MILYEN FELADATOKNÁL HASZNÁLHATÓ?

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MILYEN FELADATOKNÁL HASZNÁLHATÓ?"

Átírás

1 SZIMULÁCIÓ FOGALMA: Olyan módszer, amely alkalmas a folyamatok valósághű modellezésére, és vele értékelhetőek a folyamat- és rendszer-állapotváltozások. A folyamat leutánzása, modellezése. Állapotváltozások mintavételezése. A mintavételezések matematikai-statisztikai kiértékelése. A SZIMULÁCIÓ CÉLJA: Tervezési hiba elkerülése bonyolult gépeknél, komplex rendszereknél, Tervezési változatok összehasonlítása, Dinamikus és sztochasztikus folyamatok elemzése, Határteljesítmények és állapotok meghatározása, Irányítási stratégiaváltozatok összehasonlítása, Működési zavarok és azok elhárításának modellezése, Minősítő paraméterek, befolyásoló tényezők vizsgálata.

2 MILYEN FELADATOKNÁL HASZNÁLHATÓ? Meglévő gépek, folyamatok, rendszerek működésének vizsgálata, értékelése, javítása, Gépek, folyamatok, rendszerek tervezése, Gépek, folyamatok, rendszerek paramétereinek optimalizálása, Gépek vezérlése, folyamatok, rendszerek irányítása. MIKOR SZÜKSÉGES SZIMULÁCIÓ? Bonyolult gépeknél, komplex, nagyméretű rendszereknél determinisztikus folyamatok esetén, Gépeknél, folyamatoknál, rendszereknél, ha véletlenszerű hatások lépnek föl (sztochasztikus folyamatok), o termelési folyamatok működési zavarai, o a kiszolgálási folyamat szabálytalanságai, o gépek, géprendszerek működési zavarai, o az irányító rendszer zavarai, o környezeti bizonytalanságok.

3 SZIMULÁCIÓS MODELLEK OSZTÁLYOZÁSA Vizsgálat tárgya: Valóságos rendszer Modell matematikai fizikai Folyamat jellege: Determinisztikus Sztochasztikus Fuzzy Folyamat idõbeni lefolyása: Folyamatos Diszkrét Végrehajtás módja: Manuális Számítógépes Digitális Analóg Hibrid Interaktív Kötegelt (batch) Animáció nélkül Animációval Szakaszos Folyamatos

4 A SZIMULÁCIÓ FÁZISAI: Folyamatanalízis, Modellalkotás, Folyamatstruktúra, Működési stratégia, Bemenő és kimenő adatok megadása, Belső adatok, kimenő adatok előállítására szolgáló algoritmusok, Programozás, Szimulációs futtatás: o bemenő adatok realizálása, o kimenő adatok meghatározása, A kapott eredmények kiértékelése, Ha szükséges a modell javítása.

5 A SZIMULÁCIÓ ÁLTALÁNOS MODELLJE START Keresett mennyiségek, hatékonysági mutatók összeállítása Pl.:-szükséges tárolókapacitás - várakozási idõk - berendezések kihasználtsága A bemenõ mennyiségek és függvények alakulásának vizsgálata pl.: - bizonyos helyeken állandó - idõközû feladások - kiszolgálási igények alakulásának eloszlásfüggvénye A rendszer mûködésének leírása, modellalkotás pl.: - konténeres daru mikor, hova, honnan rakodik (egyszerû) - kétpályás konvejor rendszernél ez bonyolultabb (váltok, útvonalak) Keresett mennyiségek elõállítására szolgáló algoritmus megalkotása ez a leghosszadalmasabb, de a legfontosabb része a szimulációnak Soronkövetkezõ adat (véletlenszerûségének) realizálása idõléptetés Kimenõ adatok elõállításához szükséges jellemzõk képzése az algoritmus segítségével Nem Realizáltuk-e a kívánt pontossághoz szükséges kimenõ adatot Igen Keresett mennyiségek, hatékonysági mutatók meghatározása, statisztikus kiértékelése Pontossági vizsgálat STOP

6 RENDSZERPARAMÉTEREK Bemenő paraméterek: o állandók, a rendszert jellemző, de a folyamat során állandó paraméterek. kiszolgálógépek száma, maximális tárolókapacitás, stb. o véletlen változók, melyek pl.: eloszlás függvényeikkel adottak kiszolgálási igények jelentkezése, kiszolgálási időtartamok o kezdeti állapotjelzők Függő változók: a bemenő adatokból, állandó és véletlen változókból képezhető jellegzetes függőváltozók, pl.: o kiszolgálásra váró igények száma, o kiszolgáló eszközök várakozási ideje, stb. Kimenő paraméterek: hatékonysági jellemzők, melyek a független és függő változók halmazából statisztikai kiértékeléssel képezhetők, pl.: o kiszolgálásra váró igények eloszlása, várható értéke, szórása, o várakozási idők eloszlása, o eszközkihasználások

7 SZIMULÁCIÓS ALGORITMUS NÉHÁNY SAJÁTOSSÁGA A rendszer állapotai: o közönséges állapot: állapotváltozók nem változnak ugrásszerűen. Pl.: egypályás konvejornál nincs feladás, leadás csak egy követési időnyi előrehaladás van o különleges állapot: állapotjellemzők ugrásszerűen változnak, feladások leadások vannak. ALGORITMUS SZERKESZTÉSI ELV: o t elv: található egy olyan egységnyi idő. melynek csak egészszámú többszörösein következhet be állapotváltozás. o különleges állapotok elve: (futtatási idő talán rövidebb, de az algoritmus bonyolultabb)

8 FOLYAMATOK JELLEMZÉSE: y Instac. Stac. Instac. Stac. x

9 MIKOR LÉP FEL INSTACIONÉR FOLYAMAT? A termelési, ill. szolgáltatási folyamat indításakor és leállításakor. A termelési, ill. szolgáltatási folyamatban programváltás során (pl. egy szereldében termékváltásnál). HOGYAN KELL KEZELNI AZ INSTACIONÉR FOLYAMATOT? Szét kell választani a stacionér és instacionér folyamatot, és külön-külön kell kiértékelni (pl. egy egyváltozós eloszlás függvényét kell meghatározni). Szétválasztás a jellegzetes változó várható értékének, szórásának elemzése alapján. Hogyha csak a stacionér állapot vizsgálata szükséges, akkor, ha tudjuk a kezdő állapotot, ennek beállításával elkerülhető a szimulációs eljárásnál az instacionér folyamat rész megjelenése (pl. egy raktári betárolásnál bizonyos rekeszekben a folyamat jellegénél egy kezdő áruelrendezésből indulunk ki).

10 VÉLETLEN VÁLTOZÓK (SZÁMOK) GENERÁLÁSA GENERÁLÁSI MÓDOK: számozott papírdarabok kihúzása dobozból kézi úton végrehajtott szimulációval (fizika: szim.), rövid bemutatóknál véletlen szám táblázatok (1927-től) legismertebb RAND Corporation táblázata ilyen célra tervezett speciális gépek fentiek nem megfelelő véletlen szám források a digitális számítógépek számára pl.: táblázat adatait memóriában, vagy periférián (szalag, dob, kártya) kell tárolni nagy kapacitást foglal, speciális gépek nem kapcsolhatók a digitális géphez hatékony numerikus módszerekkel, magában a digitális számítógépben generálunk véletlen számokat véletlen szám generáló könyvtári program (csak be kell hívni a véletlen számot) KÖVETELMÉNY A VÉLETLEN SZÁMOKKAL SZEMBEN: reprodukálható legyen a sorozat (modellt ugyanazon véletlen számokkal, de más paraméterekkel futtatom le) számok valóban véletlenek legyenek (a kívánt eloszlást hozzák) ellenőrzési próbákkal ne legyen degenerált a számsorozat (ne alakuljon ki hurok)

11 1., EGYENLETES ELOSZLÁSÚ VÉLETLEN VÁLTOZÓ SZÁM (egyszerűen véletlen szám) közvetlenül használhatók felhasználhatók más eloszlású véletlen változó generálására Sűrűségfüggvénye: f(x) = 1 0 x 1 x - a véletlen szám x' = a + x (b-a) x=0 x'=a x=1 x'=b tizedespont tologatásával , közötti egyenletes eloszlású véletlen számok képezhetők

12 NUMERIKUS MÓDSZEREK VÉLETLEN SZÁM ELŐÁLLÍTÁSÁRA NÉGYZETKÖZÉP MÓDSZER Elindulunk egy tetszőleges n (általában v. szám) jegyű x0 számmal, képezzük x1-et x0 négyzetre emelésével és a középső n jegy kiírásával... x0= 3456 x0 2 = x1= 9439 x1 2 = x2= Előnye: egyszerű, könnyen programozható, egy számot kell tárolni reprodukálható

13 2., NEM EGYENLETES ELOSZLÁSÚ VÉLETLEN VÁLTOZÓK GENERÁLÁSA általában normális eloszlású véletlen változó generálása a feladat véletlen számokat használunk a véletlen változó előállítására Kumulált eloszlásfügvénnyel leíró matematika kifejezés inverz függvényével véletlen változó: y sűrűségfüggvénye: f(y) kumulált eloszlásfüggvény: F(y) x = F(y) x - véletlen szá m, értéke y-tól függően 0-1 között van

14 Pl. : exponenciális eloszlású véletlen változó generálása (sorbanállási feladatoknál gyakori) f(y) = λ e-λy y 0 sűrűségfgv. eloszlásfüggvény: F(y) = λ e-λy dy = - e-λy + C y=0 F(y)=0 0 = - e -0 + C C = e -0 = 1 F(y) = 1 - e-λy x = 1 - e-λy e-λy = 1 - x - λy = ln ( 1 - x ) => y = - 1 ln ( 1 - x ) λ x egyenletes eloszlású x 1 - x y = - 1 ln (x) λ

15 3., ELTÉRÉSES MÓDSZER (MONTE CARLÓ) ALKALMAZÁSA HATÁROZOTT INTEGRÁL KISZÁMÍTÁSÁRA A1= 1 y 2 dy = [ y 3 1 ]0 = x1 véletlen szám, y1 = x1, z = f(y1) x2 véletlen szám x2 > z x2 z u-szor teljesül az n-ből Becslés: A1 ' = u n (A 1 + A2) A1 + A2 = 1 A1 ' = u n = = , NORMÁLIS ELOSZLÁSÚ VÁLTOZÓ sűrűségű függvény: f(y) = 1 exp [- 1 ( y a b 2π 2 b a - várható érték b - szórás )2] eloszlásfüggvény explicite nem írható fel inverz nem jó => táblázat kell elvetéses módszer jó, ha sűrűségfgv-t két végén elvágjuk

16 16 Elosztó- osztályozós pályák szimulációs vizsgálata A vizsgált rendszer vázlata: L F F 2 v G F 1 v G K 2 K 1 Vízszintes síkban zárt hevederes szalag S 0 P 1 P 2 v 0 v G v 1 L 11 L L L 21 v G v G R 11 R 21 R L L 12 R 22 v G S 1 S 2 görgõspálya Az elosztó-osztályozó logisztikai rendszer működése: F 1 és F 2 feladó helyeken 6 féle különböző terméket adnak 8 féle célállomásra, egy-egy célállomásra történő kiszállítás szakaszos, különböző ideig tart, a célállomásra L L 22 pályákon lép ki az áru, egy-egy periódusban azonos pályán, periódusonként változhat a pálya, F 1 és F 2 pályán különböző áruk, különböző célállomással érkeznek be, változó követési idővel, az F 1 és F 2 pályáról csak akkor lehet az S 0 pályára, ha üres pályaszakasz érkezik,

17 17 az S 1 pályára csak akkor lehet leadni az árut, ha az adott címre vagy L 11 és L 21 pályán hasonló a feltétele S 2 pályára való leadásnak, egy-egy címre egyidejűleg több féle termék is kiszállításra kerülhet, az F 1 és F 2 feladott termékek, azok követési ideje, valamint a címe sztochasztikusan változik, az egyes címekre való kiszállítások időpontjai, ill. időtartama, valamint a kiszállítást gépkocsira való rakodás ideje véletlenszerűen változik, az L F valamint L L 22 pályák hossza adott, zavar lép fel, ha: egyidejűleg F 1 és S 0 vagy F 2 és S 0 pályák telítettek, zavar helye az S 0 pálya, egyidejűleg L 11 és S 1 vagy L 12 és S 1 pályák, ill. L 21 és S 2 vagy L 22 és S 2 pályák telítettek, akkor a zavar S 1, ill. S 2 pályánál következik be. Működési stratégiák: L L 22 pályákra egy-egy periódus időn belül csak egy címre lehet feladni, akkor kezdődik egy leadóhelyen az új periódus, ha: előző periódus idő befejeződik, amit L L 21 leadóhelyre első áru beérkezésétől mérünk, van olyan cím, amely leadása még valamely pályán nem kezdődött meg ha valamely leadó pályán felszabaduláskor több címre is van várakozó áru, azt választjuk, amelyből több darab a rendszerben, ha egy adott cím leadásra több leadó pálya is adódik, akkor azt kell választani, amelyre a legrövidebb idő alatt, a legrövidebb úton jutnak el az áruk, ha zavar áll elő (S 0 körpálya telített) az F 1 és F 2 tárolópályák mellett kell pótpályát létrehozni.

18 18 Kiindulási adatok: Állandók: v 0, v 1, v 2 és v G sebességek: S 0, S 1, és S 2 körpálya hosszak, L F, L L 22 görgőpálya hosszak, c 1... c 6 az áruk pálya hosszirányú méretei (fel-tételezve, hogy a pályákon úgy kerül átadásra, hogy a pálya hosszirányú mérete azonos) Eloszlásfüggvények: Feladó helyeken a feladások követési ideje: F(t F1 ); F(t F2 ) Pl.: 1 F(t F1 ) 1 t F10 0 t F1 Feladó helyeken feladott áruk fajtája: F(r 1 ) és F(r 2 ) Pl.: F(r 1 ) i= árufajta 1 0 i= r 1

19 19 Pl.: T Kj0 >> τ j0 F(τ j ) τ j0 j= τ j Az áruk rakodási ideje (egy áru): F (t R ) F(t R ) τ R0 t R Kimenő adatok: F 1 és F 2 tárolópályák foglaltsága, L L 22 tárolópálya foglaltsága, S 0, S 1 és S 2 körszállító pályák foglaltsága, a zavarok miatti szünetidők az F 1 és F 2 feladóhelyeken összesen.

20 20 A feladott áruk címei: F(p ij ) i=1...6 árufajta j=1...8 cím Pl.: F(p i ) 1 j= p i Az egyes címekre való kiszállítás kezdeti időpontjai: F(T Kj ) j=1...8 Pl.: F(T kj ) T Kj0 T Kj Az egyes címekre való feladási periódus ideje F(τ j ) j=1...8

21 21 A szimuláció algoritmusa START Bemenõ adatok bevitele, kezdõ állapot beállítása Az elsõ feladóhely feladás programjának realizálása B1 Következõ belépési idõpon meghatározása Következõ belépõ áru fajtájának meghatározása Következõ belépõ áru címének meghatározása A1

22 22 A2 A3 nem Leadható-e az aktuális P pontban az áru? igen Várakozási idõ meghatározása Körpályán futás során a K 1 és K 2, valamint az aktuális P-ba való beérkezés idõpontjának meghatározása A leadott áruk számlázása A4 igen A körpályáról az aktuális P pontba való leadás idõpontjának meghatározása Az aktuális F feladó pályán várakozó áruk száma Elegendõ-e a tároló pálya hossza? Pótpályán való elhelyezés Zavar idõtartamának és a pótpályán tárolt áruk számának meghatározása nem

23 23 A4 S 0 pályán való futási idõ meghatározása Az aktuális S 1 vagy S 2 pályán, az aktuális R- pontban való beérkezés idõpontjának meghatározása nem igen Leadható-e az aktuális R pontban az áru? Az aktuális R-ba a pályán való körbefutás utáni beérkezés idõpontjának meghatározása Az aktuális pályára leado áruk számlálása Az S 1, ill. S 2 körpályán való futási idõ meghatározása Az áru gépkocsira való rakodási idejének elõállítása Az aktuális tárolón lévõ ábrák száma A4

24 24 A5 Rendszer jellemzõinek kigyûjtése: - körpályákon lévõ áruk száma, - körpályán való futási idõ, - tárolópályákon lévõ áruk száma, - várakozási idõk. igen Ven-e feladóhely, amelynél még szükséges további vizsgálat? nincs Az idõben következõ feladóhely feladási programjának realizálása Szimuláció kiértékelése: - várható értékek, - szórások, - eloszlás függvények meghatározása. B1 START

Újrahasznosítási logisztika. 7. Gyűjtőrendszerek számítógépes tervezése

Újrahasznosítási logisztika. 7. Gyűjtőrendszerek számítógépes tervezése Újrahasznosítási logisztika 7. Gyűjtőrendszerek számítógépes tervezése A tervezési módszer elemei gyűjtési régiók számának, lehatárolásának a meghatározása, régiónként az 1. fokozatú gyűjtőhelyek elhelyezésének

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Logisztikai szimulációs módszerek

Logisztikai szimulációs módszerek Üzemszervezés Logisztikai szimulációs módszerek Dr. Juhász János Integrált, rugalmas gyártórendszerek tervezésénél használatos szimulációs módszerek A sztochasztikus külső-belső tényezőknek kitett folyamatok

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Kvantitatív módszerek

Kvantitatív módszerek Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció

Részletesebben

Logisztikai hálózatok funkcionális elemekre bontása intralogisztikai

Logisztikai hálózatok funkcionális elemekre bontása intralogisztikai Logisztikai hálózatok funkcionális elemekre bontása intralogisztikai rendszerekben Minden rendszer, és így a logisztikai hálózatok is egymással meghatározott kapcsolatban lévő rendszerelemekből, illetve

Részletesebben

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 5. gyakorlat 013/14. tavaszi félév 1. Folytonos eloszlások Eloszlásfüggvény és sűrűségfüggvény Egy valószínűségi változó, illetve egy eloszlás eloszlásfüggvényének egy

Részletesebben

LOGISZTIKA. Anyagmozgatás. Szakálosné Mátyás Katalin

LOGISZTIKA. Anyagmozgatás. Szakálosné Mátyás Katalin LOGISZTIKA Anyagmozgatás Szakálosné Mátyás Katalin F Az anyagáramlás fizikai megvalósulása Feladó Áramló anyag Út Nyelő N Az anyagáramlás objektumai Anyag: az áramló objektum (tárgy, személy, stb.) Forrás:

Részletesebben

Termelési logisztika tervezése

Termelési logisztika tervezése Termelési logisztika tervezése Anyagáramlás tervezése: Raktárak, üzemek elhelyezésének tervezése. Az anyagáramlási utak minimálisra adódjanak. A kapcsolódás az anyagmozgató rendszerekhez a legkedvezőbb

Részletesebben

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Operációs rendszerek II. Folyamatok ütemezése

Operációs rendszerek II. Folyamatok ütemezése Folyamatok ütemezése Folyamatok modellezése az operációs rendszerekben Folyamatok állapotai alap állapotok futásra kész fut és várakozik felfüggesztett állapotok, jelentőségük Állapotátmeneti diagram Állapotátmenetek

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver):

Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver): B Motiváció B Motiváció Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver): Helyesség Felhasználóbarátság Hatékonyság Modern számítógép-rendszerek: Egyértelmű hatékonyság (például hálózati hatékonyság)

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Villamos autókból álló taxi flotta számára létesítendő töltőállomások modellezése

Villamos autókból álló taxi flotta számára létesítendő töltőállomások modellezése Villamos autókból álló taxi flotta számára létesítendő töltőállomások modellezése 62. Vándorgyűlés, konferencia és kiállítás Siófok, 2015. 09. 16-18. Farkas Csaba egyetemi tanársegéd Dr. Dán András professor

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Anyagmozgatás és gépei. 1. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék.

Anyagmozgatás és gépei. 1. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék. Anyagmozgatás és gépei tantárgy 1. témakör Egyetemi szintű gépészmérnöki szak 2006-07. II. félév MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék Miskolci Egyetem Anyagmozgatási és Logisztikai Tanszék

Részletesebben

NEVEZETES FOLYTONOS ELOSZLÁSOK

NEVEZETES FOLYTONOS ELOSZLÁSOK Bodó Beáta - MATEMATIKA II 1 NEVEZETES FOLYTONOS ELOSZLÁSOK EXPONENCIÁLIS ELOSZLÁS 1. A ξ valószínűségi változó eponenciális eloszlású 80 várható értékkel. (a) B Adja meg és ábrázolja a valószínűségi változó

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

Miskolci Egyetem Anyagmozgatási és Logisztikai Tanszék. 1. fólia

Miskolci Egyetem Anyagmozgatási és Logisztikai Tanszék. 1. fólia Miskolci Egyetem Anyagmozgatási és Logisztikai Tanszék 1. fólia Miskolci Egyetem Anyagmozgatási és Logisztikai Tanszék 2. fólia 3. fólia Külső anyagmozgatás elemei Szállítás. közúti, vasúti, vízi, légi,

Részletesebben

8. Előadás: Szimuláció, I.

8. Előadás: Szimuláció, I. 8. Előadás: Szimuláció, I. Wayne L. Winston: Operációkutatás, módszerek és alkalmazások, Aula Kiadó, Budapest, 2003 könyvének 21. fejezete alapján. A szimulációt komplex rendszerek elemzésére, tanulmányozására

Részletesebben

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Anyagmozgatás és gépei. 1. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék.

Anyagmozgatás és gépei. 1. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék. Anyagmozgatás és gépei tantárgy 1. témakör Egyetemi szintű gépészmérnöki szak 2004-05. II. félév MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék Miskolci Egyetem Anyagmozgatási és Logisztikai Tanszék

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Szimulációs technikák

Szimulációs technikák SZÉCHENYI ISTVÁN EGYETEM Műszaki Tudományi Kar Informatikai tanszék Szimulációs technikák ( NGB_IN040_1) 2. csapat Comparator - Dokumentáció Mérnök informatikus BSc szak, nappali tagozat 2012/2013 II.

Részletesebben

ÁRAMKÖRÖK SZIMULÁCIÓJA

ÁRAMKÖRÖK SZIMULÁCIÓJA ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg

Részletesebben

KÉSZLETMODELLEZÉS EGYKOR ÉS MA

KÉSZLETMODELLEZÉS EGYKOR ÉS MA DR. HORVÁTH GÉZÁNÉ PH.D. * KÉSZLETMODELLEZÉS EGYKOR ÉS MA Az optimális tételnagyság (Economic Order Quantity) klasszikus modelljét 96-tól napjainkig a világon széles körben alkalmazták és módosított változatait

Részletesebben

i p i p 0 p 1 p 2... i p i

i p i p 0 p 1 p 2... i p i . vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma

Részletesebben

Mérés és modellezés 1

Mérés és modellezés 1 Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell

Részletesebben

Beszállítás AR Gyártási folyamat KR

Beszállítás AR Gyártási folyamat KR 3. ELŐADÁS TERMELÉSI FOLYAMATOK STRUKTURÁLÓDÁSA 1. Megszakítás nélküli folyamatos gyártás A folyamatos gyártás lényege, hogy a termelési folyamat az első művelettől az utolsóig közvetlenül összekapcsolt,

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Ütemezés (Scheduling),

Ütemezés (Scheduling), 1 Ütemezés (Scheduling), Alapfogalmak Ütemezési feltételek (kritériumok) Ütemezési algoritmusok Több-processzoros eset Algoritmus kiértékelése 2 Alapfogalmak A multiprogramozás célja: a CPU foglaltság

Részletesebben

RUGALMAS GYÁRTÓRENDSZER ÉS LOGISZTIKAI (ANYAG- ÉS INFORMÁCIÓÁRAMLÁSI) RENDSZER. 1. Rugalmas gyártó- és anyagáramlási rendszerek sajátosságai

RUGALMAS GYÁRTÓRENDSZER ÉS LOGISZTIKAI (ANYAG- ÉS INFORMÁCIÓÁRAMLÁSI) RENDSZER. 1. Rugalmas gyártó- és anyagáramlási rendszerek sajátosságai UGALAS GYÁTÓENDSZE ÉS LOGISZTIKAI (ANYAG- ÉS INFOÁCIÓÁALÁSI) ENDSZE. ugalmas gyártó- és ayagáramlási redszerek sajátosságai 2. ugalmas ayagáramlási redszer általáos modellje 3. Gyártóredszerek rugalmassági

Részletesebben

KÖZELÍTŐ INFERENCIA II.

KÖZELÍTŐ INFERENCIA II. STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.

Részletesebben

Hagyományos termelésirányítási módszerek:

Hagyományos termelésirányítási módszerek: Hagyományos termelésirányítási módszerek: - A termelésirányítás határozza meg, hogy az adott termék egyes technológiai műveletei - melyik gépeken vagy gépcsoportokon készüljenek el, - mikor kezdődjenek

Részletesebben

Véletlen szám generálás

Véletlen szám generálás 2. elıadás Véletlen szám generálás LCG: (0 < m, 0

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Közlekedési áramlatok MSc. Csomóponti-, útvonali eljutási lehetőségek minősítése

Közlekedési áramlatok MSc. Csomóponti-, útvonali eljutási lehetőségek minősítése Közlekedési áramlatok MSc Csomóponti-, útvonali eljutási lehetőségek minősítése minősítése jogszabályi esetben Az alárendelt áramlatból egy meghatározott forgalmi művelet csak akkor végezhető el, ha a

Részletesebben

Lukovich Gábor Logisztikai rendszerfejlesztő

Lukovich Gábor Logisztikai rendszerfejlesztő Lukovich Gábor Logisztikai rendszerfejlesztő Intra-logisztikai rendszerek Lay-out tervezése/fejlesztése Logisztikai informatikai rendszerek tervezése Egymással kölcsönhatásban lévő részfeladatok rendszere

Részletesebben

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben 1 feladatsor 1 Egy dobozban 20 fehér golyó van Egy szabályos dobókockával dobunk, majd a következ t tesszük: ha a dobott szám 1,2 vagy 3, akkor tíz golyót cserélünk ki pirosra; ha a dobott szám 4 vagy

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Méréselmélet MI BSc 1

Méréselmélet MI BSc 1 Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok

Részletesebben

ANYAGÁRAMLÁS ÉS MŰSZAKI LOGISZTIKA

ANYAGÁRAMLÁS ÉS MŰSZAKI LOGISZTIKA ANYAGÁRAMLÁS ÉS MŰSZAKI LOGISZTIKA Raktár készletek, raktározási folyamato ELŐADÁS I. é. Szabó László tanársegéd BME Közlekedésmérnöki és Járműmérnöki Kar Anyagmozgatási és Logisztikai Rendszerek Tanszék

Részletesebben

Számítógépes döntéstámogatás. Genetikus algoritmusok

Számítógépes döntéstámogatás. Genetikus algoritmusok BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as

Részletesebben

MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR MATEMATIKAI INTÉZET SZAKDOLGOZATI TÉMÁK

MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR MATEMATIKAI INTÉZET SZAKDOLGOZATI TÉMÁK SZAKDOLGOZATI TÉMÁK 2018 Fedélzeti kamera alapú helymeghatározó, navigációs algoritmusok vizsgálata és implementálása Témavezető: Dr. Árvai-Homolya Szilvia A drónok mind szélesebb körű elterjedésével,

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási

Részletesebben

dimenziója Szirmay-Kalos László N= 1/r D D= (logn) / (log 1/r) D= (log4) / (log 3) = 1.26 N = 4, r = 1/3 Vonalzó ( l ) db r =1/3 N = 4 r 2 N 2 N m r m

dimenziója Szirmay-Kalos László N= 1/r D D= (logn) / (log 1/r) D= (log4) / (log 3) = 1.26 N = 4, r = 1/3 Vonalzó ( l ) db r =1/3 N = 4 r 2 N 2 N m r m Fraktálok Hausdorff dimenzió Fraktálok N = N = 4 N = 8 Szirmay-Kalos László r = r = r = N= /r D D= (logn) / (log /r) Koch görbe D= (log4) / (log 3) =.6 N = 4, r = /3 Nem önhasonló objektumok dimenziója

Részletesebben

Készlet menedzsment. R i. R max R 4 R 2 R 3 R 1. R min. Készletfogyás: K észletmenedzselés: a. Periodikus után pótlás, elhanyagolható rendelési idő

Készlet menedzsment. R i. R max R 4 R 2 R 3 R 1. R min. Készletfogyás: K észletmenedzselés: a. Periodikus után pótlás, elhanyagolható rendelési idő Készlet menedzsment Készletfogyás: i t K észletmenedzselés: a. Periodikus után pótlás, elhanyagolható rendelési idő 1 2 3 4 max min T T T T t b. Azonos pótlási mennyiség, elhanyagolható pótlási idő max

Részletesebben

Loss Distribution Approach

Loss Distribution Approach Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói

Részletesebben

A technológiai berendezés (M) bemenő (BT) és kimenő (KT) munkahelyi tárolói

A technológiai berendezés (M) bemenő (BT) és kimenő (KT) munkahelyi tárolói 9., ELŐADÁS LOGISZTIKA A TERMELÉSIRÁNYÍTÁSBAN Hagyományos termelésirányítási módszerek A termelésirányítás feladata az egyes gyártási műveletek sorrendjének és eszközökhöz történő hozzárendelésének meghatározása.

Részletesebben

Operációs rendszerek. Folyamatok ütemezése

Operációs rendszerek. Folyamatok ütemezése Operációs rendszerek Folyamatok ütemezése Alapok Az ütemezés, az események sorrendjének a meghatározása. Az ütemezés használata OPR-ekben: az azonos erőforrásra igényt tartó folyamatok közül történő választás,

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

Zajok és fluktuációk fizikai rendszerekben

Zajok és fluktuációk fizikai rendszerekben Zajok és fluktuációk fizikai rendszerekben Zajjelenségek modellezése Makra Péter SZTE Kísérleti Fizikai Tanszék 2009-2010. őszi félév Változat: 0.1 Legutóbbi frissítés: 2009. október 14. Makra Péter (SZTE

Részletesebben

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten

Részletesebben

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Szűk elméleti összefoglaló Valószínűségi változó: egy függvény, ami az eseményteret a valós számok halmazára tudja vetíteni. A val.

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

Megkülönböztetett kiszolgáló routerek az

Megkülönböztetett kiszolgáló routerek az Megkülönböztetett kiszolgáló routerek az Interneten Megkülönböztetett kiszolgálás A kiszolgáló architektúrák minősége az Interneten: Integrált kiszolgálás (IntServ) Megkülönböztetett kiszolgálás (DiffServ)

Részletesebben

1. Név:... Neptun Kód:... Feladat: Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt

1. Név:... Neptun Kód:... Feladat: Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt 1. Név:......................... Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt a gyártmányt készítik. Egy gyártmány összeszerelési ideje normális eloszlású valószín½uségi változó

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket! 1. Név:......................... Egy szabályos pénzérmét feldobunk, ha az els½o FEJ az i-edik dobásra jön, akkor a játékos nyereménye ( 1) i i forint. Vizsgálja szimulációval a játékot, különböz½o induló

Részletesebben

Értékáram elemzés szoftveres támogatással. Gergely Judit 2013. 03. 01. Lean-klub

Értékáram elemzés szoftveres támogatással. Gergely Judit 2013. 03. 01. Lean-klub Értékáram elemzés szoftveres támogatással Gergely Judit 2013. 03. 01. Lean-klub Tartalom Az Értékáram és elemzésének szerepe a Leanben Értékáram modellezés és elemzés Esetpélda: termelő folyamat Képzeletbeli

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában

XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus A véletlen nyomában Mi is az a véletlen? 1111111111, 1010101010, 1100010111 valószínűsége egyaránt 1/1024 Melyiket

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Az irányítástechnika alapfogalmai. 2008.02.15. Irányítástechnika MI BSc 1

Az irányítástechnika alapfogalmai. 2008.02.15. Irányítástechnika MI BSc 1 Az irányítástechnika alapfogalmai 2008.02.15. 1 Irányítás fogalma irányítástechnika: önműködő irányítás törvényeivel és gyakorlati megvalósításával foglakozó műszaki tudomány irányítás: olyan művelet,

Részletesebben

KÖZELÍTŐ INFERENCIA II.

KÖZELÍTŐ INFERENCIA II. STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.

Részletesebben

Ütemezés (Scheduling),

Ütemezés (Scheduling), 1 Ütemezés (Scheduling), Alapfogalmak Ütemezési feltételek (kritériumok) Ütemezési algoritmusok Több-processzoros eset Algoritmus kiértékelése 2 Alapfogalmak A multiprogramozás célja: a CPU foglaltság

Részletesebben

Termelési folyamat logisztikai elemei

Termelési folyamat logisztikai elemei BESZERZÉSI LOGISZTIKA Termelési logisztika Beszállítás a technológiai folyamat tárolójába Termelés ütemezés Kiszállítás a technológiai sorhoz vagy géphez Technológiai berendezés kiválasztása Technológiai

Részletesebben

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható folytonos idejű Markovláncok  segítségével. E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek

Részletesebben

Mérés és modellezés Méréstechnika VM, GM, MM 1

Mérés és modellezés Méréstechnika VM, GM, MM 1 Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni

Részletesebben

Magasraktár tárolóterének és kiszolgáló terének tervezése

Magasraktár tárolóterének és kiszolgáló terének tervezése agasraktár tárolóterének és kiszolgáló terének tervezése. A raktártechnológia tervezési munka fő lépései: Konzultációk, interjúk Előterv (több változat feltárása) Konzultációk Részletes terv (ma. változat

Részletesebben

Régebbi Matek M1 zh-k. sztochasztikus folyamatokkal kapcsolatos feladatai.

Régebbi Matek M1 zh-k. sztochasztikus folyamatokkal kapcsolatos feladatai. Régebbi Matek M1 zh-k Folyamfeladatokkal, többszörös összef ggőséggel, párosításokkal, Nagy szḿok törvényével, Centrális Határeloszlás tétellel, sztochasztikus folyamatokkal kapcsolatos feladatai. Gráfok

Részletesebben

Gyakorló feladatok valószínűségszámításból végeredményekkel. a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli

Gyakorló feladatok valószínűségszámításból végeredményekkel. a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli Gyakorló feladatok valószínűségszámításból végeredményekkel a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli Mutassuk meg, hogy tetszőleges A és B eseményekre PA B PA+PB. Mutassuk

Részletesebben

Logisztikai teljesítménytol függo költségek. Teljes logisztikai költségek. Logisztikai teljesítmény hiánya okozta költségek. költség.

Logisztikai teljesítménytol függo költségek. Teljes logisztikai költségek. Logisztikai teljesítmény hiánya okozta költségek. költség. 0., ELŐADÁS LOGISZTIAI ÖLTSÉGE A tevékenységek esetén is számolni kell ekkel. Ezek a ek különbözőképpen számolhatóak, attól függően, hogy milyen tényezőket vesznek számításba és hogy a tevékenységek hogyan

Részletesebben

Feladatok matematikából 3. rész

Feladatok matematikából 3. rész Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség

Részletesebben