A legjobb vízszintes illeszkedést. azonos pontok adatai alapján
|
|
- Zsófia Vincze
- 9 évvel ezelőtt
- Látták:
Átírás
1 legjobb vízszintes illeszkedést biztosító Molodenskyparaméterek meghatározása azonos pontok adatai alapján Molnár Gábor dr. Timár Gábor ELTE Geofizikai Tanszék, Ûrkutató Csoport. Bevezetés térinformatika egyik alapvetõ feladata különbözõ vetületi rendszerekben referált adatok, térképek egymáshoz illesztése, közös bázisra hozatala. koordináták transzformációja több módon történhet (. ábra. z itt bemutatott. transzformáció közvetlenül a vetületi rendszerek között teremt kapcsolatot, ennek gyakorlati megvalósítása legtöbbször hatványpolinom-sorokkal történik (Varga, 98. második eset, azaz a különbözõ alapfelületeken, idegen szóval dátumokon értelmezett ellipszoidi és magassági koordináták közvetlen átszámítása, a fenti módszeren túl a szabványos, ill.. ábra Koordináta-átszámítások a vetülettanban az áthidaló Molodensky-formulákkal is lehetséges (Molodensky et al., 960; magyar összefoglalást lásd Timár et al., 00. Végül a harmadik átváltást, amely a geocentrikus koordináták között teremt kapcsolatot, a gyakorlatban leginkább a háromdimenziós Helmert-transzformáció kis elforgatási szögek esetén érvényes egyszerûsítése, az ún. Burša Wolf-transzformáció (Burša, 96; Wolf, 963 segítségével tesszük meg. z. ábrán látható további átalakítások a következõk: a választott vetület direkt és inverz egyenletei, ezek általában kézikönyvekben (pl. Snyder, 987; Varga, 000 megtalálhatók. z ellipszoidi koordináták geocentrikussá történõ átváltását elemi matematikai eszközökkel egyszerûen elvégezhetjük (lásd a (9 ( egyenleteket. Ennek inverzét egyszerû közelítõ formulákkal Bowring (976, némileg összetettebb egzakt megoldását Borkowski (989 megadta. z áthidaló Molodensky-formulák az alapfelületi ellipszoidok egymáshoz képest értelmezett relatív helyzetét a középpontokat összekötõ vektor 3 eltolási komponensével jellemzik, és nem veszik figyelembe az esetleges eltérõ tájékozást, ill. a méretarány kis eltérését, így háromparaméteres dátumtranszformáció néven is ismertek. z itt elhanyagolt tényezõket is tekintetbe veszi a Bursa- 9
2 Wolf eljárás, amely a 3 eltolási tag mellett 3 elforgatási és egy méretarány-paramétert is tartalmazva kapja a hétparaméteres dátumtranszformáció elnevezést. Mindkét transzformáció paramétereit (és a hatványpolinom-sorokkal történõ átváltáséit is a gyakorlatban azonos pontok, legtöbbször a kiinduló és a célrendszerben is ismert koordinátájú felsõrendû alappontok felhasználásával határozhatjuk meg. térben legjobb hétparaméteres transzformáció paramétereinek meghatározását Ádám (98 megadta, annak gyakorlati alkalmazására példát mutatnak Papp et al. (997; 00. jelen munka célja a vízszintes értelemben legjobb illeszkedést adó Molodensky-paraméterek megbecslése, ismert alappontsokaság koordinátái alapján. dolgozat nem tér ki a legjobb térbeli illeszkedést eredményezõ Molodensky-paraméterek kiszámítására, amelyet egy korábbi írásunkban (Timár et al., 00 már ismertettünk.. Kiinduló adatok z áthidaló Molodensky-formulák nevükbõl is láthatóan képesek közvetlenül a kiinduló és a céldátumon értelmezett ellipszoidi koordináták, ill. ellipszoidi magasságok között kapcsolatot teremteni. vizsgálatba vont két dátum közötti eltolási paraméterek meghatározása tehát ez esetben azonos pontok ellipszoidi koordinátáit igényli, mind a kiinduló, mind a céldátumon. gyakorlatban általában alacsony rendszámú geodéziai alappontokat használunk azonos pontokként, amelyek koordinátái legtöbbször valamely jól definiált vetületi rendszerben adottak. Ezért itt az inverz vetületi egyenletek alkalmazása szükséges, hogy a megfelelõ kiinduló adatokhoz jussunk. 3. módszer z áthidaló Molodensky-formulák (DM, 990: dx dy sin Λ Φ" M sin" M si dz ( a df f da ( M sin" M sin" dx dy Λ" cos Φsin" ( h dx dy cos Φsin Λ (3 dz ( a df f dasin Φ da, ahol e M ( Φ a ( e sin a meridiángörbületi sugár; a ( Φ e sin Φ a harántgörbületi sugár, DF" és DL" a kiinduló, ill. a céldátumon értelmezett szélesség-, ill. hoszszúságkülönbség szögmásodpercben, D h a kiinduló és a céldátumon értelmezett ellipszoidmagasságok különbsége, f a kiinduló ellipszoid lapultsága, da és df a kiinduló és célellipszoidok félnagytengely-, ill. lapultság-eltérése, e az ellipszoid excentricitása. z áthidaló Molodensky-formulák dx, dy és dz paramétereinek meghatározásához azonos pontokra van szükségünk. z azonos pontok kiinduló ( és célrendszerbeli ( ellipszoidi koordinátái különbségének a mért, illetve a transzformáció segítségével számított értékei eltérésének abszolút értékét akarjuk minimalizálni. Ez megegyezik a mért és számított mennyiségek eltérésének e négyzetösszege minimalizálásával. Esetünkben ennek matemetikai megfogalmazása az alábbi: (4 Látható, hogy a L ellipszoidi hosszúság étékek eltérését a cos(f skálázó taggal is megszoroztuk. skálázó tagot azért kell alkalmazni, hogy ne egyszerûen az ellipszoidi koordináták eltérésének a minimumát, hanem az ellipszoid koordinátákból a vetületi egyenletek segítségével számított síkkordináták eltérésének a minimumát kapjuk. skálázó tag alkalmazásának a hatására lesz az azonos pontokban a síkkordináták számított és mért értékeinek szórása (közel azonos az X és Y koordináták esetében. síkbeli eltérésekre vonatkozó minimum feltétele az, hogy az ( és ( egyenletekben fellépõ eltérések négyzetösszegeinek a paraméterek szerinti parciális deriváltjai nullák legyenek. Φ 3 ( Φ Φ ( Φ, Λ Φ ( Λ ( Λ Λ ( Φ, Λ min 0
3 4. Eredmények parciális deriválások elvégzése és a Ca dff da (5 behelyettesítés után a (4 egyenlet az alábbi alakra hozható: (6 x b, ahol az szimmetrikus mátrix és a b vektor elemei: b b M sin ( M sin ( sin ( M sin M sin cos Φ ( M sin M sin Φ M sin Φ M sin sin i ( sin C C ( M sin ( M sin a Cramer-szabály felhasználásával (lásd pl. Korn és Korn, 975 határoztuk meg. Elõször kiszámítottuk az mátrix determinánsát. Ezután létrehoztunk három további mátrixot úgy, hogy a b oszlopvektorral az mátrix 3 oszlopának értékeit rendre felülírtuk, míg a többi tagot változatlanul hagytuk. keresett paraméterek rendre e három mátrix determinánsainak és az eredeti mátrix determinánsának hányadosaiként álltak elõ. 5. Diszkusszió z. táblázatban megadjuk a HD7» WGS84 transzformáció paraméterezését mind a térben egzakt, mind a legjobb vízszintes illeszkedést biztosító módon. z utóbbi modellhez tartozó paramétereket 00 db OGPSH alappont adatait felhasználva, a dolgozatban ismertetett számítási módszerrel kaptuk. Látható, hogy e paraméterek segítségével vízszintes értelemben valóban pontosabb illeszkedést kaphatunk, mint a térben egzakt elhelyezést biztosítókkal (Timár et al., 00. Fontos megjegyezni ugyanakkor, hogy a kapott hibák nagyságrendje meghatározza a módszer korlátait is: országosan egységes paraméterek használatával e módon sem érhetõ el geodéziai szintû pontosságú koordináta-transzformáció. most ismertetett módon megkapható paraméterek jól használhatók viszont a térinformatikában. Λ cos Φ sin Λ sin Φ cos Φ C b3 i M sin ( ( M sin (7 egyenletben minden koordináta, ill. származtatott mennyiség (görbületi sugarak stb. a kiinduló rendszerben értendõ. DF, DL jelentése az ( és ( egyenleteknek megfelelõ. (7 egyenlet inhomogén lineáris egyenletrendszer. Ennek megoldása - x b, (8 ahol - az mátrix inverze. keresett dx, dy és dz paramétereket az x megoldásvektor tartalmazza. gyakorlatban mi a paramétereket más úton, (7 Transzfomáció dx(m dy(m dz(m Vízsz. hiba(m Direkt eltolás átlag max HD7» WGS84 57,0-69,97-9,9 0,40,00 áthidaló Molodenszky átlag max HD7» WGS84 57,7-7,8-4,90 0,36 0,83. táblázat HD7» WGS84 transzformáció paraméterei a térben egzakt (direkt eltolás és a vízszintes értelemben optimális (áthidaló Molodensky modellek alkalmazásával
4 Végezetül vizsgáljuk meg, hogy az. táblázatban megadott transzformációkkal jellemzett dátumok milyen térbeli helyzetben vannak egymáshoz képest. Képezzük a két helyvektor háromdimenziós különbségét: r r -r (dx 4,84 m; dy,85 m; dz 5,6 m (9 Lássuk, ez a helyvektor a középpontból az alapfelület milyen szélességgel és hosszúsággal megadott pontjára mutat: ϕ arctan r dy λr arctan dx (0 ( míg a helyvektor hossza (a háromdimenziós eltérés, méterben: r ( Megállapíthatjuk tehát, hogy a két paramétersor használata vízszintes értelemben a (0 és ( egyenletekkel megadott ponton ad azonos eredményt. ( egyenletben megadott térbeli eltolás mértéke a HD7 alapfelületnek a geoidhoz képest definiált magassági helyzetére (Ádám et al., 000 utal. 6. Összefoglalás dz dx dy o 0,, dx dy dz o 47,3 7,64 m z ( (8 összefüggések alkalmazásával, amennyiben egy pontsokaság (pl. geodéziai alappontok egy csoportja két független alapfelületen adott koordinátákkal ismert, a megadott egyenletek alkalmasak arra, hogy a GPS és térinformatikai gyakorlatban használt áthidaló Molodenskyparamétereket az adott pontokon minimális vízszintes eltérést eredményezõ módon megbecsüljük. megoldás háromdimenziós értelemben nem szükségszerûen pontos, de a kapott paraméterek vízszintes értelemben pontosabbak a térbelileg helyes megoldásénál. paraméterek geodéziai pontosságigényû transzformációt általában nem tesznek lehetõvé, a térinformatikában azonban jól alkalmazhatók, és különösen akkor használhatók a háromparaméteres dátumleírások megadására, ha a paraméterbecsléshez felhasznált pontsokaság magassági referenciái nem adottak. Köszönetnyilvánítás jelen dolgozat elkészítését a Magyar Ûrkutatási Iroda és az Informatikai és Hírközlési Minisztérium közös, TP094 sz. témapályázata keretében végeztük. HD7» WGS84 transzformációk paramétereinek kiszámítását a FÖMI KGO-tól kizárólag kutatási célra átvett 00 db OGPSH-alappont adatai alapján végeztük el. IRODLOM Ádám, J. (98: On the determination of similarity coordinate transformation parameters. Bollettino di Geodesia e Scienze ffini 4: Ádám J. Gazsó M. Kenyeres. Virág G.: 000. z Állami Földmérésnél 969 és 999 között végzett geoidmeghatározási munkálatok. Geodézia és Kartográfia 5(: 7 4. Badekas, J.: (969: Investigations related to the establishment of a world geodetic system. Report 4, Department of Geodetic Science, Ohio State University, Columbus Borkowski, K. M. (989: ccurate algorithms to transform geocentric to geodetic coordinates. Bulletin Géodésique vol. 63: Bowring, B. (976: Transformation from spatial to geographical coordinates. Survey Review XXIII: Burša, M. (96: The theory for the determination of the non-parallelism of the minor axis of the reference ellipsoid and the inertial polar axis of the Earth, and the planes of the initial astronomic and geodetic meridians from the observation of artificial Earth satellites. Studia Geophysica et Geodetica 6: Defense Mapping gency (990: Datums, Ellipsoids, Grids and Grid Reference Systems. DM Technical Manual Fairfax, Virginia, US Korn, G.. Korn, T. M. (975: Matematikai kézikönyv mûszakiaknak. Mûszaki Könyvkiadó, Budapest, 995 o. Molodenskiy, M. S. Eremeev, V. F. Yurkina, M. I. (960: Metody izucheniya vnesnego gravitatsionnogo polya i figuri Zemli. Tr. CIIGiK [Moszkva], 3. Papp, E. Szûcs, L. Varga, J. (997: GPS network transformation into erent datums and projection systems. Reports on Geodesy, Warsaw University of Technology, o. 4 (7
5 Papp, E. Szûcs, L. Varga, J. (00: Hungarian GPS network transformation into erent datums and projection systems. Periodica Polytechnica Ser. Civ. Eng. 46(: Snyder, J. P. (987: Map Projections - Working Manual. USGS Prof. Paper 395: 6. Timár G. Molnár G. Pásztor Sz. (00: WGS84 és HD7 alapfelületek közötti transzformáció Molodensky-Badekas-féle (3 paraméteres meghatározása a gyakorlat számára. Geodézia és Kartográfia 54(: 6. Varga J. (98: Vetületi rendszereink közötti átszámítások új módjai. Mûszaki doktori értekezés, BME, Budapest Varga J. (000: Vetülettan. Mûegyetemi Kiadó, Bp., 96 o. Wolf, H. (963: Geometric connection and reorientation of three-dimensional triangulation nets. Bulletin Géodésique nr. 68: Determination of the parameters of the abridged Molodensky formulae providing the best horizontal fit G. Molnár G. Timár Summary This paper gives the computation algorithms of the unknown datum shift parameters of the horizontally optimised abridged Molodensky datum transformation. If the coordinates of a geodetic basepont set are given in two independent systems (datums, the given formulae are capable to estimate the dx, dy and dz datum shift parameters of the abridged Molodensky transformation. Using these formulae, the parameters, providing the best horizontal fitting, of the HD7»WGS84 transformation have been estimated as follows: dx5.7 m.; dy-7.8 m.; dz-4.90 m. The location erence between the spatially exact datum and the one characterised by this parameter set are discussed and the shift between them is interpreted as a result of the artificial height position of the HD7 above the geoid. Földmérési és Távérzékelési Intézet K-GEO kkreditált Kalibráló Laboratórium vállalja GEODÉZII ELEKTROOPTIKI TÁVMÉRÕK KLIBRÁLÁSÁT Gödöllõn, az Országos Geodéziai lapvonalon és GPS VEVÕBEREDEZÉSEK KLIBRÁLÁSÁT Pencen, a GPS Kalibrációs Hálózatban. 64 Penc, Kozmikus Geodéziai Obszervatórium Tel: Fax: borza,nemeth,virag@sgo.fomi.hu Levelezési cím: 373 Budapest, Pf
A magyarországi Gauss-Krüger-vetületû katonai topográfiai térképek dátumparaméterei
A magyarországi Gauss-Krüger-vetületû katonai topográfiai térképek dátumparaméterei Timár Gábor 1 Kubány Csongor 2 Molnár Gábor 1 1ELTE Geofizikai Tanszék, Ûrkutató Csoport 2Honvédelmi Minisztérium, Térképészeti
A második és harmadik katonai felmérés erdélyi szelvényeinek vetületiés dátumparaméterei
geos-majus.qxd 9/1/04 9:35 PM Page 1 A második és harmadik katonai felmérés erdélyi szelvényeinek vetületiés dátumparaméterei Timár Gábor 1 Molnár Gábor 1 Păunescu Cornel Pendea Florin 3 1 ELTE Geofizikai
A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek
TRANSZFORMÁCIÓ A Föld alakja -A föld alakja: geoid (az a felület, amelyen a nehézségi gyorsulás értéke állandó) szabálytalan alak, kezelése nehéz -A geoidot ellipszoiddal közelítjük -A földfelszíni pontokat
A budapesti sztereografikus, illetve a régi magyarországi hengervetületek és geodéziai dátumaik paraméterezése a térinformatikai gyakorlat számára
A budapesti sztereografikus, illetve a régi magyarországi hengervetületek és geodéziai dátumaik paraméterezése a térinformatikai gyakorlat számára Timár Gábor 1, Molnár Gábor 1, Márta Gergely 2 1ELTE Geofizikai
Űrfelvételek térinformatikai rendszerbe integrálása
Budapest, 2005. október 18. Űrfelvételek térinformatikai rendszerbe integrálása Molnár Gábor ELTE Geofizikai Tanszék Űrkutató Csoport Témavezető: Dr. Ferencz Csaba Eötvös Loránd Tudományegyetem Geofizikai
Vetületi rendszerek és átszámítások
Vetületi rendszerek és átszámítások PhD értekezés tézisei Dr. Varga József egyetemi adjunktus Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki Kar Általános- és Felsőgeodézia Tanszék Budapest,
Matematikai geodéziai számítások 1.
Matematikai geodéziai számítások 1 Ellipszoidi számítások, ellipszoid, geoid és terep metszete Dr Bácsatyai, László Created by XMLmind XSL-FO Converter Matematikai geodéziai számítások 1: Ellipszoidi számítások,
Átszámítások különböző alapfelületek koordinátái között
Átszámítások különböző alapfelületek koordinátái között A különböző időpontokban, különböző körülmények között rögzített pontok földi koordinátái különböző alapfelületekre (ellipszoidokra geodéziai dátumokra)
Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program
Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z
A második világháború német katonai térképeinek koordinátarendszere
geos-junius.qxd 9/1/04 9:52 PM Page 28 A második világháború német katonai térképeinek koordinátarendszere Dr. Timár Gábor 1, Lévai Pál 2, dr. Molnár Gábor 1, dr. Varga József 3 1ELTE Geofizikai Tanszék
Az ivanicsi (ivanići) rendszer paraméterezése a térinformatikai alkalmazásokban Dr. Timár Gábor 1, Markovinović Danko 2, Kovács Béla 3
Az ivanicsi (ivanići) rendszer paraméterezése a térinformatikai alkalmazásokban Dr. Timár Gábor 1, Markovinović Danko 2, Kovács Béla 3 1 ELTE Geofizikai Tanszék Űrkutató Csoport 2 Zágrábi Egyetem, Geodéziai
Matematikai geodéziai számítások 4.
Matematikai geodéziai számítások 4. Vetületi átszámítások Dr. Bácsatyai, László Matematikai geodéziai számítások 4.: Vetületi átszámítások Dr. Bácsatyai, László Lektor: Dr. Benedek, Judit Ez a modul a
Bevezetés a geodéziába
Bevezetés a geodéziába 1 Geodézia Definíció: a földmérés a Föld alakjának és méreteinek, a Föld fizikai felszínén, ill. a felszín alatt lévő természetes és mesterséges alakzatok geometriai méreteinek és
Matematikai geodéziai számítások 9.
Matematikai geodéziai számítások 9 Szabad álláspont kiegyenlítése Dr Bácsatyai, László Created by XMLmind XSL-FO Converter Matematikai geodéziai számítások 9: Szabad álláspont kiegyenlítése Dr Bácsatyai,
Matematikai geodéziai számítások 9.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 9 MGS9 modul Szabad álláspont kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői
Koordináta-rendszerek
Koordináta-rendszerek Térkép: a Föld felszín (részletének) ábrázolása síkban Hogyan határozható meg egy pont helyzete egy síkon? Derékszögű koordináta-rendszer: a síkban két, egymást merőlegesen metsző
Magasságos GPS. avagy továbbra is
Magasságos GPS avagy továbbra is Tisztázatlan kérdések az RTK-technológiával végzett magasságmeghatározás területén? http://www.sgo.fomi.hu/files/magassagi_problemak.pdf Takács Bence BME Általános- és
GEODÉZIA ÉS KARTOGRÁFIA
GEODÉZIA ÉS KARTOGRÁFIA 55. ÉVFOLYAM 2003 10. SZÁM Az EOV-alapfelületek térbeli helyzetének vizsgálata Kratochvilla Krisztina doktorandusz BME Általános- és Felsõgeodézia Tanszék Bevezetés Az 1975-ben
A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI
A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI Detrekői Ákos Keszthely, 2003. 12. 11. TARTALOM 1 Bevezetés 2 Milyen geometriai adatok szükségesek? 3 Néhány szó a referencia rendszerekről 4 Geometriai adatok forrásai
A vonatkoztatási rendszerek és transzformálásuk néhány kérdése. Dr. Busics György Óbudai Egyetem Alba Regia Műszaki Kar Székesfehérvár
A vonatkoztatási rendszerek és transzformálásuk néhány kérdése Dr. Busics György Óbudai Egyetem Alba Regia Műszaki Kar Székesfehérvár Tartalom Vonatkoztatási rendszer a térinformatikában Földi vonatkoztatási
A méretaránytényező kérdése a földmérésben és néhány szakmai következménye
A méretaránytényező kérdése a földmérésben és néhány szakmai következménye Dr. Busics György c. egyetemi tanár Óbudai Egyetem Alba Regia Műszaki Kar Székesfehérvár MFTTT Vándorgyűlés, Békéscsaba, 2019.
Matematikai geodéziai számítások 8.
Matematikai geodéziai számítások 8 Szintezési hálózat kiegyenlítése Dr Bácsatyai, László Matematikai geodéziai számítások 8: Szintezési hálózat kiegyenlítése Dr Bácsatyai, László Lektor: Dr Benedek, Judit
Számítási feladatok a Számítógépi geometria órához
Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát
12 48 b Oldjuk meg az Egyenlet munkalapon a következő egyenletrendszert az inverz mátrixos módszer segítségével! Lépések:
A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Egyenletrendszerek megoldása Excelben. Solver használata. Mátrixműveletek és függvények
Matematikai geodéziai számítások 8.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 8 MGS8 modul Szintezési hálózat kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői
Matematikai geodéziai számítások 5.
Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP
A WGS84 és HD72 alapfelületek közötti transzformáció Molodensky-Badekas-féle (3-paraméteres) meghatározása a gyakorlat számára
A WGS84 és HD7 alapfelületek közötti traszformáció Molodesky-Badekas-féle (3-paraméteres) meghatározása a gyakorlat számára Timár Gábor Molár Gábor Pásztor Szilárd ELTE Geofizikai Taszék, Ûrkutató Csoport.
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc
Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc A művelést segítő szenzorok és monitorok I. 139.lecke Globális helymeghatározás
A Kozmikus Geodéziai Obszervatórium
Földmérési és Távérzékelési Intézet Kozmikus Geodéziai Obszervatórium Nagy Sándor A Kozmikus Geodéziai Obszervatórium mint komplex geodinamikai állomás leírása Penc AD 2000. Dokumentum kísérõ ûrlap A dokumentum
Nyílt forrású, webes WGS84-EOV transzformáció
Nyílt forrású, webes WGS84-EOV transzformáció Faludi Zoltán UniGIS 2007 Faludi Zoltán UniGIS 2007 http://wgseov.sf.net 1/17 Nyílt forrású rendszerek a térinformatikában Szerver oldali szoftverek Kliens
Magyarországi geodéziai vonatkozási rendszerek és vetületi síkkoordináta-rendszerek vizsgálata
Magyarországi geodéziai vonatkozási rendszerek és vetületi síkkoordináta-rendszerek vizsgálata Az elmúlt 150 év során Magyarországon a történelmi helyzet sajátos alakulása következtében több alkalommal
A GNSS infrastruktúrára támaszkodó műholdas helymeghatározás. Borza Tibor (FÖMI KGO) Busics György (NyME GEO)
A GNSS infrastruktúrára támaszkodó műholdas helymeghatározás Borza Tibor (FÖMI KGO) Busics György (NyME GEO) Tartalom Mi a GNSS, a GNSS infrastruktúra? Melyek az infrastruktúra szintjei? Mi a hazai helyzet?
Bevezetés. A Lipszky-térkép alapfelülete
Lipszky János térképének (Magyarország és társországai, 1804 1810) georeferálása térinformatikai alkalmazásokban Dr. Timár Gábor 1 dr. Székely Balázs 1 dr. Molnár Gábor 1 Biszak Sándor 2 1 ELTE Földrajz-
A második katonai felmérés térképeinek közelítõ vetületi és alapfelületi leírása a térinformatikai alkalmazások számára
A második katonai felmérés térképeinek közelítõ vetületi és alapfelületi leírása a térinformatikai alkalmazások számára Timár Gábor Molnár Gábor ELTE Geofizikai Tanszék Ûrkutató Csoport 1. Bevezetés A
Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága
Földrajzi koordináták Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Topo-Karto-2 1 Földrajzi koordináták pólus egyenlítő
Az EOV-koordináták nagypontosságú közelítése Hotine-féle ferdetengelyû Mercator-vetülettel
Az EOV-koordináták nagypontosságú közelítése Hotine-féle ferdetengelyû Mercator-vetülettel Molnár Gábor Timár Gábor ELTE Geofizikai Tanszék, Ûrkutató Csoport 1 Hotine (1947) vetületi leírása a Gauss-gömböt
Matematikai geodéziai számítások 5.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 5 MGS5 modul Hibaterjedési feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
Térinformatikai DGPS NTRIP vétel és feldolgozás
Térinformatikai DGPS NTRIP vétel és feldolgozás Méréseinkhez a Thales Mobile Mapper CE térinformatikai GPS vevıt használtunk. A mérést a Szegedi Tudományegyetem Egyetem utcai épületének tetején található
Normák, kondíciószám
Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
5. előadás: Földi vonatkoztatási rendszerek
5. előadás: Földi vonatkoztatási rendszerek 5. előadás: Földi vonatkoztatási rendszerek A Nemzetközi Földi Vonatkoztatási Rendszer A csillagászati geodézia története során egészen a XX. század kezdetéig
Matematikai geodéziai számítások 3.
Matematikai geodéziai számítások 3 Kettős vetítés és EOV szelvényszám keresése koordinátákból Dr Bácsatyai, László Matematikai geodéziai számítások 3: Kettős vetítés és EOV szelvényszám keresése koordinátákból
Matematikai geodéziai számítások 3.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 3 MGS3 modul Kettős vetítés és EOV szelvényszám keresése koordinátákból SZÉKESFEHÉRVÁR 2010 Jelen
Térinformatika. A vonatkozási és koordináta rendszerek szerepe. Vonatkozási és koordináta rendszerek. Folytonos vonatkozási rendszer
Térinformatika Vonatkozási és koordináta rendszerek Dr. Szabó György BME Fotogrammetria és Térinformatika Tanszék A vonatkozási és koordináta rendszerek szerepe Heterogén jelenségek közös referencia kerete
Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás robotra
Budapesti M szaki És Gazdaságtudományi Egyetem Gépészmérnöki Kar M szaki Mechanikai Tanszék Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
A második katonai felmérés horvátországi szelvényeinek georeferálása Bevezetés
A második katonai felmérés horvátországi szelvényeinek georeferálása Timár Gábor 1, Molnár Gábor 1, Székely Balázs 1, Biszak Sándor 2, Kovács Béla 3, Markovinović Danko 4, Kuhar Miran 5 1 ELTE Földrajz-
A GNSS technika hazai alkalmazása és szabályozása*
A GNSS technika hazai alkalmazása és szabályozása* Dr. Borza Tibor osztályvezető Földmérési és Távérzékelési Intézet, Kozmikus Geodéziai Obszervatórium A centiméter pontosságú, valós idejű, műholdas helymeghatározás
Lin.Alg.Zh.1 feladatok
LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális
Matematika tanmenet 10. évfolyam 2018/2019
Matematika tanmenet 10. évfolyam 2018/2019 Műveltségi terület: MATEMATIKA Iskola, osztályok: Vetési Albert Gimnázium, 10.A, 10.B, 10.C, 10.D Tantárgy: MATEMATIKA Heti óraszám: 3 óra Készítette: a matematika
Matematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
A Föld alakjának ismerettörténete az archív térképek georeferálásának geofizikai alapja
A Föld alakjának ismerettörténete az archív térképek georeferálásának geofizikai alapja MTA doktori értekezés tézisei Timár Gábor Budapest 018 A feladat megfogalmazása A doktori dolgozatban szélesebb történeti
A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK
A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK - két féle adatra van szükségünk: térbeli és leíró adatra - a térbeli adat előállítása a bonyolultabb. - a költségek nagyjából 80%-a - munkaigényes,
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
Folyószabályozási térképek geodéziai alapja
Eötvös Loránd Tudományegyetem Informatikai Kar Térképtudományi és Geoinformatikai Tanszék Mészáros János Folyószabályozási térképek geodéziai alapja Doktori értekezés tézisei Eötvös Loránd Tudományegyetem
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
2014/2015. tavaszi félév
Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés
Minősítő vélemény a VITEL nevű transzformációs programról
Minősítő vélemény a VITEL nevű transzformációs programról A VALÓS IDEJŰ HELYMEGHATÁROZÁSNÁL HASZNÁLATOS TEREPI TRANSZFORMÁCIÓS ELJÁRÁS elnevezésű, VITEL fantázianevű transzformációs modell a FÖMI KGO-ban
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Földmérés ismeretek középszint 1711 ÉRETTSÉGI VIZSGA 2017. május 17. FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók teljesítményének
Vetületi átszámítások Ausztria és Magyarország között
Vetületi átszámítások Ausztria és Magyarország között Dr. Völgyesi Lajos egyetemi docens BME Általános- és Felsőgeodézia Tanszék, MTA-BME Fizikai Geodéziai és Geodinamikai Kutatócsoport Ausztria és Magyarország
Műholdas helymeghatározás 4.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Busics György Műholdas helymeghatározás 4. MHM4 modul GNSS transzformációs eljárások SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló
Haladó lineáris algebra
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc
SZAKMAI ÖNÉLETRAJZ. 1993 angol társalgási szinten Megszerzés: nyelvtanfolyam, posztgraduális képzés, Delft University of Technology, The Netherlands
Személyi adatok: SZAKMAI ÖNÉLETRAJZ Név: PAPP ERIK Születési dátum: 1956. április 2. Helye: Békéscsaba Munkahely: Szent István Egyetem Ybl Miklós Építéstudományi Kar Építőmérnöki Intézet 1146 Budapest,
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor
Szélsőérték feladatok megoldása
Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =
Lin.Alg.Zh.1 feladatok
Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?
Hajder Levente 2017/2018. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer
Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.
1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
A PPP. a vonatkoztatási rendszer, az elmélet és gyakorlat összefüggése egy Fehérvár környéki kísérleti GNSS-mérés tapasztalatai alapján
GISopen konferencia, Székesfehérvár, 2017. 04. 11-13. A PPP a vonatkoztatási rendszer, az elmélet és gyakorlat összefüggése egy Fehérvár környéki kísérleti GNSS-mérés tapasztalatai alapján Busics György
8. előadás. Kúpszeletek
8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
Ausztria és Magyarország közötti vetületi transzformációk
Vetületi átszámítások Ausztria és Magyarország között Dr. Völgyesi Lajos egyetemi docens BME Általános- és Felsőgeodézia Tanszék, MTA-BME Fizikai Geodéziai és Geodinamikai Kutató csoport Ausztria és Magyarország
Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció
Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek
1. Felületi érdesség használata Felületi érdesség A műszaki rajzokon a geometria méretek tűrése mellett a felületeket is jellemzik. A felületek jellemzésére leginkább a felületi érdességet használják.
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
Numerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
Tisztázatlan kérdések az RTK technológiával végzett magasságmeghatározás területén
Tisztázatlan kérdések az RTK technológiával végzett magasságmeghatározás területén Horváth Tamás FÖMI Kozmikus Geodéziai Obszervatórium horvath@gnssnet.hu www.gnssnet.hu Tel: 06-27-374-980 Tea előadás
A MAGYARORSZÁGI GPS HÁLÓZATOK FEJLESZTÉSÉNEK TAPASZTALATAI
Koós Tamás Zrínyi Miklós Nemzetvédelmi Egyetem koos.tamas@zmne.hu A MAGYARORSZÁGI GPS HÁLÓZATOK FEJLESZTÉSÉNEK TAPASZTALATAI Absztrakt A GPS rendszer kiépítése és a technika széleskörű elterjedése új,
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
Keresztmetszet másodrendű nyomatékainak meghatározása
BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra
A felsõfokú földmérõ képzésrõl másképpen. Gyenes Róbert, NYME Geoinformatikai Fõiskolai Kar, Geodézia Tanszék
15. Molodensky, M.S.: Eremeev, V.F., Yurkina, M.I., 1960. Metody izuchenyia vnesnego gravitatsionnogo polya i figuri Zemli. Tr. CNIIGAiK 131 Moszkva. 16. National Imagery and Mapping Agency, 2001. GeoTrans
Robotok inverz geometriája
Robotok inverz geometriája. A gyakorlat célja Inverz geometriai feladatot megvalósító függvények implementálása. A megvalósított függvénycsomag tesztelése egy kétszabadságfokú kar előírt végberendezés
GPS mérési jegyz könyv
GPS mérési jegyz könyv Mérést végezte: Csutak Balázs, Laczkó Hunor Mérés helye: ITK 320. terem és az egyetem környéke Mérés ideje: 2016.03.16 A mérés célja: Ismerkedés a globális helymeghatározó rendszerrel,
11. gyakorlat megoldásai
11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozza meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 3y + x 2 y + 2xy, (c) f(x,
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
Magyarországi topográfiai térképek
Eötvös Loránd Tudományegyetem, Természettudományi Kar Juhász Péter MTA SZTAKI Magyarországi topográfiai térképek vetületének torzulási vizsgálata doktori értekezés tézisei Budapest, 2008. Témavezető: Györffy
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
Számítógépes geometria (mester kurzus)
2010 sz, Debreceni Egyetem Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie) Csontváz-modellek Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs)
Digitális képek feldolgozása Előfeldolgozás Radiometriai korrekció Geometriai korrekció Képjavítás Szűrők Sávok közötti műveletek Képosztályozás Utófe
Távérzékelés Digitális felvételek előfeldolgozása (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
Tudományos életrajz Koós Tamás (2008. február)
Koós Tamás egyetemi tanársegéd Zrínyi Miklós Nemzetvédelmi Egyetem Kossuth Lajos Hadtudományi Kar Összhaderőnemi Műveleti Intézet Geoinformációs Tanszék mb. tanszékvezető helyettes Tudományos életrajz
Kozmikus geodézia MSc
Kozmikus geodézia MSc 1-4 előadás: Tóth Gy. 5-13 előadás: Ádám J. 2 ZH: 6/7. és 12/13. héten (max. 30 pont) alapismeretek, csillagkatalógusok, koordináta- és időrendszerek, függővonal iránymeghatározása
A jogszabályi változások és a hazai infrastruktúrában történt fejlesztések hatása a GNSS mérésekre
A jogszabályi változások és a hazai infrastruktúrában történt fejlesztések hatása a GNSS mérésekre Braunmüller Péter Galambos István MFTTT 29. Vándorgyűlés, Sopron 2013. Július 11. Földmérési és Távérzékelési
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
II. A TÉRKÉPVETÜLETEK RENDSZERES LEÍRÁSA 83
T A R T A L O M J E G Y Z É K I. A TÉRKÉPVETÜLETEKRŐL ÁLTALÁBAN 13 VETÜLETTANI ALAPFOGALMAK 15 A térkép mint matematikai leképezés eredménye 15 Az alapfelület paraméterezése földrajzi koordinátákkal 18