23. Hooke-törvény, szerkezeti anyagok jelleggörbéi

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "23. Hooke-törvény, szerkezeti anyagok jelleggörbéi"

Átírás

1 23. Hooke-törvény, szerkezeti anyagok jelleggörbéi F/A =F/A F a pillanatnyilag érvényes húzóerő A a próbatest keresztmetszet-területe Az deformációt úgy állapítjuk meg, hogy a próbatesten kijelölt (tengellyel párhuzamost) szakasz, s annak l= hosszváltozás hányadosát képezzük: = E E a vizsgált anyagra jellemzőállandó neve: rugalmassági tényező dimenziója: erő/terület A nyírás következtében előálló deformáció és a nyírófeszültség között fennálló kapcsolat: G G a vizsgált anyagra jellemző állandó neve: nyíró rugalmassági tényező (csúsztató rugalmassági tényező) dimenziója: erő/terület Ez a két Hooke-tól származó törvény korlátozott érvényű. Húzott rúd deformációja és a rúdkeresztmetszetekre ható feszültség közti kapcsolat, azaz a ( ) függvényt grafikonja a következő: A arányossági határ: eddig érvényes a Hooke-törvény R rugalmasság határ (gyakorlatilag egybeesik A -val): az a feszültség, melyet meg nem haladó feszültségek esetén a rúd még visszanyeri eredeti méretét ( rugalmasan viselkedik) F e pontot elérve a feszültség növelése nélkül is, hirtelen nagy méretváltozást tapasztalunk; F - folyáshatár - a diagram legfelső pontja B az anyag szilárdsága F/A névleges feszültségértékek mindenkori felmérésével nyerjük, ahol A a rúd eredeti keresztmetszet területe. A deformálódás során csökken a keresztmetszet területe. Ha az erő és a pillanatnyilag érvényes keresztmetszet terület hányadosát képezzük, akkor a szaggatottan rajzolt tényleges grafikont kapnánk. Folyt acélhoz hasonló anyagokat, amelyeknél elegendően nagy feszültségeknél maradandó deformációk és folyási határ észlelhető, szívós anyagoknak nevezik. Azokat az anyagokat, amelyek csak rugalmas deformálódásra képesek, folyási határt nem mutatnak, rideg anyagoknak nevezik. (öntött vas, beton)( Jelleggörbékről nem találtam képet, ezért paintbe lerajzoltam kb. azt, amit a füzetbe írtam előadáson )

2 25. Természetes faanyag szilárdsági jellemzése - nem izotróp a mechanikai tulajdonságai irányfüggőek pl.: a nyomószilárság a rostok irányában más, mint a rostokra merőlegesen - inhomogén a faanyag különböző helyein más-más mechanikai jellemzőket mérhetünk (eltérnek a szijácsban és a gesztben mért értékek, de még a tavaszi és őszi pásztában is) - Szilárdságtana nem alapozható két anyagállandóra (E,G). 3 anatómiaia főirány, azaz 3 mechanikai főirány különül el (a koordinátarendszer 3 iránya): L: longitudinális/hosszirányú (rostirányú) R: radiális/sugárirányú az adott ponthoz tartozó vastagsági növekedés iránya T: tangenciális/érintő irányú merőleges az előbbi két tengelyre és érinti az illető ponthoz tartozó évgyűrűt Az olyan anyagot, melynek fizikai tulajdonságai (egy-egy pontban) három egymással merőleges irányban különböznek, ortrotróp anyagnak nevezik. A természetes fa is ilyen; rugalmas viselkedésének leírásához az E,G anyagállandókat is mindhárom irányban illetve koordináta síkban kell ismerni. Befolyásoló tényezők: - a faanyag nedvességtartalma - a terhelőerő iránya (a főirányhoz képest) - a terhelés időtartama - a faanyag fajsúlya Egyéb tényezők: - a fa biológiai állapota - a hőmérséklet - a fában lévő göcsök mérete eloszlása A faanyagot jellemző sajátságok (anyagállandókkal kapcsolatban) - az E L, E R, E T adatok közül az első jelentős; meghatározása húzó-, ill. nyomó kísérlettel történik - G LR, G LT, G RT a megfelelő síkban mért nyírórugalmasság tényezők - LR, LT, RT a Poisson-hányadosok; az első index az alkalmazott feszültség irányát, a második az oldalirányú deformációt adja (Poisson tényező fajlagos mennyiség az egységnyi hosszváltozásra jutó keresztirányú hosszváltozást adja meg

3 26. Szilárdsági méretezés megengedett feszültség alapján A műszaki követelmények röviden így foglalhatók össze: a létesítendő szerkezet meghatározott ideig megbízhatóan kell, hogy megfeleljen rendeltetésének. Szilárdságtani követelmények lényege: a szerkezetre a rendeltetésszerű használat közben nem szabad olyan erőknek hatni, melyek a szerkezet funkcióját gátló változásokat, deformációkat hoznának létre. Veszélyes változás a törés, repedés, a maradandó alakváltozás. A szilárdsági méretezés feladata a szilárdságtani követelmények kielégítése. a. Megállapítjuk a szerkezeten veszélyes változásokat okozó terheléseket, majd a várható terhelést az előbbi szerkezet jellemző terheléssel összehasonlítjuk (pl. egyenes rúdon a törést okozó húzóerő). Ez a módszer a testben fellépő feszültségi állapotok összességéből ítéli meg a terhelést. b. A szerkezetet biztosan megóvjuk a tönkremeneteltől, ha biztosítjuk, hogy egyetlen pontjában sem indulnak meg veszélyes változások. Tehát a szerkezet egészének vizsgálata helyett a szerkezet különböző pontjainak elemi környezetét vizsgáljuk. (Csak a veszélyes pontban uralkodó feszültségi állapot alapján mond ítéletet.) Ma még a lokális jellemzők használata a szokásos, noha a szerkezet jellemzőkre alapozott méretezés megbízhatóbb. A lokális jellemzők alkalmazása gyakran túlzott szükségtelen óvatosságra vezet. Méretezés megengedett feszültség alapján A méretezés előfeltétele a szerkezetet érő várható terhelések ismerete. Ez nem lehetséges; bizonytalanság állhat fenn: - a terhelés nagyságában - az időbeni lefolyásában o állandó statikus o időben változó dinamikus ismétlődő lökésszerű - a terhelő erők helyzetében - gyártási hibákkal, méretezésekkel is számolni kell - anyaghibák, minősig eltérések tekintetbe vétele A méretezés lokális szemlélet alapján úgy történhet, hogy a szerkezeteinkben csak olyan feszültségállapot kialakulását engedjük meg a veszélyes pontban, melynek az igénybevétel szempontjából szóba jövő feszültségadata az anyag szilárdságának tört része. felveszünk egy n számot, a biztonsági tényezőt és megfelelő méretkialakítással, ill. anyagmegválasztással gondoskodunk arról, hogy a B helyett maximálisan a m = B / n megengedett feszültség lépjen fel az anyagban. (Hasonlóan beszélhetünk m -ről is) A m = F /n is szokásos.

4 27. Mechanikai terhek csoportosítása és jellemzésük - statikus - dinamikus ismétlődő/periodikus: lüktető, lengő lökésszerű A tönkremenetelt okozó statikus terhelésnél jóval kisebb terhelés is veszélyes lehet, ha sűrűn ismétlődik. Az ismétlődő feszültség egy ia alsó és egy if felső feszültséghatár között ingadozik. Középfeszültségen a ik =( ia + if )/2, ill. ik =( ia + if )/2 feszültségeket értjük. Az időben változó periodikus terhelés lehet - lüktető a feszültség a zérus és egy fix érték között, vagy azonos előjelű két rögzített érték között változik - lengő ha a terhelés, ill. a feszültség két különböző előjelű érték között váltakozik Az anyag viselkedését periodikusan ismétlődő terhelés esetén fárasztó vizsgálatokkal lehet tisztázni: Ezek lényege: több egyenlő méretű próbatestet azonos ik közepes feszültséggel terhelnek, de más-más if maximális feszültségig és megállapítják az egyes if feszültségekhez tartozó ismétlések N számát, amely a tönkremenetelhez szükséges. A if if (N) függvények grafikonjai a Wöhler-görbék. Bizonyos a terhelésmódtól is függő - if alatt akárhány ismétlődés sem okoz törést. Azt a legnagyobb feszültséget, melyet még végtelen sokszor el tud viselni az anyag, K kifáradási határnak nevezik. A terhelés időtartamának statikus igénybevétel esetén is szerepe van. Előfordul, hogy valamely statikus terhelést egy szerkezet t1 ideig elvisel, de t2>t1 ideig már nem. Az a legnagyobb T feszültség, melyhez hosszú terhelési idő tartozik az anyag tartós szilárdsága.

5 28. Központos húzás és nyomás Valamely szelvény igénybevétele húzás, ill. nyomás, ha az erőrendszer eredője a tengellyel azonos hatásvonalú erő. Deformáció Ha egy egyenes tengelyű, tetszőleges keresztmetszetű rúdra a tengelyével párhuzamos vonalakat karcolunk és ugyancsak kijelöljük néhány keresztmetszet határoló vonalát, akkor a rúd felületén egy derékszögű vonalhálózatot nyerünk. Ha most a rugalmas anyagú rudat a tengellyel egybeeső hatásvonalú N, N erőkkel terheljük az ábra szerint, s az erők támadáspontja eléggé messze van a vonalhálózattól, a következőket tapasztaljuk: a vonalhálózat továbbra is a tengellyel párhuzamos egyenesekből és ezeket merőlegesen metsző síkgörbékből áll. Csupán az egymással párhuzamos vonalak távolsága változik meg. Húzásnál és nyomásnál fajlagos hosszváltozás figyelhető meg ( = l/l 0 ). Húzás: az erőrendszer eredője egyetlen erő, amelynek hatásvonala a rúd tengelye, iránya balra mutat. Nyomás: az erőrendszer eredője egyetlen erő, amelynek hatásvonala a rúd tengelye, az eredő nyílban jobbra mutat. A húzó és nyomó igénybevételt közös néven normál igénybevételnek, a rúdirányú erőt normálerőnek is nevezik. Ha a rúd alakú test tengelyirányú nézete a keresztmetszeti méretek többszöröse, akkor lényeges különbség van köztük. nyomó igénybevételnél a megállapítások csak zömök rudak esetén érvényesek (általában akkor tekintünk egy rudat zömöknek, ha a kisebb keresztmetszeti méretének ötszörösénél nem nagyobb a hossza)

6 29, Méretezés húzásra, nyomásra Hő terhelés, klimatikus terhelés Ellenőrzés Azt kell kimutatni, hogy a max feszültség nem haladja-e meg a m megengedett feszültséget. A rúd megfelel, ha max =N/A m. N a veszélyes szelvényben fellépő normálerő A a veszélyes szelvény keresztmetszet területe Tervezés A terhelés, valamint a megengedett feszültség ismeretében a minimális szükséges keresztmetszet terület a következő: A sz =N/ m ( =N/Aból) Gazdaságos kialakítás esetén a tényleges keresztmetszet ennél sokkal nagyobb nem lehet. Egy l hosszúságú rúd hőmérsékletének t értékű megváltozásakor fellépő l hosszváltozás a következőképpen számítható: l=α*l* t α a rúd anyagára jellemző állandó, az 1/ C mértékegységű hőtágulási együttható Ha a változó hőmérsékletű rúd hosszváltozását meggátoljuk, a rúdban feszültségek ébrednek. A fajlagos hosszváltozás a hőmérsékletváltozás következében: = l/l=α* t Ezt megakadályozni a rúdvégeken fellépő =E* nagyságú feszültség képes E a rúd anyagának rugalmassági tényezője A feszültség tehát: =α* t*e A rúdvégeken ható erő F=A* =A*α* t*e A a rúd keresztmetszet területe

7 30. Természetes fa húzó igénybevétele Egyenszilárdságú nyomott rudak, réteges felépítésű rudak A természetes faanyag rostirányú szakítószilárdsága sz általában nagyobb, mint a nyomószilárdsága n. Nyomószilárdság kapcsolata a különböző befolyásoló tényezőkkel - Ha u 1, u 2 nedvességtartalomhoz a u1, u2 nyomószilárdságok tartoznak, akkor u1 = u 2 *{1+α*(u 1 -u 2 )} α fafajtól függő állandó - n n kapcsolat a nyomó erő iránya és a rostirány által bezárt szög között. Ha és a rosttal párhuzamos, ill. a rostra merőleges nyomószilárdság, akkor n n kapcsolat a testsűrűséggel: a nyomószilárság egyenesen arányos a testsűrűséggel.

8 31. Tiszta nyírás Az erőrendszer eredője egyetlen erő, melynek hatásvonala áthalad a szelvény súlypontján nyírás. Ha az igénybevétel eléggé nagy, a rúdnak a szelvény által elválasztott két része egymáshoz képest eltolódhat, amint azt az ollóval való nyírás során tapasztaljuk Tiszta nyíró igénybevétel sohasem fordul elő. Megvalósítható olyan terhelés, melynek hatására egy test bizonyos metszetein csak nyírófeszültségek lépnek fel. Az ábrán pontozással jelölt kocka oldallapjai, ill. a velük párhuzamos síkmetszetek ilyenek. A csupán feszültségek hatása alatt álló kis kocka deformálódása a lapszögek megváltozásából áll, az élhosszak nem változnak meg. A deformáció mértékének tekinthető szög a feszültségek nagyságától, s az anyag rugalmas tulajdonságaitól függ: = /G A műszaki gyakorlatban sokszor előfordul, hogy egy nem feltétlen rúd alakú test valamely metszetén, ill. egy a test belsejében kijelölhető felületdarabján közelítőleg nyírásnak vehető a pontok feszültségállapota. Ezt a metszetet, ill. felületdarabot a továbbiakban nyírt idomnak nevezzük, s az ábrákon recézett vonallal szemléltetjük. Általában akkor vehetjük úgy, hogy a test, ill. szerkezeti elem igénybevétele nyírás, ha a testet terhelő erőrendszer a testnek a nyírt idom által elválasztott két (vagy több) részét egymással ellentétes irányokba igyekszik elcsúsztatni. Ezen azt értjük, hogy ha a terhelés elég nagy, fennáll annak veszélye, hogy a nyírt idom mentén a test részei egymáshoz képest eltolódnak. A nyírt idomon a feszültségek megoszlását az elemi szilárdságtanban többnyire egyenletesnek tekintjük, pontosabban feltételezzük, hogy a nyírt idom pontjaiban egyenlő nagy feszültségek ébrednek, állásuk azonos a nyíróerő irányával (illetőleg az elegendő nagy terhelés esetén bekövetkező elmozdulás irányával). Ha a nyírt idom által két részre osztott test egyik darabjára ható erőnek a nyírt idommal párhuzamos összetevője T, s a nyírt idom da területű darabján a feszültség, akkor egyensúlyt feltételezve,ahol a nyírt idom felszíne. Egyenletes feszültségmegoszlást feltételezve tehát: =T/A

9 32. Méretezés nyírásra (szegecs, csavar) A méreteket úgy kell meghatározni, hogy a nyírt idomban ébredő feszültségek nagysága ne haladja meg a nyírásra megengedett m feszültséget Ellenőrzés: a nyírt idomon ébredő feszültséget hasonlítjuk össze a nyírással megengedett feszültséggel. max=t/a m nek teljesülnie kell Tervezés: a nyír idom szükséges felszínét vagy valamely méretét keressük a nyíróerő és a megengedett feszültség ismeretében. Asz=T/ m a szükséges legkisebb felszín Szegecs és csavarkapcsolatok A különböző irányú erőkkel terhelt lemezdarabok egymáshoz képest bekövetkező elmozdulását egy szegecs akadályozza meg. A szegecs tönkremenetelének egyik oka az elnyíródás lehet. Attól függően, hogy hány szelvénye van a szegecs szárának igénybe véve, beszélhetünk egyszer, kétszer, n-szer nyírt szegecsről. n-szer nyírt szegecs által felvehető erő: m a szegecs anyagának nyírásra megengedett feszültsége Ha a szegecskötést terhelő erő F, a szükséges szegecsek száma: Ez a szegecskötés nyírásra történő méretezésének alapja. A szegecseket azonban nemcsak nyírásra kell méretezni, mert számolni kell egy másik jellemző igénybevétellel, a palástnyomással is. Ez a szegecs szára és a szegecs által összekapcsolt lemezek furata között fellépő erőhatás.

10 33. Síkidomok másodrendű nyomatékai Valamely síkidomnak egy koodrináltarendszer x tengelyére vonatkozó elsőrendű vagy statikai nyomatékához így jutunk: - a síkidomot felosztjuk A 1, A 2,... A n területű részekre, - a részekben felvesszük az y 1, y 2,...y n ordinátájú pontokat, - képezzük a Aiyi összeget, miközben n és a felosztás minden határon túl finomodik (mindegyik rész területe és átmérője zérushoz tart) - Az ilyen módon nyert mennyiséget jelöli Hasonló módon képezhetjük a Aiyi2 (a 2-es hatványkitevő, az i-k alsó indexek) mennyiséget is. Ez a mennyiség a síkidomnak az x tengelyre vonatkozó másodrendű nyomatéka: (cm 4 ) Egy síkidomnak a síkjában felvett 0 pontra vonatkozó poláris másodrendű nyomatéka: (cm 4 ) Valamely síkidomnak egy (a síkidom síkjában fekvő) koordináta rendszerre vonatkozó deviációs nyomatéka (centrifugális nyomatéka): (cm 4 ) I 0 =b*h 3 /36 a súlypont az alapttól h/3 távolságra van I=b*h 3 /12 I x =a*b 3 /12 I y =b*a 3 /12

11 34. Másodrendű nyomatékokra vonatkozó alaptételek Ha az A 1, A 2,., A n területű részekből álló síkidom részeinek másodrendű nyomatékai valamely tengelyre I 1, I 2,,I n, akkor az egész síkidom másodrendű nyomatéka ugyanarra a tengelyre: I = I 1 +I I n. Ha egy síkidomnak valamely (síkjában fekvő) x,y derékszögű koordináta rendszer tengelyeire vonatkozó másodrendű nyomatéka Ix, Iy, az 0 kezdőpontra vonatkozó poláris másodrendű nyomatéka Io, akkor I0=Ix + Iy. Steiner-tétel: ha egy A területű síkidom súlypontján áthaladó tetszőleges tengelyre a síkidom másodrendű nyomatéka I, a tengellyel párhuzamos, tőle t távolságra lévő x tengelyre a síkidom másodrendű nyomatéka I x, akkor: I x I At 2. Ha x, y és, derékszögű koordináta-rendszerek megfelelő tengelyei egyirányúak s az utóbbi rendszer kezdőpontja egy A területű síkidom súlypontja, továbbá a súlypont koordinátái (x, y rendszerben) x S, y S, akkor: Ixy = I A x S y S. Egy a síkidomnak valamely x,y koordináta-rendszerre vonatkozó deviációs nyomatéka zérus, ha legalább az egyik koordináta-tengely szimmetria-tengely. Tetszőleges alakú síkidom esetében is mindig található legalább két olyan x,y súlyponti tengely, melyek egymásra merőlegesek és I xy =0. Az ilyen tulajdonságú tengelyek a súlyponti főtengelyek, a reájuk vonatkozó másodrendű nyomatékok a főmásodrendű nyomatékok. Jelölésük: I1 és I2. Megmutatható, hogy ha I1 I2, akkor az egyik ezt jelöljük I1-el a lehetséges súlyponti másodrendű nyomatékok közül a legnagyobb, a másik (I2) a legkisebb. Egy síkidom szimmetria-tengelye egyben súlyponti főtengely is. Olykor előnyös a tengelyre vonatkozó másodrendű nyomatékot a síkidom A területe és egy távolság négyzetének szorzataként felírni: Pl.: I x Ai x 2. Az i x távolság neve: inerciasugár.

12 35. Egyszerű és összetett síkidomok másodrendű nyomatékának számítása

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

KERESZTMETSZETI JELLEMZŐK

KERESZTMETSZETI JELLEMZŐK web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,

Részletesebben

Navier-formula. Frissítve: Egyenes hajlítás

Navier-formula. Frissítve: Egyenes hajlítás Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a

Részletesebben

HELYI TANTERV. Mechanika

HELYI TANTERV. Mechanika HELYI TANTERV Mechanika Bevezető A mechanika tantárgy tanításának célja, hogy fejlessze a tanulók logikai készségét, alapozza meg a szakmai tantárgyak feldolgozását. A tanulók tanulási folyamata fejlessze

Részletesebben

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk

Részletesebben

A szerkezeti anyagok tulajdonságai és azok vizsgálata

A szerkezeti anyagok tulajdonságai és azok vizsgálata A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minıség, élettartam A termék minısége

Részletesebben

Szilárd testek rugalmassága

Szilárd testek rugalmassága Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)

Részletesebben

Acélszerkezetek. 3. előadás 2012.02.24.

Acélszerkezetek. 3. előadás 2012.02.24. Acélszerkezetek 3. előadás 2012.02.24. Kapcsolatok méretezése Kapcsolatok típusai Mechanikus kapcsolatok: Szegecsek Csavarok Csapok Hegesztett kapcsolatok Tompavarrat Sarokvarrat Coalbrookdale, 1781 Eiffel

Részletesebben

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015. Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk

Részletesebben

Példa: Háromszög síkidom másodrendű nyomatékainak számítása

Példa: Háromszög síkidom másodrendű nyomatékainak számítása Példa: Háromszög síkidom másodrendű nyomatékainak számítása Készítette: Dr. Kossa Attila kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék. február 6. Határozzuk meg az alábbi ábrán látható derékszögű háromszög

Részletesebben

Központosan nyomott vasbeton oszlop méretezése:

Központosan nyomott vasbeton oszlop méretezése: Központosan nyomott vasbeton oszlop méretezése: Központosan nyomott oszlopok ellenőrzése: A beton által felvehető nyomóerő: N cd = A ctot f cd Az acélbetétek által felvehető nyomóerő: N sd = A s f yd -

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

GÉPÉSZETI ALAPISMERETEK TÉMAKÖRÖK

GÉPÉSZETI ALAPISMERETEK TÉMAKÖRÖK GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÉRETTSÉGI TÉMAKÖRÖK Preisz Csaba mérnök-tanár Műszaki mechanika Statikai alapfogalmak - Erőrendszer fogalma - Vektorokkal végezhető alapműveleteket (erők felbontása,

Részletesebben

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 20. Az 1. ábrán vázolt síkgörbe rúd méretei és terhelése ismert.

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

Vasbeton tartók méretezése hajlításra

Vasbeton tartók méretezése hajlításra Vasbeton tartók méretezése hajlításra Képlékenység-tani méretezés: A vasbeton keresztmetszet teherbírásának számításánál a III. feszültségi állapotot vesszük alapul, amelyre az jellemző, hogy a hajlításból

Részletesebben

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

A szerkezeti anyagok tulajdonságai és azok vizsgálata

A szerkezeti anyagok tulajdonságai és azok vizsgálata A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minőség, élettartam A termék minősége

Részletesebben

Anyagvizsgálatok. Mechanikai vizsgálatok

Anyagvizsgálatok. Mechanikai vizsgálatok Anyagvizsgálatok Mechanikai vizsgálatok Szakítóvizsgálat EN 10002-1:2002 Célja: az anyagok egytengelyű húzó igénybevétellel szembeni ellenállásának meghatározása egy szabványosan kialakított próbatestet

Részletesebben

Merev testek kinematikája

Merev testek kinematikája Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk

Részletesebben

Tartószerkezetek I. (Vasbeton szilárdságtan)

Tartószerkezetek I. (Vasbeton szilárdságtan) Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.

Részletesebben

Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok Dr. Szalai József Főiskolai adjunktus Tartalom Acélszerkezetek kapcsolatai Csavarozott kapcsolatok kialakítása Csavarozott kapcsolatok

Részletesebben

Hidak Darupályatartók Tornyok, kémények (szélhatás) Tengeri építmények (hullámzás)

Hidak Darupályatartók Tornyok, kémények (szélhatás) Tengeri építmények (hullámzás) Dr. Németh György Szerkezetépítés II. 1 A fáradt törés ismétlődő terhek hatására a statikus törőszilárdság feszültségszintje alatt feszültségcsúcsoknál lokális képlékeny alakváltozásból indul ki általában

Részletesebben

Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén.

Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén. Alkalmazott előjelszabályok Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén. A kényszererők számításánál a következő a szabály: Az erők iránya a pozitív

Részletesebben

Egy háromlábú állvány feladata. 1. ábra forrása:

Egy háromlábú állvány feladata. 1. ábra forrása: 1 Egy háromlábú állvány feladata Az interneten találtuk az alábbi versenyfeladatot 1. ábra Az egyforma hosszúságú CA, CB és CD rudak a C pontban gömbcsuklóval kapcsolódnak, az A, B, D végükön sima vízszintes

Részletesebben

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel; Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;

Részletesebben

Határfeszültségek alapanyag: σ H = 200 N/mm 2, σ ph = 350 N/mm 2 ; szegecs: τ H = 160 N/mm 2, σ ph = 350 N/mm 2. Egy szegecs teherbírása:

Határfeszültségek alapanyag: σ H = 200 N/mm 2, σ ph = 350 N/mm 2 ; szegecs: τ H = 160 N/mm 2, σ ph = 350 N/mm 2. Egy szegecs teherbírása: ervezze meg az L10.10.1-es szögacélpár eltolt illesztését L100.100.1-es hevederekkel és Ø1 mm-es szegecsekkel. nyagminőség: 8, szegecs: SZ. atárfeszültségek alapanyag: 00 /mm, p 50 /mm szegecs: τ 160 /mm,

Részletesebben

Fogorvosi anyagtan fizikai alapjai 6.

Fogorvosi anyagtan fizikai alapjai 6. Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv

Részletesebben

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT 2013 Feladat: Adott az ábrán látható kéttámaszú tartó, amely melegen hengerelt I idomacélokból és melegen hengerelt

Részletesebben

Gyakorlat 04 Keresztmetszetek III.

Gyakorlat 04 Keresztmetszetek III. Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)

Részletesebben

A.2. Acélszerkezetek határállapotai

A.2. Acélszerkezetek határállapotai A.. Acélszerkezetek határállapotai A... A teherbírási határállapotok első osztálya: a szilárdsági határállapotok A szilárdsági határállapotok (melyek között a fáradt és rideg törést e helyütt nem tárgyaljuk)

Részletesebben

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3 BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F

Részletesebben

ÜVEGEZETT FELVONÓ AKNABURKOLATOK MÉRETEZÉSE

ÜVEGEZETT FELVONÓ AKNABURKOLATOK MÉRETEZÉSE ÜVEGEZETT FELVONÓ AKNABURKOLATOK MÉRETEZÉSE EGYSZERŰSÍTETT SZÁMÍTÁS AZ MSZ EN81-0:014 SZABVÁNY ELŐÍRÁSAINAK FIGYELEMBEVÉTELÉVEL. MAKOVSKY ZSOLT. Üvegszerkezetek .Követelmények: MSZ EN81-0:014.1 A felvonóakna

Részletesebben

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA ALAPOGALMAK ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA Egy testre általában nem egy erő hat, hanem több. Legalább két erőnek kell hatni a testre, ha az erő- ellenerő alaptétel alapján járunk el. A testek vizsgálatához

Részletesebben

Tartószerkezetek előadás

Tartószerkezetek előadás Tartószerkezetek 1. 11. előadás Acélszerkezeti kapcsolatok kialakítása és méretezése Csavarozott kapcsolatok Építőmérnöki BSc hallgatók számára Bukovics Ádám egy. adjunktus Szerkezetépítési és Geotechnikai

Részletesebben

Gyakorlat 03 Keresztmetszetek II.

Gyakorlat 03 Keresztmetszetek II. Gyakorlat 03 Keresztmetszetek II. 1. Feladat Keresztmetszetek osztályzása Végezzük el a keresztmetszet osztályzását tiszta nyomás és hajlítás esetére! Monoszimmetrikus, hegesztett I szelvény (GY02 1. példája)

Részletesebben

Felső végükön egymásra támaszkodó szarugerendák egyensúlya

Felső végükön egymásra támaszkodó szarugerendák egyensúlya 1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra

Részletesebben

Tartószerkezetek modellezése

Tartószerkezetek modellezése Tartószerkezetek modellezése 20. Elıadás A kapcsolatok funkciója: - Bekötés: 1 2 - Illesztés: 1 1 A kapcsolás módja: - mechanikus (csavar, szegecs) - hegesztési varrat 1 A kapcsolatok részei: - Elemvég

Részletesebben

Kizárólag oktatási célra használható fel!

Kizárólag oktatási célra használható fel! DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II III. Előadás Vékonyfalú keresztmetszetek nyírófeszültségei - Nyírófolyam - Nyírási középpont - Shear lag hatás - Csavarás Összeállította:

Részletesebben

EC4 számítási alapok,

EC4 számítási alapok, Öszvérszerkezetek 2. előadás EC4 számítási alapok, beton berepedésének hatása, együttdolgozó szélesség, rövid idejű és tartós terhek, km. osztályozás, képlékeny km. ellenállás készítette: 2016.10.07. EC4

Részletesebben

Építészeti tartószerkezetek II.

Építészeti tartószerkezetek II. Építészeti tartószerkezetek II. Vasbeton szerkezetek Dr. Szép János Egyetemi docens 2019. 05. 03. Vasbeton szerkezetek I. rész o Előadás: Vasbeton lemezek o Gyakorlat: Súlyelemzés, modellfelvétel (AxisVM)

Részletesebben

Szádfal szerkezet ellenőrzés Adatbev.

Szádfal szerkezet ellenőrzés Adatbev. Szádfal szerkezet ellenőrzés Adatbev. Projekt Dátum : 8.0.05 Beállítások (bevitel az aktuális feladathoz) Anyagok és szabványok Beton szerkezetek : Acél szerkezetek : Acél keresztmetszet teherbírásának

Részletesebben

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 1. Előadás Bevezetés Dr. Szalai József Főiskolai adjunktus Okt. Hét 1. Téma Bevezetés acélszerkezetek méretezésébe, elhelyezés a tananyagban Acélszerkezetek használati területei

Részletesebben

Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus Tartalom Méretezés az Eurocode szabványrendszer szerint áttekintés Teherbírási határállapotok Húzás Nyomás

Részletesebben

TANTÁRGY ADATLAP és tantárgykövetelmények Cím:

TANTÁRGY ADATLAP és tantárgykövetelmények Cím: TANTÁRGY ADATLAP és tantárgykövetelmények Cím: MECHANIKA II. (Szilárdságtan) Tárgykód: PMKSTNE143 Heti óraszám 1 : 2 ea, 4/2 gy, 0 lab Kreditpont: 7 / 5 Szak(ok)/ típus 2 : Építőmérnök BSc., Gépészmérnök

Részletesebben

KRITIKUS KÉRDÉS: ACÉL ELEMEK

KRITIKUS KÉRDÉS: ACÉL ELEMEK KRITIKUS KÉRDÉS: ACÉL ELEMEK KRITIKUS HŐMÉRSÉKLETE Dr. Horváth László egyetem docens Acélszerkezetek tűzvédelmi tervezése workshop, 2018. 11.09 TARTALOM Acél elemek tönkremeneteli folyamata tűzhatás alatt

Részletesebben

Tevékenység: Tanulmányozza a ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál!

Tevékenység: Tanulmányozza a ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál! Tanulmányozza a.3.6. ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál! Az alakváltozás mértéke hajlításnál Hajlításnál az alakváltozást mérnöki alakváltozási

Részletesebben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 14. Határozzuk meg a nyírásból adódó csúsztatófeszültség

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Építőanyagok I - Laborgyakorlat. Fémek

Építőanyagok I - Laborgyakorlat. Fémek Építőanyagok I - Laborgyakorlat Fémek Az acél és a fémek tulajdonságai Az acél és fémek fizikai jellemzői Fém ρ (kg/m 3 ) olvadáspont C E (kn/mm 2 ) Acél 7850 1450 210000 50 Alumínium 2700 660 70000 200

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Név:... osztály:... ÉRETTSÉGI VIZSGA 2014. május 20. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

Példa keresztmetszet másodrendű nyomatékainak számítására

Példa keresztmetszet másodrendű nyomatékainak számítására Példa keresztmetszet másodrendű nyomatékainak számítására Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. február 22. Tekintsük az alábbi keresztmetszetet. 1. ábra. A vizsgált

Részletesebben

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például

Részletesebben

Debreceni Szakképzési Centrum Baross Gábor Középiskolája és Kollégiuma

Debreceni Szakképzési Centrum Baross Gábor Középiskolája és Kollégiuma Debreceni Szakképzési Centrum Baross Gábor Középiskolája és Kollégiuma 4030 Debrecen, Budai Ézsaiás utca 8/A. HELYI TANTERV a IX. GÉPÉSZET ÁGAZAT kötelezően választható tantárgyaihoz a 11-on (DUÁLIS KÉPZÉSI

Részletesebben

DEME FERENC okl. építőmérnök, mérnöktanár

DEME FERENC okl. építőmérnök, mérnöktanár DEME FERENC okl. építőmérnök, mérnöktanár web-lap : www.sze.hu/~deme e-mail : deme.ferenc1@gmail.com HÁROMCSUKLÓS TARTÓ KÜLSŐ ÉS BELSŐ REAKCIÓ ERŐINEK SZÁMÍTÁSA, A TARTÓ IGÉNYBEVÉTELI ÁBRÁINAK RAJZOLÁSA

Részletesebben

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort!

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1 / 20 2. példa: Rajzoljuk fel az adott feszültségtenzorhoz tartozó kockát! 2 / 20 3. példa: Feszültségvektor számítása. Egy alkatrész egy

Részletesebben

KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA. Anyagmérnök BSc Szak Évfolyamszintű tárgy. Miskolci Egyetem. Gépészmérnöki és Informatikai Kar

KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA. Anyagmérnök BSc Szak Évfolyamszintű tárgy. Miskolci Egyetem. Gépészmérnöki és Informatikai Kar KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA Anyagmérnök BSc Szak Évfolyamszintű tárgy Miskolci Egyetem Gépészmérnöki és Informatikai Kar Műszaki Mechanikai Intézet 1. Tantárgyleírás Tantárgy neve: Mechanika Tantárgy

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

EGY ABLAK - GEOMETRIAI PROBLÉMA

EGY ABLAK - GEOMETRIAI PROBLÉMA EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az

Részletesebben

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése: Szabó László Szilárdságtan A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító száma

Részletesebben

Használható segédeszköz: - szöveges adatok tárolására és megjelenítésére nem alkalmas számológép; - körző; vonalzók.

Használható segédeszköz: - szöveges adatok tárolására és megjelenítésére nem alkalmas számológép; - körző; vonalzók. A 27/2012. (VIII. 27.) NGM rendelet, a 27/2012. (VIII. 27.) NGM rendelet a 12/2013. (III. 28.) NGM rendelet által módosított és a 27/2012. (VIII. 27.) NGM rendelet a 4/2015. (II. 19.) NGM rendelet által

Részletesebben

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ Egykristály és polikristály képlékeny alakváltozása A Frenkel féle modell, hibátlan anyagot feltételezve, nagyon nagy folyáshatárt eredményez. A rácshibák, különösen a diszlokációk jelenléte miatt a tényleges

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

Csavarorsós emelőbak tervezési feladat Gépészmérnök, Járműmérnök, Mechatronikai mérnök, Logisztikai mérnök, Mérnöktanár (osztatlan) BSC szak

Csavarorsós emelőbak tervezési feladat Gépészmérnök, Járműmérnök, Mechatronikai mérnök, Logisztikai mérnök, Mérnöktanár (osztatlan) BSC szak Csavarorsós emelőbak tervezési feladat Gépészmérnök, Járműmérnök, Mechatronikai mérnök, Logisztikai mérnök, Mérnöktanár (osztatlan) BSC szak A feladat részletezése: Név:.. Csoport:... A számításnak (órai)

Részletesebben

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Miskolci Egyetem Műszaki Anyagtudományi Kar Anyagtudományi Intézet Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Dr.Krállics György krallics@eik.bme.hu

Részletesebben

Dr. RADNAY László PhD. Főiskolai Docens Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék

Dr. RADNAY László PhD. Főiskolai Docens Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék ACÉLSZERKEZETEK I. - 6. Előadás Dr. RADNAY László PhD. Főiskolai Docens Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék E-mail: radnaylaszlo@gmail.com Acélszerkezeti kapcsolatok Kapcsolat: az a hely,

Részletesebben

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. BME Szilárdságtani és Tartószerkezeti Tanszék

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. BME Szilárdságtani és Tartószerkezeti Tanszék MAGASÉPÍTÉSI ACÉLSZERKEZETEK 5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. FERNEZELYI SÁNDOR EGYETEMI TANÁR Az acél szakító diagrammja Lineáris szakasz Arányossági határnak

Részletesebben

Fa- és Acélszerkezetek I. 8. Előadás Kapcsolatok II. Hegesztett kapcsolatok. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 8. Előadás Kapcsolatok II. Hegesztett kapcsolatok. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 8. Előadás Kapcsolatok II. Hegesztett kapcsolatok Dr. Szalai József Főiskolai adjunktus I. ZH STATIKA!!! Gyakorlás: Mechanikai példatár I. kötet (6.1 Egyenes tengelyű tartók)

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. EGYSZERŰ GÉPEK Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. Az egyszerű gépekkel munkát nem takaríthatunk meg, de ugyanazt a munkát kisebb

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek emelt szint 1621 ÉRETTSÉGI VIZSGA 2016. október 17. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Statikailag határozatlan tartó vizsgálata

Statikailag határozatlan tartó vizsgálata Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben

Részletesebben

Fafizika 9. elıad NYME, FMK,

Fafizika 9. elıad NYME, FMK, Fafizika 9. elıad adás A faanyag rugalmasságának jellemzése Prof. Dr. Molnár r SándorS NYME, FMK, Faanyagtudományi nyi Intézet A fának,, mint ortotróp (ortogonálisan anizotróp) anyagnak a rugalmassági

Részletesebben

KÖTÉSEK FELADATA, HATÁSMÓDJA. CSAVARKÖTÉS (Vázlat)

KÖTÉSEK FELADATA, HATÁSMÓDJA. CSAVARKÖTÉS (Vázlat) KÖTÉSEK FELADATA, HATÁSMÓDJA. CSAVARKÖTÉS (Vázlat) Kötések FUNKCIÓJA: Erő vagy nyomaték vezetése relatív nyugalomban lévő szerkezeti elemek között. OSZTÁLYOZÁSUK: Fizikai hatáselv szerint: Erővel záró

Részletesebben

Vasbeton födémek tűz alatti viselkedése Egyszerű tervezési eljárás

Vasbeton födémek tűz alatti viselkedése Egyszerű tervezési eljárás tűz alatti eljárás A módszer célja 2 3 Az előadás tartalma Öszvérfödém szerkezetek tűz esetén egyszerű módszere 20 C Födém modell Tönkremeneteli módok Öszvérfödémek egyszerű eljárása magas Kiterjesztés

Részletesebben

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. VI. Előadás. Rácsos tartók hegesztett kapcsolatai.

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. VI. Előadás. Rácsos tartók hegesztett kapcsolatai. DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II VI. Előadás Rácsos tartók hegesztett kapcsolatai. - Tönkremeneteli módok - Méretezési kérdések - Csomóponti kialakítások Összeállította:

Részletesebben

8. ELŐADÁS E 08 TARTÓSZERKEZETEK III. SZÉCHENYI ISTVÁN EGYETEM. Az ábrák forrása:

8. ELŐADÁS E 08 TARTÓSZERKEZETEK III. SZÉCHENYI ISTVÁN EGYETEM. Az ábrák forrása: SZÉCHNYI ISTVÁN GYTM TARTÓSZRKZTK III. lőadó: Dr. Bukovics Ádám Az ábrák forrása: 8. LŐADÁS [1] Dr. Németh György: Tartószerkezetek III., Acélszerkezetek méretezésének alapjai [2] Halász Ottó Platthy Pál:

Részletesebben

X = 0 B x = 0. M B = A y 6 = 0. B x = 0 A y = 1000 B y = 400

X = 0 B x = 0. M B = A y 6 = 0. B x = 0 A y = 1000 B y = 400 1. feladat Számítsuk ki a bejelölt rúderőket! Az erők N-ban, a hosszak m-ben, a nyomatékok Nm-ben értendők Első lépésként határozzuk meg a kényszererőket. Az S 1 rúderő számítása: Egyensúlyi egyenletek:

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 0812 ÉRETTSÉGI VIZSGA 2011. október 17. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2013. szeptember 23. Javítva: 2013.10.09.

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

A töréssel szembeni ellenállás vizsgálata

A töréssel szembeni ellenállás vizsgálata A töréssel szembeni ellenállás vizsgálata 1 Az anyag viselkedése terhelés hatására Az anyagok lehetnek: szívósak, képlékenyek és ridegek. 2 Szívós vagy képlékeny anyag Az anyag törését a csúsztatófeszültségek

Részletesebben

CONSTEEL 8 ÚJDONSÁGOK

CONSTEEL 8 ÚJDONSÁGOK CONSTEEL 8 ÚJDONSÁGOK Verzió 8.0 2013.11.20 www.consteelsoftware.com Tartalomjegyzék 1. Szerkezet modellezés... 2 1.1 Új szelvénykatalógusok... 2 1.2 Diafragma elem... 2 1.3 Merev test... 2 1.4 Rúdelemek

Részletesebben

Pattex CF 850. Műszaki tájékoztató

Pattex CF 850. Műszaki tájékoztató BETON / TÖMÖR KŐ HASZNÁLAT FELHASZNÁLÁSI ÚTMUTATÓ 1. ALKALMAZÁSI TERÜLETEK ALAP ANYAGA: beton, tömör kő Nehéz terhet hordozó elemek rögzítése tömör kőben, betonban, porózus betonban és könnyű betonban.

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2011. október 17. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI

Részletesebben

A beton kúszása és ernyedése

A beton kúszása és ernyedése A beton kúszása és ernyedése A kúszás és ernyedés reológiai fogalmak. A reológia görög eredetű szó, és ebben az értelmezésben az anyagoknak az idő folyamán lejátszódó változásait vizsgáló műszaki tudományág

Részletesebben

Segédlet: Kihajlás. Készítette: Dr. Kossa Attila BME, Műszaki Mechanikai Tanszék május 15.

Segédlet: Kihajlás. Készítette: Dr. Kossa Attila BME, Műszaki Mechanikai Tanszék május 15. Segédlet: Kihajlás Készítette: Dr. Kossa ttila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2012. május 15. Jelen segédlet célja tömören összefoglalni a hosszú nyomott rudak kihajlásra történő ellenőrzését.

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 212. október 16. Frissítve: 215. január

Részletesebben

Ábragyűjtemény levelező hallgatók számára

Ábragyűjtemény levelező hallgatók számára Ábragyűjtemény levelező hallgatók számára Ez a bemutató a tanszéki Fizika jegyzet kiegészítése Mechanika I. félév 1 Stabilitás Az úszás stabilitása indifferens a stabil, b labilis S súlypont Sf a kiszorított

Részletesebben

Járműelemek. Rugók. 1 / 27 Fólia

Járműelemek. Rugók. 1 / 27 Fólia Rugók 1 / 27 Fólia 1. Rugók funkciója A rugók a gépeknek és szerkezeteknek olyan különleges elemei, amelyek nagy (ill. korlátozott) alakváltozás létrehozására alkalmasak. Az alakváltozás, szemben más szerkezeti

Részletesebben

GÉPÉSZET ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

GÉPÉSZET ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Gépészet ismeretek középszint 1712 ÉRETTSÉGI VIZSGA 2017. október 20. GÉPÉSZET ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók teljesítményének

Részletesebben