transzformációk, a tér leképezése síkra
Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle
Záróvizsga tételek matematikából osztatlan tanárszak
Záróvizsga tételek matematikából osztatlan tanárszak A: szakmai ismeretek; B: szakmódszertani ismeretek Középiskolai specializáció 1. Lineáris algebra A: Lineáris egyenletrendszerek, mátrixok. A valós
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky
NÉVMUTATÓ. Beke Manó, 17 Bellman, R., 310, 398 Bevilacqua, R., 93 Boros Tibor, 459, 464 Boullion, T. L., 109 Bunyakovszkij, V. J.
NÉVMUTATÓ Beke Manó, 17 Bellman, R., 310, 398 Bevilacqua, R., 93 Boros Tibor, 459, 464 Boullion, T. L., 109 Bunyakovszkij, V. J., 155 157 Cauchy, A. L., 155 157 Cayley, A., 272, 327 Codenotti, B., 93 Cramer,
Hajder Levente 2017/2018. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer
1. Homogén lineáris egyenletrendszer megoldástere
X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,
LINEÁRIS ALGEBRA.
LINEÁRIS ALGEBRA Bércesné Novák Ágnes Honlap: http://digitus.itk.ppke.hu/~b_novak Követelményrendszer: http://digitus.itk.ppke.hu/~b_novak/la/4_la_kovetelmeny.doc Gauss elimináció Vektoralgebra: http://digitus.itk.ppke.hu/~b_novak/dmat/vektorfolcop.pdf
Szigorlati tételek Lineáris algebra és Diszkrét matematika tárgyakból
Szigorlati tételek Lineáris algebra és Diszkrét matematika tárgyakból 2017 A vastag betűs fogalmak, tételek, különösen fontosak. Ezek megértése és alkalmazni tudása nélkül nem adható elégséges osztályzat.
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós
Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla
Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
TANMENET. Matematika
Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 9. B tagozat Összeállította:
1. Bevezetés A félév anyaga. Lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció
Bevezetés az elméleti zikába
Bevezetés az elméleti zikába egyetemi jegyzet Kúpszeletek Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 2011 TARTALOMJEGYZÉK 6 TARTALOMJEGYZÉK Azokat a görbéket, amelyeknek egyenlete
Transzformációk síkon, térben
Transzformációk síkon, térben Leképezés, transzformáció Leképezés: Ha egy A ponttér pontjaihoz egy másik B ponttér pontjait kölcsönösen egyértelműen rendeljük hozzá, akkor ezt a hozzárendelést leképezésnek
Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?
Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005
2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
Klár Gergely 2010/2011. tavaszi félév
Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
17.2. Az egyenes egyenletei síkbeli koordinátarendszerben
Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.
Lineáris egyenletrendszerek. GAUSS ELIMINÁCIÓ (kiküszöbölés)
LINEÁRIS ALGEBRA Bércesné Novák Ágnes Honlap: http://users.itk.ppke.hu/~b_novak Követelményrendszer: Gauss elimináció Vektoralgebra: http://users.itk.ppke.hu/~b_novak/dmat/vektorfolcop.pdf Lineáris egyenletrendszerek
Matematika az építészetben
Matematika az építészetben Molnár-Sáska Katalin Főisk.docens YMÉK Bevezetés - Történeti áttekintés - A geometria helye a főiskolai képzésben - Újraindítás és körülményei Részletes tanmenet Megjegyzések:
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?
= komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
Lineáris egyenletrendszerek Műveletek vektorokkal Geometriai transzformációk megadása mátrixokkal Determinánsok és alkalmazásaik
1. Bevezetés A félév anyaga. Komplex számok Műveletek Kapcsolat a geometriával Gyökvonás Polinomok A gyökök száma A gyökök és együtthatók összefüggése Szorzatra bontás, számelméleti kérdések A harmad-
Matematika emelt szint a 11-12.évfolyam számára
Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka
Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák
Lineáris Algebra Pejó Balázs Tartalomjegyzék 1. Peano-axiomák 2 1.1. 1.................................................... 2 1.2. 2.................................................... 2 1.3. 3....................................................
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben
Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)
Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.
1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó
9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35
9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
Lagrange és Hamilton mechanika
Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája
YBL - SGYMMAT2012XA Matematika II.
YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,
Modern matematikai paradoxonok
Modern matematikai paradoxonok Juhász Péter ELTE Matematikai Intézet Számítógéptudományi Tanszék 2013. január 21. Juhász Péter (ELTE) Modern paradoxonok 2013. január 21. 1 / 36 Jelentés Mit jelent a paradoxon
Matematika. Specializáció. 11 12. évfolyam
Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék
III 1. Aritmetika 1 1.1. Elemi számolási szabályok............................... 1 1.1.1. Számok..................................... 1 1.1.1.1. Természetes, egész és racionális számok.............. 1
Lengyelné Dr. Szilágyi Szilvia április 7.
ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:
1. feladatsor Komplex számok
. feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4
FELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy
Bevezetés az algebrába 1
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egyenletrendszerek H406 2016-10-03 Wettl Ferenc
Molnár Zoltán. A matematika reneszánsza
Molnár Zoltán A matematika reneszánsza Művelődéstörténeti korszak, korstílus, stílusirányzat 1350/1400-1600. (XV-XVI. század) A szó (renaissance) jelentése: újjászületés Visszatérés az antikvitáshoz (ókori
MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember
MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
Normák, kondíciószám
Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus
MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA
MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió
6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V
Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek
Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,
Lineáris algebra. =0 iє{1,,n}
Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2
Függvény fogalma, jelölések 15
DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév
9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek
Numerikus módszerek 1.
Numerikus módszerek 1. Tantárgy kódja: IP-08bNM1E, IP-08bNM1G (2+2) Az elsajátítandó ismeretanyag rövid leírása: A lebegıpontos számábrázolás egy modellje. A hibaszámítás elemei. Lineáris egyenletrendszerek
Témakörök az osztályozó vizsgához. Matematika
Témakörök az osztályozó vizsgához Idegenforgalmi és Informatikus osztályok (9.A/9.B) 1. A halmazok, számhalmazok, ponthalmazok 2. Függvények 3. A számelmélet elemei. Hatványozás. 0 és negatív kitevőjű
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István
Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága
1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK
MATEMATIKA TÉMAKÖRÖK 11. évfolyam 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége, részhalmaz, üres halmaz, véges,
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó
FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart
Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.
YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra
Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából
OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY
OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY ALGEBRA ÉS SZÁMELMÉLET Halmazok Halmazműveletek Halmazok elemszáma Logikai szita Számegyenesek intervallumok Gráfok Betűk használata a matematikában Hatványozás. A
Számítási feladatok a Számítógépi geometria órához
Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
1. Az euklideszi terek geometriája
1. Az euklideszi terek geometriája Bázishoz tartozó skaláris szorzat Emékeztető Az R n vektortérbeli v = λ 2... és w = λ 1 λ n µ 1 µ 2... µ n λ 1 µ 1 +λ 2 µ 2 +...+λ n µ n. Jele v,w. v,w = v T u, azaz
Lin.Alg.Zh.1 feladatok
LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális
Az osztályozóvizsgák követelményrendszere MATEMATIKA
Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések
Oeconomicus Napocensis Verseny Március 24 és május IV. szekció Tantárgy: MATEMATIKA I
Str. Teodor Mihali nr. 58-6 Cluj-Napoca, RO-495 Tel.: 64-4.86.5-5 Fa: 64-4.5.7 Március 4 és május 5 8 IV. szekció Tantárgy: MATEMATIKA I TEMATIKA: Valós számok; komple számok; számtani és mértani sorozatok;
Vizsga Lineáris algebra tárgyból. 2012/13 akadémiai év, I. félév
1 Vizsga Lineáris algebra tárgyból 2012/13 akadémiai év, I. félév TARTALOM: 1. Elméleti anyag (melyet a vizsgára meg kell tanulni)...2. old. 2. A vizsga lebonyolítása, osztályozás...3. old. 2.1 Vizsga
Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.
1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége
Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.
Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és
V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I
ALKALMAZOTT MECHANIKA TANSZÉK V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki Tudományi Doktori Iskola hallgatói számára