KIEGYENLÍTŐ SZÁMÍTÁSOK II.
|
|
- Ádám Vass
- 6 évvel ezelőtt
- Látták:
Átírás
1 KIEGYENLÍTŐ SZÁMÍTÁSOK II. SÍK ILLESZTÉSE Olvassuk be a domborzatmodellezéskor már használt mérési állományunkat (meres_coo.txt)! Korábban láttuk a szintvonalas domborzatnál, hogy a terep meglehetősen síknak tekinthető. Illesszünk egy kiegyenlítő síkot a pontokra! Keressük meg a sík paramétereit A sík általános egyenlete a következő: Ahány pontunk van, annyi egyenletet tudunk felírni (163), míg összesen 3 ismeretlenünk van az a 0, a 1, a 2 paraméter, tehát ismét túlhatározott lineáris egyenletrszert kell megoldani. Mátrix alakban felírva a következő egyenletrszert kell megoldanunk: ( ) ( ) ( ) vagyis:, ahol a paraméter vektor [ ]. A megoldást a már korábban levezetett alakban kapjuk meg: MEGOLDÁS MATLAB/OCTAVE HASZNÁLATÁVAL Oldjuk meg ezt Matlabban/Octave-ban, majd jelenítsük meg az eredményt! clear all; close all; clc; page_screen_output(0); % ez csak Octave-ban kell! data=load('meres_coo.txt'); x = data(:,2); y = data(:,3); z = data(:,4); A = [ones(size(x)) x y]; p = inv(a'*a)*(a'*z) 1
2 A futtatás után kapunk egy figyelmeztetést: Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = e-021. Ez arra utal, hogy a megoldás pontatlan lehet, és nagyon bizonytalan. Kérdezzük le az mátrix kondíciószámát! c=cond(a'*a) Eredmény: c = e+020 Minél nagyobb a kondíciószám, annál bizonytalanabb a megoldás, mivel a kondíciószám egy hányados a kimenet és a bemenet relatív hibája között. Egy kis változás a bemeneti adatokban a megoldás nagy változását okozhatja. Ábrázoljuk azért a megoldást! a0=p(1) a1=p(2) a2=p(3) f a0+a1*x+a2*y figure(1); hold on; ezsurf(f, [min(x) max(x) min(y) max(y)]) plot3(x,y,z, 'k*') Ha megnézzük az adatokat, akkor látszik, hogy több százezres nagyságrű EOV y,x koordinátákkal dolgoztunk, hozzá m körüli z értékekkel. Ilyenkor a numerikus számítás bizonytalanságát csökkenthetjük, ha áttérünk súlyponti koordinátákra és nem a több százezres koordinátákkal dolgozunk. MEGOLDÁS SÚLYPONTI KOORDINÁTÁKKAL A súlyponti y,x koordinátákhoz ki kell számolni a koordináták átlagát és kivonni ezt a mérési eredményekből. A végleges eredménynél és megjelenítésnél sem szabad azonban elfelejteni, hogy ezeket az átlagokat ki kell vonni az y,x értékekből! 2
3 % sulyponti koordinatak XS = mean(x) YS = mean(y) xs = x - XS; ys = y - YS; As = [ones(size(xs)) xs ys]; ps = inv(as'*as)*(as'*z) cs=cond(as'*as) a0s=ps(1) a1s=ps(2) a2s=ps(3) fs a0s + a1s * (x-xs) + a2s * (y-ys) figure(2) ezsurf(fs, [min(x) max(x) min(y) max(y)]) hold on; plot3(x,y,z, 'b.', 'MarkerSize', 15) A súlypont koordinátáit YS és XS jelöli. A kiszámított súlyponti koordináták pedig ys és xs. A minimális és maximális xs: [ ; ], a minimális és maximális ys: [ ; ]. Ezekkel az értékekkel számolva jóval kisebb a numerikus számítás pontatlansága, a kondíciószám nagyságr helyett mindössze 10 3 nagyságrű. Most nem is kapunk figyelmeztetést, csak a megoldást. Egy másik módja a megoldás pontosításának, ha nem az alakban oldjuk meg a problémát, hanem használjuk az Octave/Matlab valamelyik beépített megoldó módszerét túlhatározott egyenletekre. Pl az egyenletet túlhatározott esetben is megoldhatjuk az alakban. Ez Octave esetében SVD (Singular Value Decomposition) felbontással történő megoldást jelent, ami numerikusan sokkal stabilabb. Ha ezzel oldjuk meg a feladatot, akkor az eredeti koordinátákkal sem lép fel a rosszul kondicionáltság problémája. Az eredmények némileg eltérnek a másik módszerrel kapott eredményektől az eredeti koordinátákat használva, míg a súlyponti koordinátáknál megegyeznek. POZÍCIÓ MEGHATÁROZÁS MOBILTELEFONOKKAL A mobiltelefonok pozíciójának meghatározásakor relkezésre áll az eszköz és a mobiltornyok távolsága. A távolságok egy-egy kört határoznak meg a bázisállomások körül (lásd ábra). A körök másodfokú egyenletek, és ezek metszéspontja adja a mobiltelefon pozícióját. Ez a probléma az ívmetszés (angolul lateration). Amennyiben legalább 3 távolság, azaz 3 kör, valamint a bázisok koordinátái ismertek, az ismeretlen hely meghatározható. Több távolság esetében kiegyenlítésre van szükség, ami tekintve az egyenleteket, most nemlineáris egyenletrszerre alkalmazott legkisebb négyzetek módszerével történhet. 3
4 Az egyes mobiltornyok koordinátáit és a távolságméréseket az alábbi táblázat foglalja össze. Mobil torony sorszáma X koordináta i x [m] Y koordináta i y [m] Mért bázisterminál távolság r [m] i Az egyenleteket a következő implicit alakban adhatjuk meg: ahol x i, y i a mobiltornyok koordinátái, x,y pedig a keresett álláspont. A megoldáshoz ismét az eltérések négyzetösszegét kell minimalizálni. Ehhez most az Octave/Matlab beépített szimplex módszerét fogjuk használni, az fminsearch parancsot (de akár az fminunc parancs is használható, ami kvázi-newton minimalizálást alkalmaz). Itt viszont már szükség lesz kezdőérték megadására, ami lineáris esetben még nem volt követelmény. A kezdőértékeket most ábrából vesszük, így először szükséges ábrázolni az egyenleteket., 4
5 MEGOLDÁS MATLAB/OCTAVE HASZNÁLATÁVAL (NEMLINEÁRIS LEGKISEBB NÉGYZETEK MÓDSZERE) Adjuk meg először a mobiltornyok koordinátáit, a mért távolságokat, és ábrázoljuk a pontokat! clear all; clc; close all; page_screen_output(0); % ez csak Octave-ban kell! xt = [561; 5203; 5067; 1012] yt = [487; 4625; -5728; 5451] rm = [2130; 5620; 6040; 5820] figure(1); hold on; plot(xt, yt, 'r*') Definiáljuk ezek után a tornyoktól mért távolságokat függvényekkel és ábrázoljuk ezeket! eq1 (x-xt(1)).^2 + (y-yt(1)).^2 - rm(1).^2 eq2 (x-xt(2)).^2 + (y-yt(2)).^2 - rm(2).^2 eq3 (x-xt(3)).^2 + (y-yt(3)).^2 - rm(3).^2 eq4 (x-xt(4)).^2 + (y-yt(4)).^2 - rm(4).^2 ezplot(eq1, [ ]) ezplot(eq2, [ ]) ezplot(eq3, [ ]) ezplot(eq4, [ ]) axis equal Figyeljünk arra, hogy a függvények definiálásakor használjunk pontot (.) a hatványozás, szorzás, osztás művelete előtt, hogy vektorokra is hívható legyen elemenként a függvény. Nagyítsunk rá a minket érdeklő területre! figure(2); hold on; ezplot(eq1, [ ]) ezplot(eq2, [ ]) ezplot(eq3, [ ]) ezplot(eq4, [ ]) axis equal 5
6 Definiáljuk a minimalizálandó függvényt, az eltérések négyzetösszegét! err eq1(x,y).^2 + eq2(x,y).^2 + eq3(x,y).^2 + eq4(x,y).^2; Ábrázoljuk ezt is a fenti rajzon szintvonalakkal! ezcontour(err,[ ]); (Színezett szintvonalakkal ugyanez: ezcontourf(err,[ ]);) A megoldás a fenti függvény minimuma lesz. Ehhez fel kell vennünk egy kezdőértéket. A rajz alapján a kezdőérték legyen: x0 = [2400; -300] A megoldáshoz az err függvényt vektor változóssá kell alakítanunk! Rajzoljuk ki a megoldást is! err1 err(x(1),x(2)); sol = fminsearch(err1,x0) % sol2 = fminunc(err1,x0) plot(sol(1), sol(2), 'rs') plot(xm, ym, 'r*') Nézzük meg az eltérést a mért távolságok és kiegyenlített álláspont - mobiltornyok távolságai között! % hibák ex = xt - sol(1); ey = yt - sol(2); er = rm - sqrt(ex.^2+ey.^2) 6
7 Az eltérések: er = TELJES LEGKISEBB NÉGYZETEK MÓDSZERE A következőkben egy példa lesz a teljes legkisebb négyzetek módszerével történő egyenes illesztésére. A korábbi egyenes illesztésnél az y irányú eltérések négyzetösszegét minimalizáltuk az egyeneshez képest, feltételeztük, hogy az x koordináta hibátlan. Ez a feltételezés azonban többnyire nem állja meg a helyét, többnyire egy mérésnél mind a két koordináta hibával terhelt, ezért jobb megközelítés, ha a pontok egyenestől való távolságának négyzetösszegét minimalizáljuk. Az alábbi ábrán az előző gyakorlatban a hagyományos legkisebb négyzetek módszerével illesztett egyenes látható kékkel és pirossal a teljes legkisebb négyzetek módszerével illesztett egyenes, berajzolva az egyenestől mért távolságokat. 7
8 A nehézséget az jelenti a feladatban, hogy egy olyan egyenestől való távolságot kell meghatározni, aminek egyelőre nem ismerjük az egyenletét, és maga a probléma sem lineáris. A feladat iterációkkal határozható meg, szükség van kezdőértékekre a paraméterekhez az elején, ez lehet például a hagyományos legkisebb négyzetek módszerével kapott egyenes két paramétere. Fel kell vennünk egy célfüggvényt, amit minimalizálni szeretnénk, ez a minimalizálandó távolság négyzetösszeg lesz, ez egy külön függvényben kerül definiálásra, és szükség lesz egy függvényre, ami pontegyenes távolságot számol. A megoldás a következő lesz: A célfüggvény: function celertek = celfuggveny(p) global x; global y; celertek = 0; for i=1:numel(x) P = [x(i); y(i)]; celertek = celertek + pont_egy_tav(p, P)^2; Pont-egyenes távolságot számító függvény: function [t n Dy] = pont_egy_tav(p_egyenes, P_pont) % Egyenes egyseghosszu iranyvektora b = [1; p_egyenes(2)] / sqrt(1^2 + p_egyenes(2)^2); 8
9 % Egyenesre meroleges egyseghosszu vektor n = [b(2); -b(1)]; % Az egyenes es a pont fuggoleges tavolsaga Dy = P_pont(2) - (p_egyenes(1) + p_egyenes(2)*p_pont(1)); % Ennek vektor megfeleloje Dyv = [0; Dy]; % Vetulete ez egyenes normalisara t = Dyv'*n; % Az egyseghosszu normalis vektor nyujtasa t hosszura n = t * n; A teljes legkisebb módszerek szerinti kiegyenlítés (kezdőérték a hagyományos legkisebb négyzetek módszerével), minimalizálás az fminunc függvénnyel. clear all; clc; close all; % page_screen_output(0); global x; global y; p = [8.765; 1.234]; x = [1:10]'; y = p(1) + p(2)*x; x = x + randn(numel(x),1); y = y + randn(numel(y),1); A = [ones(numel(x),1) x]; p_ = inv(a'*a)*a'*y; p p_ figure(1); hold off; plot(x, y, 'k+'); hold on; plot(x, p_(1) + p_(2)*x, 'b', 'LineWidth', 2); axis('equal'); for i=1:numel(x) P = [x(i); y(i)]; [t n Dy] = pont_egy_tav(p_, P); % plot([p(1); P(1)], [P(2); P(2)-Dy], 'g'); plot([p(1); P(1)-n(1)], [P(2); P(2)-n(2)], 'b'); p = fminunc('celfuggveny', p_); plot(x, p (1) + p (2)*x, 'r', 'LineWidth', 2); celfuggveny(p_) celfuggveny(p ) for i=1:numel(x) P = [x(i); y(i)]; [t n Dy] = pont_egy_tav(p, P); plot([p(1); P(1)-n(1)], [P(2); P(2)-n(2)], 'r'); 9
Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program
Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z
KIEGYENLÍTŐ SZÁMÍTÁSOK, ILLESZTÉSEK ALAPJAI
KIEGYENLÍTŐ SZÁMÍTÁSOK, ILLESZTÉSEK ALAPJAI SZÖGMÉRÉS KIEGYENLÍTÉSE Határozzuk meg 4 irány által bezárt X 1, X 2 és X 3 szögeket, úgy, hogy a közbezárt szögeket minden kombinációban megmértük (L 1, L 2,
NEMLINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA
NEMLINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA Nemlineáris egyenletek gyakran előfordulnak az építőmérnöki feladatok során. Vannak olyan esetek is, amikor nem egy darab nemlineáris egyenlet zérushelyeit keressük,
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
OPTIMALIZÁCIÓ november 6. 1 Dr Laky Piroska
OPTIMALIZÁCIÓ Az optimalizáció, egy függvény szélsőérték helyének a meghatározása. Ez a feladat a mérnöki gyakorlatban is sokszor előfordul, meg kell határozni például egy tartószerkezet maximális elmozdulásának
Legkisebb négyzetek módszere, Spline interpoláció
Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
Keresztmetszet másodrendű nyomatékainak meghatározása
BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet. old.. feladat a. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés:
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos
Vektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
Numerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
1. Gauss-eloszlás, természetes szórás
1. Gauss-eloszlás, természetes szórás A Gauss-eloszlásnak megfelelő függvény: amely egy σ szélességű, µ középpontú, 1-re normált (azaz a teljes görbe alatti terület 1) görbét ír le. A természetben a centrális
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Közönséges differenciálegyenletek megoldása Mapleben
Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen
Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
DOMBORZAT MODELL, TEREPMETSZET KÉSZÍTÉS (INTERPOLÁCIÓ)
DOMBORZAT MODELL, TEREPMETSZET KÉSZÍTÉS (INTERPOLÁCIÓ) Terepfelmérés során többnyire szórt pontokban kapunk magassági értékeket, melyekből szeretnénk digitális domborzatmodellt készíteni, szintvonalas
MATLAB. 5. gyakorlat. Polinomok, deriválás, integrálás
MATLAB 5. gyakorlat Polinomok, deriválás, integrálás Menetrend Kis ZH Polinomok Numerikus deriválás Numerikus integrálás (+ anonim függvények) pdf Kis ZH Polinomok Sok függvény és valós folyamat leírható
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
EGY ABLAK - GEOMETRIAI PROBLÉMA
EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
Mérési adatok illesztése, korreláció, regresszió
Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
Robotok inverz geometriája
Robotok inverz geometriája. A gyakorlat célja Inverz geometriai feladatot megvalósító függvények implementálása. A megvalósított függvénycsomag tesztelése egy kétszabadságfokú kar előírt végberendezés
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
Irányításelmélet és technika II.
Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november
Koordináta-geometria. Fogalom. Jelölés. Tulajdonságok, definíciók
Koordináta-geometria Fogalom Ezen a helyen találkozik össze a számtan és a mértan. Körök, egyenesek, háromszögek és más egyéb alakzatok, de nem szerkesztenünk kell, vagy méricskélni, hanem számolni, viszont
Nehézségi gyorsulás mérése megfordítható ingával
Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
Normák, kondíciószám
Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus
Érettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Mechatronika segédlet 10. gyakorlat
Mechatronika segédlet 10. gyakorlat 2017. április 21. Tartalom Vadai Gergely, Faragó Dénes Feladatleírás... 1 simrobot... 2 Paraméterei... 2 Visszatérési értéke... 2 Kód... 2 simrobotmdl... 3 robotsen.mdl...
Méréselmélet és mérőrendszerek
Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Matematikai geodéziai számítások 9.
Matematikai geodéziai számítások 9 Szabad álláspont kiegyenlítése Dr Bácsatyai, László Created by XMLmind XSL-FO Converter Matematikai geodéziai számítások 9: Szabad álláspont kiegyenlítése Dr Bácsatyai,
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
Numerikus módszerek 1.
Numerikus módszerek 1. Tantárgy kódja: IP-08bNM1E, IP-08bNM1G (2+2) Az elsajátítandó ismeretanyag rövid leírása: A lebegıpontos számábrázolás egy modellje. A hibaszámítás elemei. Lineáris egyenletrendszerek
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
Adatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
Érettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek
Matematikai geodéziai számítások 9.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 9 MGS9 modul Szabad álláspont kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Klár Gergely 2010/2011. tavaszi félév
Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták
Adatsor feldolgozása Scilab-bal
Széchenyi István Egyetem Alkalmazott Mechanika Tanszék GÉPEK DINAMIKÁJA Adatsor feldolgozása Scilab-bal (kidolgozta: Fehér Lajos egyetemi tanársegéd) Feladat: az alább található mérési adatsor feldolgozása.
3. Egyenletek, egyenletrendszerek, egyenlőtlenségek
. Egyenletek, egyenletrendszerek, egyenlőtlenségek I. Nulladik ZH-ban láttuk: 1. Mennyi a 2x 2 8x 5 = 0 egyenlet gyökeinek a szorzata? (A) 10 (B) 2 (C) 2,5 (D) 4 (E) ezek egyike sem Megoldás I.: BME 2011.
20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.
. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. Először megadom a síkbeli definíciójukat, mert ez alapján vezetjük le az egyenletüket. Alakzat
Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
A brachistochron probléma megoldása
A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e
Fuzzy halmazok jellemzői
A Fuzzy rendszerek, számítási intelligencia gyakorló feladatok megoldása Fuzzy halmazok jellemzői A fuzzy halmaz tartója az alaphalmaz azon elemeket tartalmazó részhalmaza, melyek tagsági értéke 0-nál
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
Koordinátageometriai gyakorló feladatok I ( vektorok )
Koordinátageometriai gyakorló feladatok I ( vektorok./ Határozd meg az AB szakasznak azt a pontját, amely a szakaszt : ha A ( ; és a B ( ; 8!./ Adott az A ( 3 ; 5 és a ( ; 6 B pont. Számítsd ki az AB vektor
Matematikai geodéziai számítások 8.
Matematikai geodéziai számítások 8 Szintezési hálózat kiegyenlítése Dr Bácsatyai, László Matematikai geodéziai számítások 8: Szintezési hálózat kiegyenlítése Dr Bácsatyai, László Lektor: Dr Benedek, Judit
Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát!
Konduktometriás titrálás kiértékelése Excel program segítségével (Office 2007) Alapszint 1. A mérési adatokat írjuk be a táblázat egymás melletti oszlopaiba. Az első oszlopba kerül a fogyás, a másodikba
MATLAB OKTATÁS 5. ELŐADÁS FELTÉTEL NÉLKÜLI ÉS FELTÉTELES OPTIMALIZÁLÁS. Dr. Bécsi Tamás Hegedüs Ferenc
MATLAB OKTATÁS 5. ELŐADÁS FELTÉTEL NÉLKÜLI ÉS FELTÉTELES OPTIMALIZÁLÁS Dr. Bécsi Tamás Hegedüs Ferenc FELTÉTEL NÉLKÜLI OPTIMALIZÁLÁS (FMINSEARCH) Feltétel nélküli optimalizálásra a MATLAB az fminsearch
MATLAB. 3. gyakorlat. Mátrixműveletek, címzések
MATLAB 3. gyakorlat Mátrixműveletek, címzések Menetrend Kis ZH Mátrixok, alapműveletek Vezérlő szerkezetek Virtuális műtét Statisztikai adatok vizsgálata pdf Kis ZH Mátrixok, alapműveletek mátrix létrehozása,
Annak a function-nak a neve, amiben letároltuk az egyenletünket.
Function-ok a MATLAB-ban Előző óra 4. Feladata. Amikor mi egy function-t írunk, akkor azt eltárolhatjuk egy.m fileban. Ebben az esetben ha egy másik programunkból szeretnénk meghívni ezt a függvényt (pl
Függvények ábrázolása
Függvények ábrázolása Matematikai függvényeket analitikusan nem tudunk a matlabban megadni (tudunk, de ilyet még nem tanulunk). Ahhoz, hogy egy függvényt ábrázoljuk, hasonlóan kell eljárni, mint a házi
P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP
J UHÁSZ I STVÁN P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ T é m a k ö r ö k é s p r ó b a f e l a d a t s o r 9. osztályosoknak SZAKKÖZÉP 1. oldal 9. OSZTÁLYOS PÓTVIZSGA TÉMAKÖRÖK: I.
I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:
I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:
Matematikai geodéziai számítások 5.
Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP
TANMENET. a matematika tantárgy tanításához 11.E osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 11.E osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján Használatos
Panorámakép készítése
Panorámakép készítése Képregisztráció, 2009. Hantos Norbert Blaskovics Viktor Összefoglalás Panoráma (image stitching, planar mosaicing): átfedő képek összeillesztése Lépések: Előfeldolgozás (pl. intenzitáskorrekciók)
Mikroszkóp vizsgálata Folyadék törésmutatójának mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport
12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN
Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe
Jelek és rendszerek Gyakorlat_02. A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával.
A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával. A Szimulink programcsomag rendszerek analóg számítógépes modelljének szimulálására alkalmas grafikus programcsomag. Egy SIMULINK
Matematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.
Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1
Egyenes és sík a térben Elméleti áttekintés Az egyenes paraméteres egyenlete: X = u 1 λ + x 0 Y = u λ + y 0, Z = u λ + z 0 ahol a λ egy valós paraméter Az u = (u 1, u, u ) az egyenes irányvektora és P
SCILAB programcsomag segítségével
Felhasználói függvények de niálása és függvények 3D ábrázolása SCILAB programcsomag segítségével 1. Felhasználói függvények de niálása A Scilab programcsomag rengeteg matematikai függvényt biztosít a számítások
Matematika III. harmadik előadás
Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)
Helyvektorok, műveletek, vektorok a koordináta-rendszerben
Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )
x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?
. Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs
Kalkulus. Komplex számok
Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az
Principal Component Analysis
Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták
Érettségi feladatok: Függvények 1/9
Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
MATLAB alapismeretek IV. Eredmények grafikus megjelenítése: vonalgrafikonok
Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek IV. Eredmények grafikus megjelenítése: vonalgrafikonok Forrás: İ.Yücel Özbek: Introduction to Matlab
Koordináta-geometria feladatgyűjtemény
Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs
KOORDINÁTA-GEOMETRIA
XIV. Témakör: feladatok 1 Huszk@ Jenő XIV.TÉMAKÖR Téma A pont koordinátageometriája A kör koordinátageometriája KOORDINÁTA-GEOMETRIA A projekt típus ú feladatok tartalmi szintézise A feladat sorszáma Oldal
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Az egyenes és a sík analitikus geometriája
Az egyenes és a sík analitikus geometriája Az egyenes a kétdimenziós koordinátarendszerben A kétdimenziós koordinátarendszerben az egyenest egy n(a, B) normálvektorával és egy r 0 helyvektorú P(x 0,y 0
Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv
(-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
Egyenletek, egyenletrendszerek, matematikai modell. 1. Oldja meg az Ax=b egyenletrendszert Gauss módszerrel és adja meg az A mátrix LUfelbontását,
Egyenletek egyenletrendszerek matematikai modell Oldja meg az A=b egyenletrendszert Gauss módszerrel és adja meg az A mátri LUfelbontását ahol 8 b 8 Oldja meg az A=b egyenletrendszert és határozza meg
Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával
Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 212. október 16. Frissítve: 215. január
Geodézia terepgyakorlat számítási feladatok ismertetése 1.
A Geodézia terepgyakorlaton Sukorón mért geodéziai hálózat új pontjainak koordináta-számításáról Geodézia terepgyakorlat számítási feladatok ismertetése 1. Dr. Busics György 1 Témák Cél, feladat Iránymérési
Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,