MEGOLDÁS

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MEGOLDÁS"

Átírás

1 KÖZÉPISKOLÁSOKNAK I. FORDULÓ 018. október 16. (kedd), óra MEGOLDÁS I. Indoklásos tesztkérdések I/1. A Mars felszínén a gravitációs gyorsulás a földi érték harmada. Mit állíthatunk a marsbeli első kozmikus sebességről? (A helyes válasz 1 pont, az indoklás pont.) A marsbéli első kozmikus sebesség nagyobb, mint a földi. A marsbéli első kozmikus sebesség a földivel egyenlő. A marsbéli első kozmikus sebesség kisebb, mint a földi. Mivel az első kozmikus sebesség: v= g R, és tudjuk, hogy a Mars kisebb, mint a Föld, biztosan kisebb lesz a marsbéli első kozmikus sebesség, mint a földi. 3 p I/. A Föld a Naptól 1 csillagászati egységre (1 CsE) kering, és 1 év alatt kerüli azt meg. Mekkora lenne a keringési ideje annak az 1 földtömegű égitestnek, amely 4 CsE-re keringene a Nap körül? (A helyes válasz 1 pont, az indoklás pont.) év 4 év 8 év Kepler III. törvénye alapján a naprendszerbeli égitestekre igaz: T =konstans. Az időt évben, a félnagytengelyt CsE-ben megadva a konstans értéke 1, így a kérdéses égitestre: T = 4 3 =8év a 3 3 p I/3. Egy tárgyat vízszintesen hajítunk el a Földön és a Holdon. A hajítás kezdősebessége és kiinduló 1

2 magassága mindkét helyen azonos. Hányszor messzebbre jut a tárgy a hajítás helyétől vízszintes irányban a Holdon, mint a Földön? (A Holdon a gravitációs gyorsulás a földi érték hatoda.) (A helyes válasz 1 pont, az indoklás pont.) A tárgy ugyanolyan messze esik le. A tárgy 6 -szor messzebb esik le. A tárgy hatszor messzebb esik le. A hajítás távolsága: d= h g v 0. Mivel csak g értékében van különbség, és g H = g F 6 a tárgy 6 -szor messzebb esik le., így I/4. Mi történne, ha a Napot változatlan tömeg mellett ezredrészére zsugorítanánk? (A helyes válasz 1 pont, az indoklás pont.) 3 p A Föld és a többi bolygó változatlanul tovább keringene a pályáján. A Föld és a többi bolygó belezuhanna. A Föld és a többi bolygó elszökne. Mivel a bolygók keringését Kepler III. törvénye írja le, amelyben csak az égitestek tömegei szerepelnek, és a nagy távolságok miatt a Nap és a bolygók is pontszerűnek tekinthetők, ezért a bolygók változatlanul tovább keringenének a pályájukon. 3 p I/5. Meg tud-e mikrogravitáció (azaz a régi megfogalmazás szerint súlytalanság ) állapotában saját hossztengelye körül fordulni egy űrhajós? (Természetesen minden további tárgy, test érintése, és egyéb segédeszközök használata nélkül értendő a kérdés csak saját erejéből! Más, mellékes egyéb lineáris elmozdulások nem kizártak.) (A helyes válasz 1 pont, az indoklás 3 pont.) Nem, semmiképpen sem. Igen, de csak az egyik irányban. Igen, bármelyik irányban.

3 A belső erők a rendszer forgási állapotát ( impulzusmomentumát ) meg tudják változtatni tehát valamilyen módszert bizonyosan lehet találni. ( pont) Egy ilyen lehetőség: a test oldalához szorított karokkal jellemzett alapállapotból indulunk. Első lépésben mindkét kart egymással átellenesen, a felsőtest síkjában kitárjuk (ezzel egy picit magasabbra kerülne a súlypont, ami viszont helyben kell maradjon, így a test picit lefele mozdul el, de ezt megengedtük). Második lépésben a test függőleges tengelyére szimmetrikusan pl. az óramutató járásával ellentétes forgásirányban mindkét kart elforgatjuk ezzel a testünk alsó része ellentétes forgásirányban fog elfordulni valamekkora mértékben, a vállak és a felső rész nem, vagy kevésbé. Ezután visszazárjuk a törzsünk mellé a karjainkat (abban a szögben, ameddig el tudtuk fordítani; ezzel együtt a súlypontunk most kicsit lefele mozdul el, amivel együtt az egész test az űrhajóbeli környezethez képest a hossztengely irányában a fejtető felé mozdul el lineárisan egy picit, de ez is meg volt engedve a feladat szövege szerint). A negyedik lépésben a karjainkat a vállainkkal együtt a törzsünk mentén visszafordítjuk, hogy az eredeti testhelyzet álljon elő. Ezzel a test többi része ellentétes irányban visszafordul egy kicsit de mivel a belső erők támadáspontjai most sokkal közelebb voltak a testhez, a létrejött forgatónyomaték sokkal kisebb volt, mint a második lépésben, így a visszafordulás kisebb szögű volt. Azaz a teljes 4 lépés eredményeként egy kicsit elfordult a test. Ezt ismételgetve néhány ciklus után akár teljes 360 fokos elfordulás is létrehozható. ( pont) II. Távcsövek & optika 4 p II/1. Távcső-totó ( A kérdéseknél esetleg több válasz is jó lehet, vagy akár egy sem! Kérdésenként a helyes válaszkombináció - pontot ér, a nem pontos válaszok egységesen 0 pontot érnek.) 1. Milyen hatással van a légkör a távcsőben létrejövő képre? 1 A horizonttal párhuzamos elnyúlását okozza az égitesteknek. Megváltoztatja az égitestek színét. Megváltoztatja az égitestek észlelhető fényességét.. Milyen módszerrel maradhat használható a lencsés távcső objektívje, miután külső felületére ráejtettünk egy fémtárgyat, és kipattant egy pár mm -es darab az üvegből? 1 Átlátszatlan blendével le kell szűkíteni a lencse szabad átmérőjét a hibán belülre. Befestjük matt fekete festékkel a hibát. Semmilyen módszerrel nem marad leképezésre használható a lencse cserélni kell. 3. Az alábbi paraméterek közül melyik befolyásolja egy távcső felbontóképességét? 1 Az objektív átmérője Az objektív fókusztávolsága Az okulár fókusztávolsága 6 p 3

4 II/. Kifejtős kérdés Egy adott átmérőjű és fókuszú üveg gyűjtőlencse 30 másodperc alatt gyújtja meg a fókuszába helyezett papírt. Meg tudja-e gyújtani ugyanennyi idő alatt, ha vízbe esik? (Minden körülményt tekintsünk ideálisnak. A víz desztillált víz, felülete teljesen sima. A Nap sugarai a vízfelületre merőlegesen esnek be, a lencse optikai tengelyében. A víz egy optikailag tökéletes minőségű, plánparallel üvegfalú síkokkal határolt kádban van. A papír száraz, az alsó határoló üvegfal alatt van, pont a lencse optikai tengelyében. Elegendő víz van a kádban ahhoz, hogy a lencse teljesen vízben legyen, és a lencse fókuszpontja pont az üvegen kívül, a papírlapon legyen.) Egyfelől a vízben (valamint a kád alsó üvegfalában) a direkt nyalábból kiszóródó fény, valamint az alsó üvegfal mindkét határoló felületén megkövetkező reflexió miatt is csökken a papírt elérő energiamennyiség. A fő probléma az, hogy a vízben az üveglencse fókusza többszörösére (kb. 3-szorosára) nyúlik, ennek megfelelően a Nap képe kb. háromszor akkora lesz, mint a levegőben lévő lencse esetében. Emiatt a felületegységre sokkal kevesebb energia jut, tehát a vízben lévő lencse ugyanannyi idő alatt nem tudja meggyújtani a papírt. (Ha valaki a fő problémát részletesen és helyesen leírja, megkaphatja a 4 pontot. Ha hiányos a leírás, de egyéb szempontok is fel vannak sorolva, akkor szintén megadható a 4 pont). 4 p 4

5 III. Összetett feladatok III/1. Egy műhold az Egyenlítő fölött körpályán kering a Föld körül. A teljes egyenlítői tartomány fölötti elhaladáshoz 8 órára van szüksége. a) Mekkora a műhold keringési ideje, ha egy irányban kering a Föld forgásával? b) Mekkora lenne a műhold keringési ideje, ha ellentétes irányban keringene a Föld forgásával? c) Milyen magasan kering a műhold a Föld felszíne felett az a) esetben? Milyen magasra kellene juttatni a b) esetben? Megoldás ( pont) ( pont) (1-1 pont) III/. 6 p a) Nemrégiben felfedezték az első olyan kisbolygót, amelynek gyűrűrendszere van. Az alig 30 km átmérőjű Chariklo kisbolygó 15,76 CsE félnagytengelyű pályán kering a Nap körül (úgynevezett Kentaur objektum). Becsüljük meg, hogy legfeljebb milyen magasságban lehet a felszíne fölött a gyűrű külső határa! Feltételezzük, hogy a kisbolygó gömb alakú. Az ilyen kérdések Édouard Roche ( ) francia 5

6 csillagász által 1850-ban felállított közelítő formulája által válaszolhatóak meg:,44 3 P L Roche R P, S ahol RP és ρp a központi, kiterjedt égitest sugara és sűrűsége, ρs a Roche-határt megközelítő égitest sűrűsége, az LRoche kritikus távolság értéke pedig a központi, kiterjedt égitest centrumától mérve értendő. E távolságon belülre kerülve az adott sűrűségű, csak a saját gravitációja által összetartott kis égitestet a kiterjedt égitest árapály-erői szétszedik, és a törmelék idővel szétterjed a központi égitest körül, gyűrűt alkotva körülötte. Számolásainkhoz tételezzük fel, hogy a Chariklo sűrűsége,3 g/cm 3, a gyűrűvé vált egykori kis égitesté pedig 1,9 g/cm 3. b) Az Apollo-8 közel 50 évvel ezelőtt 10-szer megkerülte a Holdat, mindössze km közötti felszín feletti magasságban. Minthogy a Hold átlagos sűrűsége 3,344 g/cm 3, az űrhajóé pedig kb. g/cm 3, így az előző részfeladatbeli képlettel számolva a Hold felszíne feletti Lroche = 969 km nél kisebb magasságban az Apollo űrhajónak darabjaira kellett volna hulljon az árapály-keltő erők miatt. Mint tudjuk: mégsem hullott darabjaira! Mi az oka? Megoldás: a) Egyszerű behelyettesítésre van csak szükségünk a megadott formulába. A kisbolygó sugara R P = 30/ = 151 km, így a megadott sűrűségek ismeretében: L Roche =, km 3,3 =39,67 km 1,9 Azonban oda kell figyelnünk! L Roche a kisbolygó középpontjától értelmezett érték, a feladat pedig a felszín feletti magasságra kérdez rá, ebből tehát még le kell vonni a kisbolygó sugarát, így a végső válasz: A gyűrű külső peremének maximális magassága a (gömb alakúnak feltételezett) kisbolygó felszíne feletti 39, = 41,67 km-re kell húzódjon. (3 pont) b) A Roche-határ fenti formula szerinti becslése ahogyan a feladat szövegezésében elbújtatva szerepelt is azzal a megkötéssel érvényes, hogy a megközelítő kisebb testet csakis saját gravitációja tartja össze, azaz az egyéb belső összetartó erőket (adhézió, rugalmas erők, stb.) nem tételez fel! És ez a megoldás kulcsa: az Apollo űrhajó komplexumot nem pusztán a tömegének gravitációja tartja össze (sőt, ilyen kis tömeg nem is lenne ilyesmire képes), hanem az egyes részegységek rugalmas, deformálható kapcsolata (csavarozások, hegesztések, stb.). Ilyen esetekre nem (ill. nem ilyen egyszerű formában) érvényes a Roche-formula. (3 pont) 6 p III/3. A Lunohod és az Apollo küldetések is vittek lézertükröket a Holdra, ezek pontos távolságmérést tesznek lehetővé. Tegyük fel, hogy egy adott pillanatban egy lézertükör és egy földi lézertávmérő is a két égitest centrumát összekötő egyenesen van (értelemszerűen a "belső" oldalon). Ebben a pillanatban, majd két óra elteltével ismét megmérjük a távolságot. Mennyi lesz a két mért érték különbsége? (Az egyszerűség kedvéért a Hold pályáját vegyük tökéletes körnek, és tekintsünk el a pályahajlás okozta hatástól is.) Megoldás: Vegyük fel a mellékelt ábra szerinti alaphelyzetet, képzeletben magasan a Föld É-i pólusa felől nézve: A z első időpontban a Hold a pályáján a H 0 pontban tartózkodik, a Földön a lézertávmérő az F 0 pontban van rögzítve. A szöveg szerinti óra eltelte alatt bekövetkező szögelfordulást kell 6

7 meghatározni: A Föld tengelyforgása miatti elfordulás legyen F, a Hold pályamozgása miatti elfordulás legyen H. Ezt a két szöget könnyen meghatározhatjuk a tesztlap elején található segéd-adatok alapján (a Föld tengelyforgási periódusa és a Hold Föld körüli keringésének periódusa alapján): F h 30 H h h 1,07 (- pont, ha jó rajz is 4h 8d 84h van) A óra eltelte utáni állapot szerint a tükör illetve a távmérő H és F pontokban lesz, az OFH háromszög két oldalának (OF és OH) hosszát és a közrezárt szöget ismerjük. Így az új távolságot(l), azaz a harmadik oldalt a koszinusz-tétellel határozzuk meg: OF OH OF OH cos F H ( pont) Ahol OF=6.378 km a Föld sugara, OH= a Hold R Hold = km (a Hold a Hold Föld körüli pályájának fél nagytengelye, R Hold pedig a Hold átlagos sugara). Ezeket az értékeket behelyettesítve: cos31, 07 l=37 13 km (1 pont) Ez ( ) = 99 km lesz a két mért érték különbsége. (1 pont) III/4. Egy úgynevezett fedési kettőscsillagot vizsgálunk a Földről. a) Milyen hosszú ideig tart a fedés, ha a kettőscsillag komponensei egymástól csillagászati egységnyire (CsE), a tömegközéppont körül kör alakú pályán keringenek, mindkét csillag mérete és tömege pontosan akkora, mint a Napé, és pontosan a rendszer keringési síkjában figyeljük meg az 8 p 7

8 eseményt? Készíts áttekinthető rajzot is a feladathoz! (Segítség: a fedés teljes időtartamát azon két pillanat között mérjük, amikor az egyik csillag korongja a Földről nézve belép a másik elé, illetve amikor teljes terjedelmével kilép a másik csillag korongja elől.) b) Milyen messze van a Földtől a kettőscsillag, ha a két komponens közötti távolság a Földről nézve 0,00 ívmásodperces szög alatt látszik? (7 pont) Megoldás (b): Ha 1 parszek távolságban 1 CsE 1 alatt látszik, akkor CsE 1000 parszekről fog 0,00 alatt látszani. (3 pont) 10 p Összpontszám: 56 p 8

Tömegvonzás, bolygómozgás

Tömegvonzás, bolygómozgás Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test

Részletesebben

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti

Részletesebben

Összeállította: Juhász Tibor 1

Összeállította: Juhász Tibor 1 A távcsövek típusai Refraktorok és reflektorok Lencsés távcső (refraktor) Galilei, 1609 A TÁVCSŐ objektív Kepler, 1611 Tükrös távcső (reflektor) objektív Newton, 1668 refraktor reflektor (i) Legnagyobb

Részletesebben

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Asztrofizika II. és Műszerismeret Megoldások

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Asztrofizika II. és Műszerismeret Megoldások Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 4. Asztrofizika II. és Műszerismeret Megoldások Dálya Gergely, Bécsy Bence 1. Bemelegítő feladatok B.1. feladat Írjuk fel a Pogson-képletet:

Részletesebben

Hogyan lehet meghatározni az égitestek távolságát?

Hogyan lehet meghatározni az égitestek távolságát? Hogyan lehet meghatározni az égitestek távolságát? Először egy régóta használt, praktikus módszerről lesz szó, amelyet a térképészetben is alkalmaznak. Ez a geometriai háromszögelésen alapul, trigonometriai

Részletesebben

Optika gyakorlat 5. Gyakorló feladatok

Optika gyakorlat 5. Gyakorló feladatok Optika gyakorlat 5. Gyakorló feladatok. példa: Leképezés - Fruzsika játszik Fruzsika több nagy darab ívelt üveget tart maga elé. Határozd meg, hogy milyen típusú objektívek (gyűjtő/szóró) ezek, és milyen

Részletesebben

A Föld helye a Világegyetemben. A Naprendszer

A Föld helye a Világegyetemben. A Naprendszer A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000

Részletesebben

Fizika példák a döntőben

Fizika példák a döntőben Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén

Részletesebben

Csillagászati eszközök. Űrkutatás

Csillagászati eszközök. Űrkutatás Csillagászati eszközök Űrkutatás Űrkutatás eszközei, módszerei Optikai eszközök Űrszondák, űrtávcsövek Ember a világűrben Műholdak Lencsés távcsövek Első távcső: Galilei (1609) Sok optikai hibája van.

Részletesebben

Földünk a világegyetemben

Földünk a világegyetemben Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények

Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periódikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó

Részletesebben

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny első forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny első forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 015/016. tanévi Országos Középiskolai Tanulmányi Verseny első forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útmutató 1. feladat: A képzeletbeli OKTV/016 csillag körül körpályán keringő,

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 7. Távcsövek és kozmológia Megoldások Bécsy Bence, Dálya Gergely 1. Bemelegítő feladatok B1. feladat A nagyítást az objektív és az

Részletesebben

58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie F Texty úloh v maďarskom jazyku

58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie F Texty úloh v maďarskom jazyku 58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie F Texty úloh v maďarskom jazyku 3. feladat megoldásához 5-ös formátumú milliméterpapír alkalmas. Megjegyzés a feladatok

Részletesebben

Egyszerű számítási módszer bolygók és kisbolygók oályáj ának meghatározására

Egyszerű számítási módszer bolygók és kisbolygók oályáj ának meghatározására Egyszerű számítási módszer bolygók és kisbolygók oályáj ának meghatározására A bolygók és kisbolygók pályájának analitikus meghatározása rendszerint több éves egyetemi előtanulmányokat igényel. Ennek oka

Részletesebben

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét

Részletesebben

Földünk a világegyetemben

Földünk a világegyetemben Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője

Részletesebben

Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő:

Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő: Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót erőmérőnek

Részletesebben

A csillagképek története és látnivalói február 14. Bevezetés: Az alapvető égi mozgások

A csillagképek története és látnivalói február 14. Bevezetés: Az alapvető égi mozgások A csillagképek története és látnivalói 2018. február 14. Bevezetés: Az alapvető égi mozgások A csillagok látszólagos mozgása A Föld kb. 24 óra alatt megfordul a tengelye körül a földi megfigyelő számára

Részletesebben

OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István

OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István Ma sok mindenre fény derül! / alapjai/ Dr. Seres István Legkisebb idő Fermat elve A fény a legrövidebb idejű pályán mozog. I. következmény: A fény a homogén közegben egyenes vonalban terjed t s c minimális,

Részletesebben

A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25.

A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25. A geometriai optika Fizika 11. Rezgések és hullámok 2019. május 25. Fizika 11. (Rezgések és hullámok) A geometriai optika 2019. május 25. 1 / 22 Tartalomjegyzék 1 A fénysebesség meghatározása Olaf Römer

Részletesebben

ALAPVETŐ TUDNIVALÓK Átmérő, fókusz A csillagászati távcsövek legfontosabb paramétere az átmérő és a fókusztávolság. Egy 70/900 távcső esetében az első szám az átmérőre utal, a második a fókusztávolságára

Részletesebben

A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER

A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER 1. Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. A fény terjedési sebessége: 300.000 km/s, így egy év alatt 60*60*24*365*300 000 km-t,

Részletesebben

28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály

28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály 1. feladat a) A négyzet alakú vetítővászon egy oldalának hossza 1,2 m. Ahhoz, hogy a legnagyobb nagyításban is ráférjen a diafilm-kocka képe a vászonra, és teljes egészében látható legyen, ahhoz a 36 milliméteres

Részletesebben

Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv

Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével

Részletesebben

5.1. ábra. Ábra a 36A-2 feladathoz

5.1. ábra. Ábra a 36A-2 feladathoz 5. Gyakorlat 36A-2 Ahogyan a 5. ábrán látható, egy fénysugár 5 o beesési szöggel esik síktükörre és a 3 m távolságban levő skálára verődik vissza. Milyen messzire mozdul el a fényfolt, ha a tükröt 2 o

Részletesebben

Naprendszer mozgásai

Naprendszer mozgásai Bevezetés a csillagászatba 2. Muraközy Judit Debreceni Egyetem, TTK 2017. 09. 28. Bevezetés a csillagászatba- Naprendszer mozgásai 2017. szeptember 28. 1 / 33 Kitekintés Miről lesz szó a mai órán? Naprendszer

Részletesebben

A fény visszaverődése

A fény visszaverődése I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak

Részletesebben

5. Egy 21 méter magas épület emelkedési szögben látszik. A teodolit magassága 1,6 m. Milyen messze van tőlünk az épület?

5. Egy 21 méter magas épület emelkedési szögben látszik. A teodolit magassága 1,6 m. Milyen messze van tőlünk az épület? Gyakorlás 1. Az út emelkedésének nevezzük annak a szögnek a tangensét, amelyet az út a vízszintessel bezár. Ezt általában %-ban adják meg. (100 %-os emelkedésű a vízszintessel 1 tangensű szöget bezáró

Részletesebben

2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE

2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE 2.9.1 Tabletták és kapszulák szétesése Ph.Hg.VIII. Ph.Eur.6.3-1 01/2009:20901 2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE A szétesésvizsgálattal azt határozzuk meg, hogy az alábbiakban leírt kísérleti körülmények

Részletesebben

Mechanika - Versenyfeladatok

Mechanika - Versenyfeladatok Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:...

Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:... Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ 2017. április 22. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár neve:...

Részletesebben

Fizika feladatok - 2. gyakorlat

Fizika feladatok - 2. gyakorlat Fizika feladatok - 2. gyakorlat 2014. szeptember 18. 0.1. Feladat: Órai kidolgozásra: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel s 1 utat, második szakaszában

Részletesebben

Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen

Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével

Részletesebben

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László A világegyetem szerkezete és fejlődése Összeállította: Kiss László Szerkezeti felépítés A világegyetem galaxisokból és galaxis halmazokból áll. A galaxis halmaz, gravitációsan kötött objektumok halmaza.

Részletesebben

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, 2002 március 13 9-12 óra 11 osztály 1 Egyatomos ideális gáz az ábrán látható folyamatot végzi A folyamat elsõ szakasza izobár folyamat, a második szakasz

Részletesebben

Ajánlott szakmai jellegű feladatok

Ajánlott szakmai jellegű feladatok Ajánlott szakmai jellegű feladatok A feladatok szakmai jellegűek, alkalmazásuk mindenképpen a tanulók motiválását szolgálja. Segít abban, hogy a tanulók a tanultak alkalmazhatóságát meglássák. Értsék meg,

Részletesebben

Minden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont.

Minden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont. 1. 1. Név: NEPTUN kód: Tanult középiskolai matematika szintje: közép, emelt szint. Munkaidő: 50 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. A feladatlap üresen

Részletesebben

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport

Részletesebben

KOZMIKUS KÖRNYEZETÜNK

KOZMIKUS KÖRNYEZETÜNK KOZMIKUS KÖRNYEZETÜNK 1. Hogyan épül fel a ma ismert világegyetem? Helyezze el a fogalmakat a megfelelő csoportokba! Nevezze meg a hiányzó csoportokat! 2.Egészítse ki, és lássa el magyarázattal (számok

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

Kisérettségi feladatsorok matematikából

Kisérettségi feladatsorok matematikából Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)

Részletesebben

Csillagászati megfigyelések

Csillagászati megfigyelések Csillagászati megfigyelések Napszűrő Föld Alkalmas szűrő nélkül szigorúan tilos a Napba nézni (még távcső nélkül sem szabad)!!! Solar Screen (műanyag fólia + alumínium) Olcsó, szürkés színezet. Óvatosan

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. február 27. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. február 27. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM

Részletesebben

Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József

Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József Bolygómozgás Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés Egy Nap körül kering

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

Öveges korcsoport Jedlik Ányos Fizikaverseny 2. (regionális) forduló 8. o március 01.

Öveges korcsoport Jedlik Ányos Fizikaverseny 2. (regionális) forduló 8. o március 01. Öveges korcsoport Jedlik Ányos Fizikaverseny. (regionális) forduló 8. o. 07. március 0.. Egy expander 50 cm-rel való megnyújtására 30 J munkát kell fordítani. Mekkora munkával nyújtható meg ez az expander

Részletesebben

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva

Részletesebben

25. Képalkotás. f = 20 cm. 30 cm x =? Képalkotás

25. Képalkotás. f = 20 cm. 30 cm x =? Képalkotás 25. Képalkotás 1. Ha egy gyujtolencse fókusztávolsága f és a tárgy távolsága a lencsétol t, akkor t és f viszonyától függ, hogy milyen kép keletkezik. Jellemezd a keletkezo képet a) t > 2 f, b) f < t

Részletesebben

Gyakorló feladatok Egyenletes mozgások

Gyakorló feladatok Egyenletes mozgások Gyakorló feladatok Egyenletes mozgások 1. Egy hajó 18 km-t halad északra 36 km/h állandó sebességgel, majd 24 km-t nyugatra 54 km/h állandó sebességgel. Mekkora az elmozdulás, a megtett út, és az egész

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ április évfolyam. Versenyző neve:...

Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ április évfolyam. Versenyző neve:... Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ 2014. április 26. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár

Részletesebben

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne: 3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő

Részletesebben

1. Feladatok a termodinamika tárgyköréből

1. Feladatok a termodinamika tárgyköréből . Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd

Részletesebben

CSILLAGÁSZATI TESZT. 1. Csillagászati totó

CSILLAGÁSZATI TESZT. 1. Csillagászati totó CSILLAGÁSZATI TESZT Név: Iskola: Osztály: 1. Csillagászati totó 1. Melyik bolygót nevezzük a vörös bolygónak? 1 Jupiter 2 Mars x Merkúr 2. Melyik bolygónak nincs holdja? 1 Vénusz 2 Merkúr x Szaturnusz

Részletesebben

OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István

OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István OPTIKA Gömbtükrök képalkotása, Dr. Seres István Tükrök http://www.mozaik.info.hu/mozaweb/feny/fy_ft11.htm Seres István 2 http://fft.szie.hu Gömbtükrök Domború tükör képalkotása Jellegzetes sugármenetek

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Történeti áttekintés

Történeti áttekintés A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először

Részletesebben

f r homorú tükör gyűjtőlencse O F C F f

f r homorú tükör gyűjtőlencse O F C F f 0. A fény visszaveődése és töése göbült hatáfelületeken, gömbtükö és optikai lencse. ptikai leképezés kis nyílásszögű gömbtükökkel, és vékony lencsékkel. A fő sugámenetek ismetetése. A nagyító, a mikoszkóp

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a fizika tanításához A lencsék fogalma, fajtái Az optikai lencsék a legegyszerűbb fénytörésen alapuló leképezési eszközök. Fajtái: a domború és a homorú lencse. optikai középpont optikai

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő:

Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő: Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót

Részletesebben

Csillagászati észlelés gyakorlat I. 2. óra: Távolságmérés

Csillagászati észlelés gyakorlat I. 2. óra: Távolságmérés Csillagászati észlelés gyakorlat I. 2. óra: Távolságmérés Hajdu Tamás & Császár Anna & Perger Krisztina & Bőgner Rebeka A csillagászok egyik legnagyobb problémája a csillagászati objektumok távolságának

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N IPULZUS OENTU Impulzusnyomaték, perdület, jele: N Definíció: Az (I) impulzussal rendelkező test impulzusmomentuma egy tetszőleges O pontra vonatkoztatva: O I r m Az impulzus momentum vektormennyiség: két

Részletesebben

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával Optika Fénytan A fény útjába kerülő akadályok és rések mérete Sokkal nagyobb összemérhető A fény hullámhoszánál. A fény hullámhoszával Elektromágneses spektrum Az elektromágneses hullámokat a keltés módja,

Részletesebben

Geometriai Optika (sugároptika)

Geometriai Optika (sugároptika) Geometriai Optika (sugároptika) - Egyszerû optikai eszközök, ahogy már ismerjük õket - Mi van ha egymás után tesszük: leképezések egymásutánja (bonyolult) - Gyakorlatilag fontos eset: paraxiális közelítés

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

A bolygók mozgására vonatkozó Kepler-törvények igazolása

A bolygók mozgására vonatkozó Kepler-törvények igazolása A bolygók mozgására vonatkozó Kepler-törvények igazolása Geometriai alapok. A kúpszeletek polárkoordinátás egyenlete A síkbeli másodrend görbék közül az ellipszist, a hiperbolát és a parabolát mondjuk

Részletesebben

OPTIKA. Vékony lencsék képalkotása. Dr. Seres István

OPTIKA. Vékony lencsék képalkotása. Dr. Seres István OPTIKA Vékony lencsék képalkotása Dr. Seres István Vékonylencse fókusztávolsága D 1 f (n 1) 1 R 1 1 R 2 Ha f > 0, gyűjtőlencse R > 0, ha domború felület R < 0, ha homorú felület n a relatív törésmutató

Részletesebben

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal

Részletesebben

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa 1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)

Részletesebben

Hatvani István fizikaverseny Döntő. 1. kategória

Hatvani István fizikaverseny Döntő. 1. kategória 1. kategória 1.D.1. A villamosiparban a repülő drónok nagyon hasznosak, például üzemzavar esetén gyorsan és hatékonyan tudják felderíteni, hogy hol van probléma. Egy ilyen hibakereső drón felszállás után,

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

EGY ABLAK - GEOMETRIAI PROBLÉMA

EGY ABLAK - GEOMETRIAI PROBLÉMA EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az

Részletesebben

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő

Részletesebben

DINAMIKA ALAPJAI. Tömeg és az erő

DINAMIKA ALAPJAI. Tömeg és az erő DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban

Részletesebben

3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben.

3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. 3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. TÁVOLSÁG Általános definíció: két alakzat távolsága a két alakzat pontjai között húzható legrövidebb szakasz hosszaa távolság

Részletesebben

Az idő története múzeumpedagógiai foglalkozás

Az idő története múzeumpedagógiai foglalkozás Az idő története múzeumpedagógiai foglalkozás 2. Ismerkedés a napórával FELADATLAP A az egyik legősibb időmérő eszköz, amelynek elve azon a megfigyelésen alapszik, hogy az egyes testek árnyékának hossza

Részletesebben

ANALÍZIS II. Példatár

ANALÍZIS II. Példatár ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3

Részletesebben

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

11. Előadás Gradiens törésmutatójú közeg II.

11. Előadás Gradiens törésmutatójú közeg II. 11. Előadás Gradiens törésmutatójú közeg II. A következőkben két különleges, gradiens törésmutatójú lencsével fogunk foglalkozni, az úgynevezett Luneburg-féle lencsékkel. Annak is két típusával: a Maxwell-féle

Részletesebben

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög. 1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való

Részletesebben

Csillagászati észlelés gyakorlatok I. 4. óra

Csillagászati észlelés gyakorlatok I. 4. óra Csillagászati észlelés gyakorlatok I. 4. óra Hajdu Tamás & Perger Krisztina & Császár Anna & Bőgner Rebeka 2018. március 22. 1. Optikai alapfogalmak Az emberi szem, az elektromágneses sugárzás töredékét

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,

Részletesebben

Csillagászati észlelés gyakorlat I. 3. óra: Távcsövek és távcsőhibák

Csillagászati észlelés gyakorlat I. 3. óra: Távcsövek és távcsőhibák Csillagászati észlelés gyakorlat I. 3. óra: Távcsövek és távcsőhibák Hajdu Tamás & Sztakovics János & Perger Krisztina Bőgner Rebeka & Császár Anna 2018. március 8. 1. Távcsőtípusok 3 fő típust különböztetünk

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

A FÖLD-HOLD RENDSZER MODELLJE

A FÖLD-HOLD RENDSZER MODELLJE ELTE TTK KOZMIKUS ANYAGOKAT VIZSGÁLÓ ŰRKUTATÓ CSOPORT PLANETOLÓGIAI KÖRE OKTATÓI SEGÉDANYAG KÖZÉPISKOLA 8-12. OSZTÁLY A FÖLD-HOLD RENDSZER MODELLJE BOLYGÓTUDOMÁNY A jelen kiadvány elérhető elektronikus

Részletesebben

A gradiens törésmutatójú közeg I.

A gradiens törésmutatójú közeg I. 10. Előadás A gradiens törésmutatójú közeg I. Az ugrásszerű törésmutató változással szemben a TracePro-ban lehetőség van folytonosan változó törésmutatójú közeg definiálására. Ilyen érdekes típusú közegek

Részletesebben