Dr. Móczár Balázs. BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
|
|
- Eszter Borosné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Dr. Móczár Balázs 1
2 Alapkérdések: Hogyan vesszük figyelembe a talajösszletet? Ágyazási tényezős eljárások (mai gyakorlat : AXIS VM Winkler-ágyazás (ágyazási tényező) Végeselemes modellezés (jellemzően felkeményedő talajmodell) 2D vagy 3D A vasbeton lemez merevségének szerepe Az épület merevségének a szerepe A lemez + épület merevségének a szerepe Az előterhelés hatása Az építési ütem, terhelési lépcsők hatása (konszolidáció) 2
3 Talpfeszültséget befolyásoló tényezők: A terhelő alaptest tulajdonságai: oaz alaptest merevségétől oaz alapokra helyezett egész építmény merevségétől oaz alapozás síkjának térszín alatti mélységétől oaz alaptest nagyságától (szélességétől) oaz alaptest alakjától. (Folytatás ) 3
4 Talpfeszültséget befolyásoló tényezők: A talaj tulajdonságaitól: oa talaj szemcsés vagy kötött voltától (feszültség koncentrációs tényezőjétől), összenyomhatóságától és nyírószilárdságától oaz összenyomhatóság és nyírószilárdság időleges változásaitól oa talaj homogenitásától, rétegzettségétől és oldalkitérési lehetőségeitől oa talajvíz állásától és ingadozási lehetőségeitől. A terhelés és előterheléstől oa terhelés nagyságától oa terhelés eloszlási módjától oa terhelés támadási helyétől. 4
5 Talpfeszültség-eloszlás végtelenül merev alaptestek alatt: 5
6 Koncentrált erők hatása hajlékony lemeznél (a) és végtelen hajlékony lemeznél (b) 6
7 Alaplemez méretezési eljárások: A talajsüllyedés-talpfeszültség kölcsönhatás figyelembevételére kidolgozott közelítő eljárások 4 csoportba sorolhatók: végtelen merev gerenda alapján történő számítás ágyazási tényezőn alapuló eljárás rugalmas féltér alakváltozásán alapuló eljárás kombinált módszer 7
8 Ágyazási tényezőn alapuló eljárás: Minél nagyobbak az oszlop, illetve faltávolságok, tehát minél rugalmasabb az alaplemez és minél szilárdabb az altalaj, annál egyenlőtlenebbek lesznek a talpnyomások, és annál inkább gazdaságos az alaplemez rugalmasságának figyelembevétele. A módszerek kidolgozása: Winkler, Zimmermann elméletének kiterjesztésével Hertz nevéhez fűződik. 8
9 Ágyazási tényező : Pontos, ill. pontosított süllyedésszámítással Közelítő süllyedésszámítással Közelítő képlettel Tapasztalati képlettel C i q s i i
10 Felszerkezet modell merev alátámasztással Talpfeszültség eloszlás Süllyedés analízis (pontos) Ágyazási tényező qi Ci s i Felszerkezet modell rugalmas alátámasztással Talpfeszültség eloszlás Süllyedés analízis (pontos) Ágyazási tényező qi Ci s i Felszerkezet modell rugalmas alátámasztással Talpfeszültség eloszlás Süllyedés analízis (pontos) Ágyazási tényező qi Ci s i
11 Átlagos talpfeszültség eloszlás Közelítő süllyedésszámítás: Átlagos ágyazási tényező Javítás: s p á á C á F A p E á szélső negyedekben: s p s á á belső félben B F F 1,8 1,6 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0,0 L/B = 1,0 L/B = 1,6 L/B = 2,0 L/B = 3,0 L/B = 5,0 L/B = 10, H/B F: süllyedési tényező H: az összenyomódó réteg vastagsága C C 1, 6 ák C á 0, 8 áb C á
12 s á p E á s B F C á Négyzetes pontalap F 0,5 C Javítás: á 2 E s B szélső negyedekben: belső félben p s á s E s B 1 F C á p s á á Sávalap F 1,0 C á C C áb 1, 6 ák C á 0, 8 C á E s B
13 Ágyazási tényező becslése Javítás: szélső negyedekben: belső félben á áb C C 8 0, ák C á C 6 1, Négyzetes pontalap B E B B B E C s s á Sávalap m L B E C s á B E B B E C s s á 5 1,
14 Modellméret Szerkezeti merevség Anyagmodellek Eredmények értékelése!?
15 Plaxis 3D vizsgálatok: A kutatás alapját egy 32x32 m-es befoglaló méretű, földszint+7 szintes szimmetrikus elrendezésű, felszínen fekvő alaplemezzel készülő vasbeton vázas épület adja. Az épület főbb geometriai méretei: Szintmag.: 3 m pil.raszt. táv.: 8 m pil. km. : 40x40 cm föd. vast. : 25 cm alaplem. vast.: 40 cm (vált. param.) 15
16 Dobozmodell jellemzői: Szimmetria viszonyok miatt csak a rendszer negyedét szükséges modellezni; Vízszintes értelemben 16 m az épület széleitől; A dobozmodell mélységi értelemben történő lehatárolása vizsgálati szempont (süllyedések!) 16
17 Modellben alkalmazott szerkezeti elemek: Pillér-alaplemez ill. pillér-födém kapcs: merev befogás (nem változtatható paraméter) Tehermodell: Önsúly és hasznos terhek (felületen megoszló terhek 3,5 ill. 4,0 kn/m 2 ) 17
18 Talaj paraméterek: Homogén talajtest vizsgálata Az egyes talajjellemzők konstansok. A nyírószil. paraméterek ill. térf. súly változása (akár 30%) az eredmény szempontjából elhanyagolható változást okoz (< 5%). 18
19 Anyagmodellek: Mohr-Coulomb (elsőrendű közelítéssel írja le a talajtömeg viselkedését, azaz a feszültség-alakváltozás görbét lineáris összefüggés jellemzi, ami 5 paraméter együtteséből áll elő): E: rugalmassági vagy Young-modulus u: Poisson-tényező c: kohézió ϕ: belső súrlódási szög ψ: dilatációs szög (Jáky ajánlása alapján: ψ=ϕ-30 ) Az adatok megadásánál lehetőség nyílik arra, hogy a könnyebben mérhető összenyomódási modulus és a Poissontényező megadásával, a program automatikusan számítsa az ismert, rugalmas izotróp anyagokra vonatkozó Hooketörvényből a rugalmassági modulust. 19
20 Anyagmodellek: Mohr- Coulomb 20
21 Anyagmodellek: Felkeményedő (hiperbolikus modellek közé tartozik és másodrendű közelítést alkalmazva írja le a rugalmasképlékeny viselkedést, így képes figyelembe venni, hogy a nagyobb átlagos normálfeszültséggel terhelt talajzónák kisebb alakváltozást szenvednek, azaz merevebben viselkednek): c: kohézió ϕ: belső súrlódási szög ψ: dilatációs szög (Jáky ajánlása alapján: ψ=ϕ-30 ) E ref 50 :a deviátor-feszültség 50%-ához tartozó húr modulus a drénezett triaxiális vizsgálatnál E ref eod : összenyomódási modulus (a referencia feszültség értékéhez tartozó érintő modulus az ödométeres vizsgálatnál) E ref ur : a tehermentesítés-újraterhelés folyamatához tartozó húr modulus m: a kompressziós görbét leíró hatványfüggvény kitevője 21
22 Felkeményedő talajmodell (HS) PLAXIS Kompressziós kísérletből E oed E oed,ref p ref m 22
23 Felkeményedő talajmodell (HS) PLAXIS Triaxiális kísérletből E 50 E 50,ref 1 1 2E 50 cctg c ctg p q q 1 q 3 ref 23 a m
24 Anyagmodellek: Felkeményedő (HS) 24
25 Modellel kapcsolatos egyéb jellemzők: Talajvíz figyelembevétele nélküli számítás Interface elemek: Az interface-ek tömeg és vastagság nélküli modellelemek Lehetővé teszik az egymással érintkező talaj és a szerkezeti részek ugyanazon feszültségek hatására bekövetkező (anyagtulajdonságaikból eredő) különböző elmozdulását egyazon helyen Talaj nyírószilárdsági paramétereivel jellemzett interface elemek kerültek beállításra, így nincs lecsökkentve a falsúrlódás hatása a szerkezetek környezetében 25
26 Végeselem háló: Számítási lépések: Kezdeti állapot; (térfogatsúlyból számított kezdeti fesz.) Szerk. felépítése; (kis elmozdulások, rugalmas-képlékeny szám. módszer, időtényező figyelembevétele nélkül; Szerkezet teljes tömegének figyelembevételével) Terhek hozzáadása 26
27 27
28 Modellmélység szerepe: Az alapsíkon fellépő többletfeszültség értéke: 84,09 kpa. A többletfeszültség és a kezdeti hatékony feszültség 20, 25 és 50%-ával egyenértékű feszültségek mélységbeli lefutása Alapsík alatti mélység (m) Feszültségek a karakterisztikus pontban Feszültség (kpa) ,3 m süllyedést okozó többletfeszültség hatékony feszültség 20%-a hatékony feszültség 25 %-a hatékony feszültség 50 %-a határmélység 28
29 Határmélységek különböző elméletek alkalmazásával 20% hat. fesz. lehatárolás süllyedésszámítás eredményei 29
30 Különböző modellmélységek vizsgálata: 5, 10, 15, 20 m mély dobozmodell. (MC és HS talajmodellek) Süllyedések átlagértéke (PLAXIS 3D) 30
31 Különböző modellmélységek vizsgálata: 5, 10, 15, 20 m mély dobozmodell. (MC és HS talajmodellek) Süllyedések átlagértéke (PLAXIS 3D)! 31
32 Különböző modellmélységek vizsgálata: 5, 10, 15, 20 m mély dobozmodell. (MC és HS talajmodellek) Süllyedések átlagértéke (PLAXIS 3D)! 32
33 Átlagsüllyedés (mm) R u g a l m a s a n á g y a z o t t v a s b e t o n l e m e z e k t e r v e z é s i k é r d é s e i Különböző modellmélységek vizsgálata: 5, 10, 15, 20 m mély dobozmodell. (MC és HS talajmodellek) Süllyedések átlagértéke (PLAXIS 3D) Átlagsüllyedés a modellmélység függvényében a négyféle altalaj esetén "Mohr-Coulomb" modellel Modellmélység (m) homokos kavics homok homokos iszap közepes agyag Átlagsüllyedés a modellmélység függvényében a négyféle altalaj esetén "felkeményedő" talajmodellel Modellmélység (m) homokos kavics homok homokos iszap közepes agyag
34 Alaplemez süllyedései: 34
35 Süllyedés (mm) Süllyedés (mm) Süllyedés (mm) Alaplemez süllyedése a lemezközépen "felkeményedő" modellel a határmélység függvényében homokos kavics altalaj esetén Távolság a lemez középpontjától (m) Alaplemez süllyedése lemezsávban "felkeményedő" modellel a határmélység függvényében homokos kavics altalaj esetén Távolság a lemez középpontjától (m) Alaplemez süllyedése a lemezszélen "felkeményedő" modellel a határmélység függvényében homokos kavics altalaj esetén Távolság a lemez középpontjától (m) hk_5m_hs hk_10m_hs hk_15m_hs hk_20m_hs hk_5m_hs hk_10m_hs hk_15m_hs hk_20m_hs hk_5m_hs hk_10m_hs hk_15m_hs hk_20m_hs
36 36
37 Következtetések: A határmélység hatása a relatív süllyedésekre elhanyagolható. A határmélység az ABSZOLÚT süllyedésekre van hatással. (További számítások: 15 m mélységű dobozmodell) Talaj összenyomódási modulusának hatása: kavics agyag teher szétosztása ( szétkenése ) fesz. csúcsok csökkenése 37
38 Igénybevételek: Alaplemez fajlagos mx nyomatéka (knm/m) Alaplemez fajlagos nyomaték-eloszlása a lemezközépen a határmélység függvényében homokos kavics altalaj esetén Távolság a lemez középpontjától (m) (Talajmodell hatása elhanyagolható) hk_5m_mc hk_10m_mc hk_15m_mc hk_20m_mc hk_5m_hs hk_10m_hs hk_15m_hs hk_20m_hs 38
39 (Modellmélység hatása elhanyagolható) 39
40 40
41 Alakváltozások összehasonlítása: 41
42 AXIS VM modell felvétele Pillér-lemezek kapcsolata (beállítási lehetőség: félmerev kapcs. összehasonlítás miatt merev) 42
43 Tehermodell (teherkombinációk, 1.0 szorzóval) (Plaxis modellel azonos) 43
44 Ágyazás felvétele (Winkler): Ágyazási tényező értékei különböző közelítő módszerek alapján Axis feljesztők ajánlása: széleken 2, sarkokban 4 ágyazási tényező; szélső sávban 1,6, a belső részeken 0,8. 44
45 Ágyazás felvétele (Winkler szerint): Ágyazás felvétele a plaxis számítás alapján kalibrált modellel:! 45
46 Lemezvastagság hatásának vizsgálata (merevség): PLAXIS modell eredményei (40 és 60 cm vastag lemez) 46
47 Lemezvastagság hatásának vizsgálata (merevség): PLAXIS modell eredményei (80 és 100 cm vastag lemez) 47
48 Lemezvastagság hatásának vizsgálata (süllyedések változása): PLAXIS modell eredményei (homokos kavics és agyag esetén) 48
49 Talpfeszültség-eloszlás: PLAXIS modell eredményei 49
50 Ágyazási tényező eloszlása: PLAXIS modell eredményei (származtatott értékek) 50
51 Megállapítható, hogy mivel a süllyedések és talpfeszültségek lefutása gyakorlatilag azonos, az ágyazási tényező eloszlása is megegyezik ezekkel az eloszlás a négy különböző talajra azonosnak tekinthető, eltérés csak az értékek nagyságában jelentkezik. az igen hajlékony 40 cm-es alaplemeztől eltekintve az ágyazási tényező értéke egy adott talaj esetén nem függ az alaplemez vastagságától a javított Winkler-féle ágyazási eloszlással ellentétben az ágyazási tényező értéke alaplemez szélső szűk tartományát kivéve konstansnak tekinthető a szemcséstől a kötött talajok felé haladva a szélső és belső tartomány közötti ágyazási tényező arány egyre nagyobb a szélső és a belső tartományra vonatkozó konstans érték aránya a következőképpen alakul a kétféle talajmodell szerint 51
52 Nyomatéki igénybevételek az alaplemezben lemezközépen (Plaxis) 52
53 Nyomatéki igénybevételek az alaplemezben lemezközépen (AXIS) Közelítő (Winkler) Ágyazással -40 cm lemezzel (homokos kavics) Plaxis alapján pontos ágyazással -40 cm lemezzel (homokos kavics) 53
54 A nyomatéki eloszlást tekintve a hajlékony (40 cm) és a merev (100 cm) alaplemez esetén ugyanazok figyelhetők meg a Plaxis és az AXIS eredmények összehasonlításával: a negatív nyomatékok Axis VM modellből kapott értéke jelentősen nagyobb mindkét esetben, mint a PLAXIS modellből kapottak a pontosabb ágyazattal kapott pozitív nyomatékok nagyon jól visszaadják a PLAXIS-eredményeket a közelítő (javított Winkler-) ágyazat a szélső mezőben túlbecsli, a középső mezőben pedig jelentősen alulbecsli a pozitív nyomatékok értékét 54
55 Talajmerevség hatásának eltérése a két modell esetén Lemezvastagság hatása a födém igénybevételekre (Plaxis-homok): szinti födém nyomatéka a lemezközépen felkeményedő modellel a lemezvastagság függvényében Távolság a lemez középpontjától (m) h_40cm_hs h_60cm_hs h_80cm_hs h_100cm_hs (A lemezvastagság hatása mér az 1. szinten is minimális; a 7. emelet szintjén már teljesen eltűnik.) Fajlagos mx nyomaték (knm/m) szinti födém nyomatéka a lemezközépen felkeményedő modellel a lemezvastagság függvényében Távolság a lemez középpontjától (m) 55
56 Összefoglalás: a talaj és szerkezet együttes viselkedését a talaj oldaláról alapvetően az alakváltozási paraméterek határozzák meg, a nyírószilárdsági paraméterek hatása nem jelentős; a Mohr-Coulomb és a felkeményedő talajmodell eltérései az átmeneti és kötött, azaz kisebb összenyomódási modulussal rendelkező talajok esetén jelentkeznek: ezeknél a talajtípusoknál már jelentős szerepe van a mélyebben fekvő talajtömeg merevebb viselkedése figyelembe vételének, azaz az irreálisan nagy süllyedések elkerülése érdekében a felkeményedő talajmodell alkalmazása javasolt ; a modellmélységnek a talajtípustól függetlenül nincs hatása a relatív süllyedésekre, viszont az abszolút süllyedéseket jelentősen befolyásolja; az alaplemezben ébredő fajlagos nyomatéki igénybevételek alakulásában nincs jelentős szerepe a választott talajmodell típusának; a modellmélység szerepe az igénybevételek szempontjából talajtípustól függetlenül elhanyagolható mértékű, ugyanis az igénybevételt okozó relatív süllyedések a modellmélység változtatásával is közel állandóak; végeselemes módszerrel számított átlagsüllyedések minden esetben nagyobbak, mint a közelítő módszerrel kapottak; 56
57 Összefoglalás: PLAXIS szoftverrel és a Winkler-féle javított ágyazási tényezős módszerrel kapott átlagos ágyazási tényező jó egyezést mutat szemcsés és átmeneti talajokra, viszont a kötött talajok esetén a PLAXIS szoftverrel jelentősen kisebb ez az érték kisebb összenyomódási modulussal rendelkező talajok esetén jelentősen kisebbek a relatív süllyedések, a talaj szétosztja a koncentrált terhekből adódó többletfeszültségeket egyre merevebb alaplemez esetén egyre csökken a koncentrált terhelésből származó relatív süllyedések nagysága, a süllyedéseloszlás egyre jobban megközelíti a tisztán megoszló teherrel terhelt lemezekre jellemző alakot a talpfeszültség a lemezszélen csak egy szűk tartományban növekszik meg, a javított Winkler-ágyazatnál feltételezett ¼-től eltérően csak a lemez szélességének 1/16-ában figyelhető meg fokozatos talpfeszültség-növekedés az ágyazási tényező eloszlása független a talaj típusától, annak szerepe csak az ágyazási tényező abszolút értékében van az igen hajlékony alaplemeztől eltekintve az ágyazási tényező értéke egy adott talaj esetén nem függ az alaplemez vastagságától a javított Winkler-féle ágyazási eloszlással ellentétben az ágyazási tényező értéke alaplemez szélső szűk tartományát kivéve konstansnak tekinthető 57
58 Összefoglalás: hajlékony lemezek esetén az igénybevételek lefutása a talajtípustól függetlenül alakul a lemez merevségének növelésével a szemcsés és kötött talajokon fellépő igénybevételek nagysága egyre inkább eltér egymástól, a kötött talajokon nagyobb negatív, viszont kisebb pozitív igénybevételek keletkeznek, azaz a nyomatéki ábra alakját megtartva tolódik a negatív nyomatékok irányába a lemezvastagság növelésével az igénybevételek nagysága is növekszik a süllyedések eloszlása azonos a pontosított ágyazattal felépített Axis VM modellel és a PLAXIS modellel a javított Winkler-ágyazat jelentősen alulbecsli a lemez széléhez közelebb eső lemezsáv süllyedéseit PLAXIS szoftverrel minden esetben nagyobb elmozdulások adódnak, mint az Axis VM szoftverrel a negatív nyomatékok Axis VM modellből kapott értéke jelentősen nagyobb, mint a PLAXIS modellből kapott a közelítő (javított Winkler-) ágyazat a szélső mezőben túlbecsli, a középső mezőben pedig jelentősen alulbecsli a pozitív nyomatékok értékét Axis szoftverben kisebb mértékben érvényesül a talaj alakváltozó-képességének hatása az igénybevételekre 58 a lemezvastagságnak nincs jelentős hatása a födémek igénybevételeire
Rugalmasan ágyazott gerenda. Szép János
Rugalmasan ágyazott gerenda vizsgálata AXIS VM programmal Szép János 2013.10.14. LEMEZALAP TERVEZÉS 1. Bevezetés 2. Lemezalap tervezés 3. AXIS Program ismertetés 4. Példa LEMEZALAPOZÁS Alkalmazás módjai
RészletesebbenLemez- és gerendaalapok méretezése
Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén
RészletesebbenCölöpalapozások - bemutató
12. számú mérnöki kézikönyv Frissítve: 2016. április Cölöpalapozások - bemutató Ennek a mérnöki kézikönyvnek célja, hogy bemutassa a GEO 5 cölöpalapozás számításra használható programjainak gyakorlati
RészletesebbenAlagútfalazat véges elemes vizsgálata
Magyar Alagútépítő Egyesület BME Geotechnikai Tanszéke Alagútfalazat véges elemes vizsgálata Czap Zoltán mestertanár BME Geotechnikai Tanszék Programok alagutak méretezéséhez 1 UDEC 2D program, diszkrét
RészletesebbenEbben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését és elfordulását.
10. számú mérnöki kézikönyv Frissítve: 2016. Február Síkalap süllyedése Program: Fájl: Síkalap Demo_manual_10.gpa Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését
RészletesebbenDr. Móczár Balázs 1, Dr. Mahler András 1, Polgár Zsuzsanna 2 1 BME Építőmérnöki Kar, Geotechnikai Tanszék 2 HBM Kft.
TALAJ ÉS SZERKEZET KÖLCSÖNHATÁSÁNAK ÖSSZEHASONLÍTÓ VIZSGÁLATAI VASBETON LEMEZALAPOZÁSÚ VÁZAS ÉPÜLETEK ESETÉN COMPARITIVE TESTS OF SOIL AND STRUCTURE INTERACTION IN CASE OF FRAMED STRUCTURES WITH RAFT FOUNDATION
RészletesebbenFöldstatikai feladatok megoldási módszerei
Földstatikai feladatok megoldási módszerei Földstatikai alapfeladatok Földnyomások számítása Általános állékonyság vizsgálata Alaptörés parciális terhelés alatt Süllyedésszámítások Komplex terhelési esetek
RészletesebbenMunkatérhatárolás szerkezetei. programmal. Munkagödör méretezés Geo 5
MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése 2 Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 Munkagödör méretezés Geo 5 programmal Tartalom 3 Alapadatok Geometria
RészletesebbenTartószerkezet-rekonstrukciós Szakmérnöki Képzés
Épület alapozása síkalappal (1. rajz feladat) Minden építmény az önsúlyát és a rájutó terheléseket az altalajnak adja át, s állékonysága, valamint tartóssága attól függ, hogy sikerült-e az építmény és
RészletesebbenGEOTECHNIKAI TERVEZÉS I. (LGM-SE012-1) 2. ELŐADÁS SÍKALAPOZÁSOK TERVEZÉSE WOLF ÁKOS április 2
GEOTECHNIKAI TERVEZÉS I. (LGM-SE02-) 2. ELŐADÁS SÍKALAPOZÁSOK TERVEZÉSE WOLF ÁKOS 206. április 2 Síkalapozás - ismétlés 2 Síkalap fogalma Síkalap alkalmazási köre teherátadás az alapsíkon felszínközeli
RészletesebbenTartószerkezet-rekonstrukciós Szakmérnöki Képzés
2010. szeptember X. Budapesti Műszaki és Gazdaságtudományi Egyetem Geotechnikai Tanszék Alapozás Rajzfeladatok Hallgató Bálint részére Megtervezendő egy 30 m 18 m alapterületű épület síkalapozása és a
RészletesebbenDr. Móczár Balázs. BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
Dr. Móczár Balázs 1 A z e l ő a d á s c é l j a MSZ EN 1997-1 szabvány 6. fejezetében és egyes mellékleteiben leírt síkalapozással kapcsolatos előírások lényegesebb elemeinek, a szabvány elveinek bemutatása
RészletesebbenBME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés. Dr. Móczár Balázs
Dr. Móczár Balázs 1 Az előadás célja MSZ EN 1997 1 szabvány 6. fejezetében és egyes mellékleteiben leírt síkalapozással kapcsolatos előírások lényegesebb elemeinek, a szabvány elveinek bemutatása Az eddig
RészletesebbenEbben a fejezetben egy szögtámfal tervezését, és annak teljes számítását mutatjuk be.
2. számú mérnöki kézikönyv Frissítve: 2016. Február Szögtámfal tervezése Program: Szögtámfal File: Demo_manual_02.guz Feladat: Ebben a fejezetben egy szögtámfal tervezését, és annak teljes számítását mutatjuk
RészletesebbenMUNKAGÖDÖR TERVEZÉSE
MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 programmal Tartalom Bevezetés VEM - geotechnikai alkalmazási területek
RészletesebbenA talajok összenyomódásának vizsgálata
A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben
RészletesebbenM0 autópálya szélesítése az Anna-hegyi csúszás WOLF ÁKOS
1 M0 autópálya szélesítése az Anna-hegyi csúszás térségében WOLF ÁKOS 2 HELYSZÍN HELYSZÍN 3 TÖRÖKBÁLINT ANNA-HEGYI PIHENŐ ÉRD DIÓSD ELŐZMÉNY, KORÁBBI CSÚSZÁS 4 1993. október 5. ELŐZMÉNY, KORÁBBI CSÚSZÁS
RészletesebbenSOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ
2008 PJ-MA SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ Tanszék: K épület, mfsz. 10. & mfsz. 20. Geotechnikai laboratórium: K épület, alagsor 20. BME
RészletesebbenTARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek
Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes
RészletesebbenBME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés. Dr. Móczár Balázs
Dr. Móczár Balázs 1 Az előadás célja MSZ EN 1997 1 szabvány 6. fejezetében és egyes mellékleteiben leírt síkalapozással kapcsolatos előírások lényegesebb elemeinek, a szabvány elveinek bemutatása Az eddig
RészletesebbenCölöpcsoport elmozdulásai és méretezése
18. számú mérnöki kézikönyv Frissítve: 2016. április Cölöpcsoport elmozdulásai és méretezése Program: Fájl: Cölöpcsoport Demo_manual_18.gsp A fejezet célja egy cölöpcsoport fejtömbjének elfordulásának,
RészletesebbenTARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6.
statikai számítás Tsz.: 51.89/506 TARTALOMJEGYZÉK 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1. Anyagminőségek 6.. ALKALMAZOTT SZABVÁNYOK 6. 3. A VASBETON LEMEZ VIZSGÁLATA 7. 3.1 Terhek 7. 3. Igénybevételek
RészletesebbenGEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI
GEOTECHNIKA I. LGB-SE005-01 TALAJOK SZILÁRDSÁGI JELLEMZŐI Wolf Ákos Mechanikai állapotjellemzők és egyenletek 2 X A X 3 normál- és 3 nyírófeszültség a hasáb oldalain Y A x y z xy yz zx Z A Y Z ZX YZ A
RészletesebbenJellemző szelvények alagút
Alagútépítés Jellemző szelvények alagút 50 50 Jellemző szelvény - alagút 51 AalagútDél Nyugati járat Keleti járat 51 Alagúttervezés - geotechnika 52 Technológia - Új osztrák építési módszer (NÖT) 1356
RészletesebbenSzádfal szerkezet ellenőrzés Adatbev.
Szádfal szerkezet ellenőrzés Adatbev. Projekt Dátum : 8.0.05 Beállítások (bevitel az aktuális feladathoz) Anyagok és szabványok Beton szerkezetek : Acél szerkezetek : Acél keresztmetszet teherbírásának
RészletesebbenTERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés
TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre
RészletesebbenMikrocölöp alapozás ellenőrzése
36. számú mérnöki kézikönyv Frissítve: 2017. június Mikrocölöp alapozás ellenőrzése Program: Fájl: Cölöpcsoport Demo_manual_en_36.gsp Ennek a mérnöki kézikönyvnek a célja, egy mikrocölöp alapozás ellenőrzésének
RészletesebbenA STATIKUS ÉS GEOTECHNIKUS MÉRNÖKÖK EGYMÁSRA UTALTSÁGA EGY SZEGEDI PÉLDÁN KERESZTÜL. Wolf Ákos
A STATIKUS ÉS GEOTECHNIKUS MÉRNÖKÖK EGYMÁSRA UTALTSÁGA EGY SZEGEDI PÉLDÁN KERESZTÜL Wolf Ákos Bevezetés 2 Miért fontos a geotechnikus és statikus mérnök együttm ködése? Milyen esetben kap nagy hangsúlyt
RészletesebbenSzádfal szerkezet tervezés Adatbev.
Szádfal szerkezet tervezés Adatbev. Projekt Dátum : 0..005 Beállítások (bevitel az aktuális feladathoz) Nyomás számítás Aktív földnyomás számítás : Passzív földnyomás számítás : Földrengés számítás : Ellenőrzési
RészletesebbenFAUR KRISZTINA BEÁTA, SZAbÓ IMRE, GEOTECHNIkA
FAUR KRISZTINA BEÁTA, SZAbÓ IMRE, GEOTECHNIkA 6 VI. AZ ALAPTESTEk SÜLLYEDÉSÉNEk A MEgHATÁROZÁSA 1. AZ ALAPTESTEk SÜLLYEDÉSE A süllyedés a létesítmények függőleges elmozdulása valamely (térben és időben
RészletesebbenSúlytámfal ellenőrzése
3. számú mérnöki kézikönyv Frissítve: 2016. Február Súlytámfal ellenőrzése Program: Súlytámfal Fájl: Demo_manual_03.gtz Ebben a fejezetben egy meglévő súlytámfal számítását mutatjuk be állandó és rendkívüli
RészletesebbenVasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet
Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban
RészletesebbenExcel. Feladatok 2015.02.13. Geotechnikai numerikus módszerek 2015
05.0.3. Ecel Geotechniki numerikus módszerek 05 Feldtok Szögtámfl ellenőrzése A Ferde, terhelt térszín, szemcsés háttöltés, elcsúszás, nyomtéki ábr Sávlp süllyedésszámítás B Két tljréteg, krkterisztikus
RészletesebbenTartószerkezet-rekonstrukciós Szakmérnöki Képzés
6.2. fejezet 483 FEJEZET BEVEZETŐ 6.2. fejezet: Síkalapozás (vb. lemezalapozás) Az irodaház szerkezete, geometriája, a helyszín és a geotechnikai adottságok is megegyeznek az előző (6.1-es) fejezetben
RészletesebbenA végeselem módszer alapjai. 2. Alapvető elemtípusok
A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,
RészletesebbenTARTÓSZERKEZETEK II. VASBETONSZERKEZETEK
TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK 2010.04.09. VASBETON ÉPÜLETEK MEREVÍTÉSE Az épületeink vízszintes terhekkel szembeni ellenállását merevítéssel biztosítjuk. A merevítés lehetséges módjai: vasbeton
RészletesebbenÚjdonságok 2013 Budapest
Újdonságok 2013 Budapest Tartalom 1. Általános 3 2. Szerkesztés 7 3. Elemek 9 4. Terhek 10 5. Számítás 12 6. Eredmények 13 7. Méretezés 14 8. Dokumentáció 15 2. oldal 1. Általános A 64 bites változat lehetőséget
RészletesebbenNYÍRÓSZILÁRDSÁG MEGHATÁROZÁSA KÖZVETLEN NYÍRÁSSAL (kis dobozos nyírókészülékben) Közvetlen nyíróvizsgálat MSZE CEN ISO/TS BEÁLLÍTÁSI ADATOK
BEÁLLÍTÁSI ADATOK Fúrás száma 6F Minta típusa Tömörített kohéziómentes Minta száma 6F/6.0 m Minta leírása Sárgásszürke homokos agyagos iszap Részecske sűrűség (Mg/m³) 2.70 Feltételezett/Mért Feltételezett
RészletesebbenGYŐR ARÉNA, Győr-Kiskút liget, Tóth László utca 4. Hrsz.:5764/1. multifunkcionális csarnok kialakításának építési engedélyezési terve
GYŐR ARÉNA, Győr-Kiskút liget, Tóth László utca 4. Hrsz.:5764/1 multifunkcionális csarnok kialakításának építési engedélyezési terve STATIKAI SZÁMÍTÁSOK Tervezők: Róth Ernő, okl. építőmérnök TT-08-0105
RészletesebbenGyakorlat 04 Keresztmetszetek III.
Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)
RészletesebbenElőregyártott fal számítás Adatbev.
Soil Boring co. Előregyártott fal számítás Adatbev. Projekt Dátum : 8.0.0 Beállítások (bevitel az aktuális feladathoz) Anyagok és szabványok Beton szerkezetek : CSN 0 R Fal számítás Aktív földnyomás számítás
RészletesebbenSOFiSTiK talajmechanikai szoftverek valós projekt esetén - összehasonlítás
SOFiSTiK talajmechanikai szoftverek valós projekt esetén - összehasonlítás Az alábbiakban egy tényleges projekt alapján egy tároló alapozásának, azaz egy sávalap-pár süllyedési számításait mutatjuk be
RészletesebbenTARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek
Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes
RészletesebbenSÍKALAPOK TERVEZÉSE. BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
SÍKALAPOK TERVEZÉSE SÍKALAPOK TERVEZÉSE síkalap mélyalap mélyített síkalap Síkalap, ha: - megfelelő teherbírású és vastagságú talajréteg van a felszín közelében; - a térszín közeli talajréteg teherbírása
RészletesebbenSíkalap ellenőrzés Adatbev.
Síkalap ellenőrzés Adatbev. Projekt Dátu : 02.11.2005 Beállítások (bevitel az aktuális feladathoz) Anyagok és szabványok Beton szerkezetek : EN 199211 szerinti tényezők : Süllyedés Száítási ódszer : Érintett
RészletesebbenFöldstatikai feladatok megoldási módszerei
Földstatikai feladatok megoldási módszerei A véges elemes analízis (Finite Element Method) alapjai Folytonos közeg (kontinuum) mechanikai állapotának leírása Egy pont mechanikai állapotjellemzıi és egyenletek
RészletesebbenFöldrengésvédelem Példák 1.
Rezgésidő meghatározása, válaszspektrum-módszer Budapesti Műszaki és Gazdaságtudományi Egyetem Szilárdságtani és Tartószerkezeti Tanszék 017. március 16. A példák kidolgozásához felhasznált irodalom: [1]
RészletesebbenFogorvosi anyagtan fizikai alapjai 6.
Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv
RészletesebbenSzepesházi Róbert. Széchenyi István Egyetem, Gyır. Hídépítési esettanulmányok
Szepesházi Róbert Széchenyi István Egyetem, Gyır Hídépítési esettanulmányok Tervek a múltból Hídalapozás síkalapozás? Típusalépítmény 2000-2010 2010 Hídalapozás = cölöpalapozás? A negatív köpenysúrlódás
RészletesebbenTalajmechanika II. ZH (1)
Nev: Neptun Kod: Talajmechanika II. ZH (1) 1./ Az ábrán látható állandó víznyomású készüléken Q = 148 cm^3 mennyiségű víz folyt keresztül 5 perc alatt. A mérőeszköz adatai: átmérő [d = 15 cm]., talajminta
RészletesebbenTalajok összenyom sszenyomódása sa és s konszolidáci. ció. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
Talajok összenyom sszenyomódása sa és s konszolidáci ció Dr. Mócz M czár r Balázs BME Geotechnikai Tanszék Miért fontos? BME Geotechnikai Tanszék Miért fontos? BME Geotechnikai Tanszék Talajok összenyomhatósági
RészletesebbenTartószerkezet-rekonstrukciós Szakmérnöki Képzés
1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek
RészletesebbenA talajok nyírószilárdsága
A talajok nyírószilárdsága Célok: A talajok nyírószilárdságának értelmezése. Drénezett és drénezetlen viselkedés közötti különbségek értelmezése A terepi állapotokat szimuláló vizsgálatok kiválasztása.
RészletesebbenTöltésalapozások tervezése II.
Töltésalapozások tervezése II. Talajmechanikai problémák 2 alaptörés állékonyságvesztés vastag gyenge altalaj deformációk, elmozdulások nagymértékű, egyenlőtlen, időben elhúzódó süllyedés szétcsúszás vastag
RészletesebbenWolf Ákos. Királyegyháza, cementgyár - esettanulmány
Wolf Ákos Királyegyháza, cementgyár - esettanulmány Királyegyháza, cementgyár - esettanulmányok Tartalom Bevezetés Projekt ismertetés, helyszín bemutatása bb m tárgyak, létesítmények Talajadottságok bemutatása
RészletesebbenTartószerkezetek I. (Vasbeton szilárdságtan)
Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.
RészletesebbenFÉLMEREV KAPCSOLATOK NUMERIKUS SZIMULÁCIÓJA
FÉLMEREV KAPCSOLATOK NUMERIKUS SZIMULÁCIÓJA Vértes Katalin * - Iványi Miklós ** RÖVID KIVONAT Acélszerkezeti kapcsolatok jellemzőinek (szilárdság, merevség, elfordulási képesség) meghatározása lehetséges
Részletesebbenidőpont? ütemterv számonkérés segédanyagok
időpont? ütemterv számonkérés segédanyagok 1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. műszaki számítások: - analitikus számítások
RészletesebbenHasználhatósági határállapotok. Alakváltozások ellenőrzése
1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)
RészletesebbenMUNKAGÖDÖR TERVEZÉSE
MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Bevezetés Munkagödör méretezése Plaxis programmal Munkagödör méretezése Geo 5 programmal MUNKAGÖDÖR TERVEZÉSE Bevezetés Wolf Ákos BEVEZETÉS Napjaink mélyépítési
RészletesebbenErőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez
Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez Pécs, 2015. június . - 2 - Tartalomjegyzék 1. Felhasznált irodalom... 3 2. Feltételezések... 3 3. Anyagminőség...
RészletesebbenGEOTECHNIKA III. NGB-SE005-03
GEOTECHNIKA III. NGB-SE005-03 HORGONYZOTT SZERKEZETEK Wolf Ákos 2015/16 2. félév Horgony 2 horgonyfej a szabad szakasz befogási szakasz Alkalmazási terület 3 Alkalmazási terület 4 Alkalmazási terület 5
RészletesebbenKonzulensek: Czeglédi Ádám Dr. Bojtár Imre
Konzulensek: Czeglédi Ádám Dr. Bojtár Imre FLAC : explicit véges differenciás program Kőzettömeg felosztása Zónákra Rácspontok Mozgásegyenlet Rácspont Zóna & u σ i ij ρ = + ρg t x j t+ t / 2) u& ( = u&
RészletesebbenA.2. Acélszerkezetek határállapotai
A.. Acélszerkezetek határállapotai A... A teherbírási határállapotok első osztálya: a szilárdsági határállapotok A szilárdsági határállapotok (melyek között a fáradt és rideg törést e helyütt nem tárgyaljuk)
RészletesebbenSTATIKAI SZÁMÍTÁS (KIVONAT) A TOP Társadalmi és környezeti szempontból fenntartható turizmusfejlesztés című pályázat keretében a
Kardos László okl. építőmérnök 4431 Nyíregyháza, Szivárvány u. 26. Tel: 20 340 8717 STATIKAI SZÁMÍTÁS (KIVONAT) A TOP-6.1.4.-15 Társadalmi és környezeti szempontból fenntartható turizmusfejlesztés című
RészletesebbenEgyedi cölöp függőleges teherbírásának számítása
13. számú mérnöki kézikönyv Frissítve: 2013. árilis Egyedi cölö függőleges teherbírásának számítása Program: Fájl: Cölö Demo_manual_13.gi Ennek a mérnöki kézikönyvnek a célja, egy egyedi cölö függőleges
RészletesebbenHorgonyzott szerkezetek
Horgonyzott szerkezetek Horgonyzott szerkezetek Horgonyzott fal Elemes horgonyfal A horgonyzási technológiája Fúrási technológiák levegıöblítéssel vízöblítéssel fúróiszappal cementlével béléscsıvel
RészletesebbenTARTÓSZERKEZETEK II. VASBETONSZERKEZETEK
TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK 2010.03.26. KERETSZERKEZETEK A keretvázak kialakulása Kezdetben pillér-gerenda rendszerő tartószerkezeti váz XIX XX. Század új anyagok öntöttvas, vas, acél, vasbeton
RészletesebbenEjtési teszt modellezése a tervezés fázisában
Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,
RészletesebbenKonszolidáció-számítás Adatbev.
Tarcsai út. 57/8 - Budapest Konszolidáció-számítás Adatbev. Projekt Dátum : 7.0.0 Beállítások Cseh Köztársaság - régi szabvány CSN (7 00, 7 00, 7 007) Süllyedés Számítási módszer : Érintett zóna korlátozása
Részletesebben1. Határozzuk meg az alábbi tartó vasalását, majd ellenőrizzük a tartót használhatósági határállapotokra!
1. Határozzuk meg az alábbi tartó vasalását majd ellenőrizzük a tartót használhatósági határállapotokra! Beton: beton minőség: beton nyomószilárdságnak tervezési értéke: beton húzószilárdságának várható
RészletesebbenFAUR KRISZTINA BEÁTA, SZAbÓ IMRE, GEOTECHNIkA
FAUR KRISZTINA BEÁTA, SZAbÓ IMRE, GEOTECHNIkA 5 V. AZ ALAPTESTEk ÁLLÉkONYSÁgÁNAk A vizsgálata 1. TALAJTÖRÉSSEL, felúszással, ELCSÚSZÁSSAL, felbillenéssel SZEMbENI biztonság Az épületek, létesítmények állékonyságának
RészletesebbenTÁJÉKOZTATÓ. az MSZ EN 1998-5 (EC8-5) szerinti földrengésre történő alapozás tervezéshez. Összeállította: Dr. Dulácska Endre
Magyar Mérnöki Kamara Tartószerkezeti Tagozat TÁJÉKOZTATÓ az MSZ EN 1998-5 (EC8-5) szerinti földrengésre történő alapozás tervezéshez Összeállította: Dr. Dulácska Endre A tájékoztatót a MMK-TT következő
RészletesebbenSchöck Isokorb Q, Q-VV
Schöck Isokorb, -VV Schöck Isokorb típus Alátámasztott erkélyekhez alkalmas. Pozitív nyíróerők felvételére. Schöck Isokorb -VV típus Alátámasztott erkélyekhez alkalmas. Pozitív és negatív nyíróerők felvételére.
RészletesebbenBudapesti Műszaki és Gazdaságtudományi Egyetem Geotechnikai Tanszék. Geotechnikai numerikus módszerek MSc képzés. Készítette Czap Zoltán 2012.
Budapesti Műszaki és Gazdaságtudományi Egyetem Geotechnikai Tanszék Geotechnikai numerikus módszerek MSc képzés Készítette Czap Zoltán 2012. január 2 Tartalomjegyzék 1 Bevezetés... 5 2 Geotechnikai modellalkotás...
RészletesebbenPélda: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk
RészletesebbenHÁLÓZATI SZINTŰ DINAMIKUS BEHAJLÁSMÉRÉS MÚLTJA JELENE II.
HÁLÓZATI SZINTŰ DINAMIKUS BEHAJLÁSMÉRÉS MÚLTJA JELENE II. MÉTA-Q Kft. Baksay János 2007. 06. 12. MAÚT ÚTÉPÍTÉSI AKADÉMIA 11. 1. FOGALOM: Teherbírás. Teherbíráson általában határ-igénybevételt értünk 2.
RészletesebbenRIGID INCLUSION ALAPOZÁSI RENDSZERREL KÉSZÜLT SILÓ 3D NUMERIKUS VIZSGÁLATA. Geotechnika és Mérnökgeológia Tanszék
RIGID INCLUSION ALAPOZÁSI RENDSZERREL KÉSZÜLT SILÓ 3D NUMERIKUS VIZSGÁLATA Lődör Kristóf 1, Dr. Móczár Balázs 2, Dr. Mahler András 3 1,2,3 Budapesti Műszaki és Gazdaságtudományi Egyetem, Geotechnika és
RészletesebbenTERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22.
TERMÉKZIMULÁCIÓ Végeselem módszer Termékszimuláció tantárgy 6. elıadás 211. március 22. Elıadó: Dr. Kovács Zsolt egyetemi tanár A végeselem módszer lényege A vizsgált, tetszıleges geometriai kialakítású
RészletesebbenEC7 ALKALMAZÁSA A GYAKORLATBAN DR. MÓCZÁR BALÁZS
EC7 ALKALMAZÁSA A GYAKORLATBAN DR. MÓCZÁR BALÁZS Építész szakmérnöki 2016. Bevezetés 2 k é z s s é n a épz T i ik t e z k e ö k n r r új dokumentum típusok e é z s m ó ak t új szemlélet r a z S T s s é
RészletesebbenMérnöki faszerkezetek korszerű statikai méretezése
Mérnöki faszerkezetek korszerű statikai méretezése okl. faip. mérnök - szerkezettervező Előadásvázlat Bevezetés, a statikai tervezés alapjai, eszközei Az EuroCode szabványok rendszere Bemutató számítás
RészletesebbenUTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI
UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI DR. FARKAS GYÖRGY Professor emeritus BME Hidak és Szerkezetek Tanszék MMK Tartószerkezeti Tagozat Szakmai továbbképzés 2017 október 2. KÁBELVEZETÉS EGYENES
RészletesebbenA= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező
Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:
RészletesebbenTartószerkezet-rekonstrukciós Szakmérnöki Képzés
1_1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. mőszaki számítások: - analitikus számítások gyorsítása, az eredmények grafikus
RészletesebbenTALAJVIZSGÁLATI JELENTÉS ÉS TANÁCSADÁS. Kunfehértó, Rákóczi u. 13. sz.-ú telken épülő piactér tervezéséhez 2017.
TALAJVIZSGÁLATI JELENTÉS ÉS TANÁCSADÁS Kunfehértó, Rákóczi u. 13. sz.-ú telken épülő piactér tervezéséhez 2017. 1 I. Tervezési, kiindulási adatok A talajvizsgálati jelentés a Fehértó Non-profit Kft. megbízásából
RészletesebbenSzilvágyi László: M6 autópálya alagutak geológiai és geotechnikai adottságai
Szilvágyi László: M6 autópálya alagutak geológiai és geotechnikai adottságai 2/23 M6/M60 autópálya (E73, V/C folyosó) tervezése 1998 2007 3/23 Geresdi dombság o ÉNY - DK-i dombhátak és völgyek o ÉK - DNY-i
RészletesebbenHasználható segédeszköz: - szöveges adatok tárolására és megjelenítésére nem alkalmas számológép; - körző; - vonalzók.
A 4/2015 (II. 19.) NGM rendelet és a 27/2012 (VIII. 27.) NGM rendelet a 12/2013 (III. 28.) NGM rendelet által módosított szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosítószáma és megnevezése
RészletesebbenGEOTECHNIKA III. (LGB-SE005-3) TÁMFALAK
GEOTECHNIKA III. (LGB-SE005-3) TÁMFALAK Bevezetés 2 Miért létesítünk támszerkezeteket? földtömeg és felszíni teher megtámasztása teherviselési típusok támfalak: szerkezet és/vagy kapcsolt talaj súlya (súlytámfal,
RészletesebbenGyakorlat 03 Keresztmetszetek II.
Gyakorlat 03 Keresztmetszetek II. 1. Feladat Keresztmetszetek osztályzása Végezzük el a keresztmetszet osztályzását tiszta nyomás és hajlítás esetére! Monoszimmetrikus, hegesztett I szelvény (GY02 1. példája)
RészletesebbenCONSTEEL 8 ÚJDONSÁGOK
CONSTEEL 8 ÚJDONSÁGOK Verzió 8.0 2013.11.20 www.consteelsoftware.com Tartalomjegyzék 1. Szerkezet modellezés... 2 1.1 Új szelvénykatalógusok... 2 1.2 Diafragma elem... 2 1.3 Merev test... 2 1.4 Rúdelemek
RészletesebbenHasználható segédeszköz: - szöveges adatok tárolására és megjelenítésére nem alkalmas számológép; - körző; vonalzók.
A 27/2012. (VIII. 27.) NGM rendelet, a 27/2012. (VIII. 27.) NGM rendelet a 12/2013. (III. 28.) NGM rendelet által módosított és a 27/2012. (VIII. 27.) NGM rendelet a 4/2015. (II. 19.) NGM rendelet által
RészletesebbenKiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései
Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései VII. Városi Villamos Vasúti Pálya Napra Budapest, 2014. április 17. Major Zoltán egyetemi tanársegéd Széchenyi István Egyetem, Győr
RészletesebbenVasalttalaj hídfők. Tóth Gergő. Gradex Mérnöki és Szolgáltató Kft Budapest, Bécsi út 120. Telefon: +36-1/
Vasalttalaj hídfők Tóth Gergő Gradex Mérnöki és Szolgáltató Kft. 1034 Budapest, Bécsi út 120. Telefon: +36-1/436-0990 www.gradex.hu Az előadás 1. Hagyományos hídfő kialakítások régen és most 2. Első hazai
RészletesebbenGeometriai adatok. réteghatárok magassági helyzete földkiemelési szintek geotechnikai szerkezet méretei
24. terepmagasság térszín hajlása vízszintek Geometriai adatok réteghatárok magassági helyzete földkiemelési szintek geotechnikai szerkezet méretei a d =a nom + a a: az egyes konkrét szerkezetekre vonatkozó
RészletesebbenTartószerkezetek modellezése
Tartószerkezetek modellezése 16.,18. elıadás Repedések falazott falakban 1 Tartalom A falazott szerkezetek méretezési módja A falazat viselkedése, repedései Repedések falazott szerkezetekben Falazatok
RészletesebbenTARTÓSZERKEZETEK II. VASBETONSZERKEZETEK
TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK 2012.03.11. KERETSZERKEZETEK A keretvázak kialakulása Kezdetben pillér-gerenda rendszerű tartószerkezeti váz XIX XX. Század új anyagok öntöttvas, vas, acél, vasbeton
RészletesebbenWolf Ákos. Királyegyháza, cementgyár - esettanulmány
Wolf Ákos Királyegyháza, cementgyár - esettanulmány Királyegyháza, cementgyár - esettanulmányok Tartalom Bevezetés Projekt ismertetés, helyszín bemutatása Főbb műtárgyak, létesítmények Talajadottságok
RészletesebbenAlapozások (folytatás)
Alapozások (folytatás) Horváth Tamás PhD építész, egyetemi tanársegéd Széchenyi István Egyetem, Győr Építészeti és Épületszerkezettani Tanszék 1 Szerkezetváltozatok Sávalapok Helyszíni pontalapok Pontalapok
RészletesebbenKardos Nóra Dr. Mahler András Dr. Móczár Balázs Budapesti Műszaki és Gazdaságtudományi Egyetem, Geotechnikai Tanszék
BUDAPESTI METRÓÁLLOMÁSOK BACK ANALYSIS VIZSGÁLATA A MONITORING EREDMÉNYEK TÜKRÉBEN BACK ANALSYS OF THE RETAINING STRUCTURE BEHAVIOUR AT BUDAPEST METRO STATIONS Kardos Nóra Dr. Mahler András Dr. Móczár
RészletesebbenEC4 számítási alapok,
Öszvérszerkezetek 2. előadás EC4 számítási alapok, beton berepedésének hatása, együttdolgozó szélesség, rövid idejű és tartós terhek, km. osztályozás, képlékeny km. ellenállás készítette: 2016.10.07. EC4
Részletesebben