DIGITÁLIS TECHNIKA I

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "DIGITÁLIS TECHNIKA I"

Átírás

1 DIGITÁLIS TECHNIKA I Logikai feladat-oknak hívjuk azokat a feladatokat, amelyeknek a megoldása során véges számú feltételek közül valamely feltételek teljesüléséhez egyértelmüen hozzá kell rendelni a véges számú következmények közül egy valamilyen előírás szerint egy következményt. Csak két egymástól különböző jelértékeket engedélyezve, N számú bemeneti jelértéket feltételezve 2N számú bemeneti jelérték együttes lehetséges ( ismétléses variáció). Gyakorlatban 2N számú bemenet kombinációról beszélünk! Logikai hálózat: olyan logikai döntést hozó berendezés, amely az egyes feltételek teljesülését jelző bemeneti jelértékek hatására létrehozza feladatnak megfelelő kimeneti jelértékeket oly módon, hogy a feladatban leírt Feltétel-Következmény teljesüljön. Logikai rendszer-nek nevezzük a logikai hálózatoknak egy adott feladat megoldása céljából együttműködő összességét. Közömbös bemeneti kombináció: kimeneti kombinációt hozhat létre. előírt logikai feladat szempontjából tetszőleges Nem teljesen határozott (specifikált) logikai feladatoknak nevezzük a közömbös bemeneti kombinációkat tartalmazó logikai feladatokat. Logikai érték-nek nevezzük, a két lehetséges jelértéket elvonatkoztatva a fizikai paraméterértékektől. (, ; H,L ; igaz,hamis )

2 Boole-algebra: A logikai változó-k logikai értékeket helyettesítenek, és szintén csak két értéket vehetnek fel. Ezeket L-nek vagy -nak, ill. H-nak vagy -nek nevezzük. Logikai alapműveletek: Konjunkció (szorzás) : = = = = y= 2 ; y=2 Diszjunkció (összeadás) : += += += += y= + 2 Negáció (tagadás, invertálás, komplementálás ): y = =, Logikai azonosságok: A = A+=A A = A A A = A+= A+A= A A = A A+A=A = De Morgan azonosságok: A+B = A B A B = A + B kommutatív tulajdonság: asszociatív tulajdonság: A B=B A A+ B = B + A (A B) C = A (B C) = A B C (A + B) + C = A + (B + C) = A + B + C

3 disztributív tulajdonság: A(B+C) = AB + AC A + BC = (A + B)(A + C) abszorpciós tulajdonság: A(A+B) = A A + AB = A Logikai függvény: kimeneti(függő) ill. bemeneti(független) logikai változók függvény kapcsolata pl.: F(ABC) = AB + ABC + C Logikai függvények kanonikus alakjai Logikai függvények diszjunktív kanonikus alakja: A B C F minden egyes szorzat olyan függetlenváltozó-kombinációt tartalmaz, amelyhez tartozó függvényérték= minden egyes szorzatban az összes függetlenváltozó szerepel ponált, vagy negált formában pl.: F(ABC) = ABC + ABC + ABC + ABC + ABC minterm fogalma: olyan logikai szorzat, amelyben az összes függetlenváltozó szerepel ponált, vagy negált formában m37 = ABC pl.: F(ABC) = ABC + ABC + ABC + ABC + ABC F(ABC) = m3 + m32 + m34 + m35 + m37 4 F(ABC) = Σ(,2,4,5,7 )

4 Logikai függvények konjunktív kanonikus alakja: A B C F logikai összegek logikai szorzata; a logikai összegek azokból a függetlenváltozókombinációból képezhetők, amelyhez tartozó függvényérték= minden egyes összegben az összes függetlenváltozó szerepel ponált, vagy negált formában materm fogalma: olyan logikai összeg, amelyben az összes függetlenváltozó szerepel ponált, vagy negált formában M37 = A+B+C pl.: F(ABC) = ABC + ABC + ABC > F(ABC) = m3 + m33 + m36 F(ABC) = F(ABC) = ABC + ABC + ABC = (A+B+C)(A+B+C)(A+B+C) F(ABC) = M37 M34 M3 4 F(ABC) = Π(,4,7)

5 Logikai függvények egyszerűsítése Algebrai egyszerűsítés szomszédos minterm-nek nevezzük azokat a mintermeket, amelyekben csak egy logikai változó szerepel az egyik mintermben ponáltan, a másikban negáltan, a többi logikai változó azonos. A szomszédos mintermek összevonhatók. 4 4 m = ABCD és m 4 = ABCD szomszédos, mert 4 4 m + m 4 = ABCD + ABCD = ACD(B + B) = ACD Feladat: egyszerűsítsük a következő logikai függvényt! F(ABC) = ABC + ABC + ABC + ABC + ABC + ABC átrendezve: F(ABC) = ABC + ABC + ABC + ABC + ABC + ABC F(ABC) = AB(C + C) + AB(C + C) + AC(B + B) F(ABC) = AB + AB + AC F(ABC) = A(B + B) + AC F(ABC) = A + AC disztributív azonosság miatt F(ABC) = (A + A )( A + C ) = A + C

6 Karnaugh-tábla 3 és 4 logikaiváltozós Karnaugh-tábla

7 5 logikaiváltozós Karnaugh-tábla

8 Quin-McCluskey számjegyes minimalizálás Két minterm akkor szomszédos, ha az egyiknek megfelelő bináris szám eggyel és csakis eggyel több -et tartalmazzon mint a másik. A mintermeknek megfelelő bináris számokban szereplő -ek számát a mintermek(termek) bináris súlyá-nak nevezzük. Legyen pl.: m42 és m46 egy 4 változó logikai függvény két minterme 4 4 m 2 : ABCD m 6 : ABCD követelmény: szomszédos mintermek alsó indeeinek különbsége 2 egész számú hatványainak kell lennie m46 ; m42 6-2=22 2 követelmény: 4 m 2 : ABCD 4 m 4 : ABCD nem szomszédos!! m44 ; m42 4-2=2 szomszédos mintermek bináris súlyainak különbségének -nek kell lennie 3 követelmény: 4 m7 m49 : ABCD : ABCD nem szomszédos!! m49 ; m47 9-7=2 szomszédos mintermek a nagyobb bináris súlyúnak a decimális indeének is nagyobbnak kell lennie Quin-McCluskey minimalizálási módszer szerint két minterm akkor szomszédos, ha egyszerre mind a három követelmény teljesül!

9 Közömbös bemeneti kombinációt tartalmazó logikai függvények egyszerüsítése: Feladat: minimalizáljuk az alábbi logikai függvényt. 4 F(ABCD) = Σ[( 2,3,5,3,5 ) + (,,7,4 )] F(ABCD) = ABCD + ABCD + ABCD + ABCD + ABCD Ha a logikai függvény tovább már nem egyszerűsíthető, azaz nem vonhatók össze további mintermek, vagy termek, akkor a logikai függvényben szereplő szorzatokat, termeket, prímimplikáns-oknak nevezzük.

10 Szimmetrikus logikai függvények -nek nevezzük azokat a logikai függvényeket, amelyek a független változók tetszőleges páronkénti felcserélése esetén változatlanok maradnak. Szimmetria szám: Minden szimmetrikus logikai függvényhez megadható legalább egy olyan pozitív egész szám, hogy a logikai függvényértéket hány változó értéke állítja elő. pl.: 3 változós logikai függvényre F(A,B,C) = ABC + ABC + ABC + ABC F(A,B,C) = BAC + BAC + BAC + BAC F(A,B,C) = ABC + ABC + ABC + ABC = S3,3 (A,B,C) pl.: 4 változós logikai függvényre F(A,B,C,D) = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD F(A,B,C,D) = S42,3 (A,B,C,D) Egy n változós szimmetrikus logikai függvény negáltja szintén szimmetrikus. S42,3 (A,B,C,D) = S4,,4 (A,B,C,D)

11 Logikai függvények realizálása: Y=A Y=AB Y=AB = A+B Y=A+B Y=A+B = AB Y=AB+AB Y=AB+AB F(A,B)=A+B logikai függvény előállítása NAND kapuval F(A,B)=AB logikai függvény előállítása NOR kapuval

12 Feladat: az alábbi logikai függvény megvalósítása. 4 F(ABCD) = Σ(,3,4,6,8,9,,2 ) Megoldás: 4 F(A,B,C,D) = Σ(,3,4,6,8,9,,2 ) = m4+ m43+ m44+ m46+ m48+ m49+ m4+ m42 F(A,B,C,D) = ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD F(A,B,C,D) = BD + ABD + ACD

13

14 Kombinációs hálózat: Aszinkron sorrendi (szekvenciális ) hálózat: Szinkron sorrendi (szekvenciális) hálózat: Mealy-modell: fz (X,y) => Z Moore-modell: fz (y) => Z Aszinkron sorrendi hálózat jellemzői: a, stabil állapotok elérése miatt általában a szekunder változók száma nagyobb mint a szinkron sorrendi hálózatok esetében b, sebességét csak az alkatrészek működési sebessége, és a jelkésleltetés korlátozza c, megépíthetők visszacsatolt kombinációs hálózattal Sszinkron sorrendi hálózat jellemzői: a, nincs stabil, ill. instabil állapot értelmezve, emiatt általában a szekunder változók száma kisebb mint az aszinkron s.h. esetén, emiatt logikai tervezésük egyszerübb b, sebességét az órajel frekvenciája határozza meg, ezért lassúbbak c, bemeneti, és kimeneti kombinációk változására szinkronizációs feltételeknek kell teljesülniük d, a logikai megvalósítás során biztosítani kell a szinkronizációs feltételeket

15 Aszinkron sorrendi hálózat állapottáblája: A példában szereplő X4 bemeneti kombináció esetén nincs stabil állapot! Szinkron sorrendi hálózat állapottáblája: Elemi sorrendi hálózatok Az elemi sorrendi hálózatok Moore-model szerint működnek, mert az egy szekunder változójuk egyben a kimeneti változójuk is. Ezért az elemi sorrendi hálózatokat kétállapotú billenő elemeknek, vagy flip-flop-oknak nevezik. Leképezésük: fz(y) => Z = y

16 R-S f-f. S (Set) bemenetre adott logikai érték a kimenetet ( azaz a szekunder változót ) értekre állítja, az R (Reset) bemenetre adott logikai érték a kimenetet értékre állítja. Az RS = bemeneti kombináció nem deffiniált. Az R-S f-f definíciója alapján kitöltött Karnaugh-tábla, és állapotgráf R-S f-f stabil állapotai: R-S f-f logikai függvénye: Elvégezve a lehetséges összevonásokat: Z = y = S + Ry R-S f-f realizálása visszacsatolt kombinációs hálózattal:

17 J-K f-f. Működése megegyezik az R-S f-f működésével azzal a különbséggel, hogy a JK = bemeneti kombináció definiált. A JK bemenetre adott kombináció hatására a f-f megváltoztatja a mindenkori kimeneti állapotát. A J-K f-f definíciója alapján kitöltött Karnaugh-tábla, és állapotgráf A J-K f-f JK = bemeneti kombináció hatására nem tud létrejönni stabil állapot, ezért csak szinkron üzemmódban tud működni. Elvégezve az összevonásokat, és felírva az Y=f(J,K,y) logikai függvényt, J-K f-f logikai függvénye: Y = Jy + JK + Ky J-K f-f realizálása visszacsatolt kombinációs hálózattal:

18 D-G f-f. ( latch ) D (Data) bemenetre adott logikai érték megjelenik a kimeneten, ha a G (Gate-kapu) bemeneten logikai érték van. ( G = alatt Y = D ). G= alatt a D bemenettől függetlenül megtartja az utolsó G= pillanatban fennálló értéket. ( D = alatt Y = y ). A D-G f-f definíciója alapján kitöltött Karnaugh-tábla, és állapotgráf D-G f-f stabil állapotai: Elvégezve a lehetséges összevonásokat: A D-G f-f logikai függvénye: Y = DG + yg + yd Működhet aszinkron, vagy szinkron üzemmódban D-G f-f realizálása visszacsatolt kombinációs hálózattal:

19 T f-f A T f-f-ot a J-K f-f-ból származtatjuk úgy, hogy J,K-t összekötjük és T-vel jelüljük. Vagyis a J-K f-f-ra csak, vagy bemeneti kombinációt engedünk. A J-K f-f definíciója alapján kitöltött Karnaugh-tábla, és állapotgráf T f-f logikai függvénye: Y=Ty+Ty ( kizáró VAGY kapcsolat ) T f-f realizálása visszacsatolt kombinációs hálózattal:

20 D f-f A D f-f egy egy bemenetű szinkron sorrendi hálózat. A kimenet azt az állapotot veszi fel, ami az órajel impulzus fellépésekor a D bemeneten éppen fennáll. Ezt az állapotot megtartja a következő órajel impulzus fellépéséig. A D f-f definíciója alapján kitöltött Karnaugh-tábla, és állapotgráf D f-f logikai függvénye: Y=D D f-f realizálása visszacsatolt kombinációs hálózattal:

21 Élvezérelt és Master-Slave f-f-ok Pl.: élvezérelt D f-f realizálása pl.: R-S Master-Slave f-f realizálása törlő és beíró bemenettel

22 Digitális áramkörcsaládok: ( irodalom: Hainzmann-Varga-Zoltai ELEKTRONIKUS ÁRAMKÖRÖK ) TTL TTL-S TTL-LS TTL-ALS ( Transistor-Transistor Logic ) ( Schottky-TTL ) ( Low power Schottky-TTL ) ( Advenced Low power Schottky-TTL ) HC HCT ( Direct-Coupled Transistor Logic ) ( Resistor-Transistor Logic ) ( Diode-Transistor Logic ) ( Emitter-Coupled Logic ) ( Complementery Metal Oid Semiconductor ) ( High speed CMOS ) ( High speed CMOS TTL compatible input) DCTL RTL DTL ECL CMOS Digitális áramkörök specifikációs adatai: ( irodalom: Hainzmann-Varga-Zoltai ELEKTRONIKUS ÁRAMKÖRÖK ) működési jellemzők működés funkcionális leírása statikus jellemzők logikai szintek terhelhetőség működési sebesség jellemzők jelterjedési idő működési sebesség működés környezeti feltételei határadatok konstrukciós adatok dc adatok ac adatok tp, tphl, tplh tpd = (tphl + tplh)/2 absolute maimum tokméret. lábkiosztás Megbízható működést, a legkedvezőtlenebb működési feltételek ( worst-case) esetén specifikált jellemzők figyelembevételével lehet biztosítani. Digitális áramkörök típikus építőelemei: a, b, c, d, e, f, g, h, i, j, k, kapuk, inverterek meghajtók komparátorok kódolók,dekódolók flip-flop-ok multipleerek, demultipleerek analóg kapcsolók számlálók multivibrátorok regiszterek (shift regiszterek) összeadók - gates, inverters - buffers, drivers - comparators - encoders, decoders - flip-flops - multipleers, demultipleers - analog switches - counters - multivibrators - registers - arithmetic functions / 74HC, 74HC4 / 74HC25, 74HC244 / 74HC688 / 74HC47, 74HC38 / 74HC73, 74HC74 / 74HC5 / 74HC466 / 74HC393 / 74HC23 / 74HC66, 74HC595 / 74HC8, 74HC283

23 Logikai áramkörök: DTL logikai áramkör felépítése: TTL áramkörök felépítése: CMOS inverter áramkörök felépítése: ECL logikai áramkör felépítése: Schottky-TTL áramkör felépítése CMOS NAND kapu felépítése: Fan-out fogalma: Kimeneti terhelhetőség, bemenetek maimális száma. CMOS NOR kapu felépítése: azaz egy kimenetre kapcsolható

24 TTL-ALS áramkör DTLZ áramkör DTL áramkör RTL áramkörök DCTL áramkörök Bemeneti-kimeneti jelszintek +5V-os tápfeszültség esetén TTL áramkörök esetén: UOHma UOHmin UOLma UOLma = 5,V = 2,4V =,4V =,V UIHma UIHmin UILma UILmin = = = = 5,V 2,V,8V,V

25

26 Különböző flip-flop-ok megvalósítása más flip-flop-ok felhasználásával RS ff megvalósítása DG ff felhasználásával

27 JK ff megvalósítása D ff felhasználásával

28 Digitális funkcionális eszközök Frekvenciaosztók: Aszinkron bináris FEL/LE számláló

29 Aszinkron frekvenciaosztók: 2*N + ODIV5 ODIV3

30 Aszinkron (N) számláló. megoldás: pl.: -es számláló ff-ok meghatározása (m): 2m N N bináris szám '' értékeinek meghatározása és ezek ÉS kapcsolata fenti ÉS kapcsolat kimenetét az N bináris szám '' kimenei ff-jainak 'PRESET' bemeneteire kell kötni 2. megoldás: m ff-ok meghatározása (m): 2 N N bináris szám '' értékeinek meghatározása és ezek ÉS kapcsolata fenti ÉS kapcsolat kimenetét és az órajelet - a biztos törlés miatt - egy RS-ff-on keresztül a ff-ok 'CLR' bemeneteire kell kötni.

31 Szinkron számlálók: előre(felfelé) számláló n-edik fokozata akkor billenjen, ha az összes előző fokozat kimenete '' hátra(lefelé) számláló n-edik fokozata akkor billenjen, ha az összes előző fokozat kimenete '' az első fokozatnak minden esetben billennie kell Szinkron számlálók párhuzamos átvitellel: párhuzamos átvitel miatt a számlálási frekvencia nagy N fokozatú számláló esetén N- bemenetű ÉS kapu szükséges pl.: szinkron 4 bites (6-os) számláló soros átvitel nélkül, és soros átviteli lehetőséggel

32 Szinkron számlálók soros kapcsolása: Szinkronszámlálók soros átvitellel: soros átvitel miatt a számlálási frekvencia csökken csak kétbemenetű ÉS kapu szükséges pl.: szinkron 4 bites soros átviteli (6-os) előreszámláló, és előre/hátra számláló

33 Gyűrűs számlálók: a, b, c, a, b, c, közönséges gyűrűs számláló / N tárolóval kialakított moduló N-es számláló Akkor működnek helyesen, ha induláskor egy kezdeti értéket kapnak Möbius ( vagy Johnson ) számláló / N tárolóval kialakított moduló 2*N-es számláló közönséges gyűrűs számláló felépítése önbeálló gyűrűs számláló felépítése Johnson számláló felépítése

34 Regiszterek: A tárolt bitek száma a tároló elemek számával azonos. Szinkron, és aszinkron törlésű léptető, vagy shiftregiszterek

35 Univerzális regiszter: A tárolt bitek száma a tároló elemek számával azonos. Minden tároló elemre a bemenetét vezérlő áramkört meg kell ismételní. Kódoló, dekódoló áramkörök: Kódoló: valamely kód átalakítása egy adott összefüggés szerint egy más kóddá pl.: az N-ből bin, ill BCD kód, GRAY-bináris kódoló, BCD-bináris kódoló, stb pl.: az az N-ből bináris kódoló esetén az N db bemeneti állapotban mindig csak egy db -es van, ezért a képzett (m) bites kódszó szélessége az a legkisebb m szám, ahol 2m N. Az az N-ből kódolás esetén más kóddá ( pl.: BCD ) is át lehet alakítani. Dekódoló: a kódoló forditottja: a dekódoló egység valamely kódból előállítja az az N-ből kódot pl.: az N-ből bináris kódoló és dekódoló realizálása

36 BIN-GRAY kódoló, és dekódoló:

37 Prioritásos kódolók igazságtáblája: X X2 X3 X4 X5 X6 X7 X8 X9 X D C B A Multipleerek, demultipleerek Multipleerek vagy kiválasztó egység: kimenetén azt a bemeneti jelet választja ki, amelynek címe a címbemeneteken szerepel. Demultipleer a multipleer fordítottja,: azaz az egyetlen adatbemeneten lévő jelet arra a kimenetre teszi, amelynek a címe a címbemeneteken szerepel.

38 Memóriák Adat hozzáférés tekintetében: SAM ( Sequential Access memory ) FIFO ( First In First Out ) LIFO ( Last In First Out ) RAM (Random Access memory ) párhuzamos cím és adatbusz soros cím és adatbusz SPI bus I2C busz pl.: típus SRAM pl.: típus AT454 pl.: típus 24LC52 Írhatóság tekintetében: ROM ( Read Only Memory ) PROM ( Programmable Read Only Memory ) RMM ( Read Mostly Memory ) EPROM ( Erasable Programmable Read Only Memory ) EAROM ( Electrically Alterable Read Only Memory ) EEPROM ( Electrically Erasable Programmable Read Only Memory ) RWM ( Read-Write Memory ) SRWM ( SRAM) DRWM (DRAM) ROM felépítése: EPROM felépítése:

39 RWM felépítése: bipoláris tranzisztor RWM memória szervezés: Dinamikus memória: MOS tranzisztor

40 Digitális technika vizsgakérdések, Logikai hálózatok, logikai rendszerek 2, Logikai érték, logikai változó, Bool-algebra 3, Bool-algebra, logikai alapműveletek, logikai azonosságok, logikai függvény 4, Logikai függvények kanonikus alakjai 5, Logikai függvények egyszerűsítése 6, Szimmetrikus logikai függvény, logikai függvények realizálása 7, Hazárdok 8, Aszinkron sorrendi hálózatokat, és állapottáblája 9, Szinkron sorrendi hálózatokat, és állapottáblája, Elemi sorrendi hálózatokat, Élvezérelt, és master-slave ff-ok 2, Digitális áramkörcsaládok 3, Frekvenciaosztók, számlálók 4, Aszinkron, szinkron számlálók 5, Regiszterek, kódolók, dekódolók, multipleerek, demultipleerek 6, Memóriák

DIGITÁLIS TECHNIKA 8 Dr Oniga. I stván István

DIGITÁLIS TECHNIKA 8 Dr Oniga. I stván István Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók

Részletesebben

Digitális technika - Ellenőrző feladatok

Digitális technika - Ellenőrző feladatok igitális technika - Ellenőrző feladatok 1. 2. 3. a.) Írja fel az oktális 157 számot hexadecimális alakban b.) Írja fel bináris és alakban a decimális 100-at! c.) Írja fel bináris, oktális, hexadecimális

Részletesebben

DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS ELŐÍRT TANKÖNYV-IRODALOM Sorrendi hálózatok, flip-flopok, regiszterek, számlálók,

Részletesebben

1. Kombinációs hálózatok mérési gyakorlatai

1. Kombinációs hálózatok mérési gyakorlatai 1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:

Részletesebben

F1301 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok

F1301 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok F3 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok F3 Bev. az elektronikába SZEKVENIÁLIS LOGIKAI HÁLÓZATOK A kimenetek állapota nem csak a bemenetek állapotainak kombinációjától

Részletesebben

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 9

Dr. Oniga István DIGITÁLIS TECHNIKA 9 r. Oniga István IGITÁLIS TEHNIKA 9 Regiszterek A regiszterek több bites tárolók hálózata S-R, J-K,, vagy kapuzott tárolókból készülnek Fontosabb alkalmazások: adatok tárolása és adatmozgatás Funkcióik:

Részletesebben

Digitális technika I.

Digitális technika I. Digitális technika I. ELSŐ JAVÍTOTT KIADÁS 4 Utolsó frissítés időpontja: 4--8 (terjedelem: 48 A4-es lap) (A jegyzetben található estleges hibákért, elírásokért elnézést kérek, és a hibák jelzését köszönettel

Részletesebben

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6 Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.

Részletesebben

Alapkapuk és alkalmazásaik

Alapkapuk és alkalmazásaik Alapkapuk és alkalmazásaik Tantárgy: Szakmai gyakorlat Szakmai alapozó évfolyamok számára Összeállította: Farkas Viktor Bevezetés Az irányítástechnika felosztása Visszatekintés TTL CMOS integrált áramkörök

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 4

Dr. Oniga István DIGITÁLIS TECHNIKA 4 Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan

Részletesebben

DIGITÁLIS TECHNIKA 7-ik előadás

DIGITÁLIS TECHNIKA 7-ik előadás IGITÁLI TECHNIKA 7-ik előadás Előadó: r. Oniga István Egyetemi docens 2/2 II félév zekvenciális (sorrendi) hálózatok zekvenciális hálózatok fogalma Tárolók tárolók JK tárolók T és típusú tárolók zámlálók

Részletesebben

10. Digitális tároló áramkörök

10. Digitális tároló áramkörök 1 10. Digitális tároló áramkörök Azokat a digitális áramköröket, amelyek a bemeneteiken megjelenő változást azonnal érvényesítik a kimeneteiken, kombinációs áramköröknek nevezik. Ide tartoznak az inverterek

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben

7.hét: A sorrendi hálózatok elemei II.

7.hét: A sorrendi hálózatok elemei II. 7.hét: A sorrendi hálózatok elemei II. Tárolók Bevezetés Bevezetés Regiszterek Számlálók Memóriák Regiszter DEFINÍCIÓ Tárolóegységek összekapcsolásával, egyszerű bemeneti kombinációs hálózattal kiegészítve

Részletesebben

6. hét: A sorrendi hálózatok elemei és tervezése

6. hét: A sorrendi hálózatok elemei és tervezése 6. hét: A sorrendi hálózatok elemei és tervezése Sorrendi hálózat A Sorrendi hálózat Y Sorrendi hálózat A Sorrendi hálózat Y Belső állapot Sorrendi hálózat Primer változó A Sorrendi hálózat Y Szekunder

Részletesebben

DIGITÁLIS TECHNIKA NORMÁL BCD KÓD PSZEUDOTETRÁDOK AZONOSÍTÁSA A KARNAUGH TÁBLÁN BCD (8421) ÖSSZEADÁS BCD ÖSSZEADÁS: +6 KORREKCIÓ

DIGITÁLIS TECHNIKA NORMÁL BCD KÓD PSZEUDOTETRÁDOK AZONOSÍTÁSA A KARNAUGH TÁBLÁN BCD (8421) ÖSSZEADÁS BCD ÖSSZEADÁS: +6 KORREKCIÓ DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 3. ELŐADÁS NORMÁL BCD KÓD Természetes kód - Minden számjegyhez a 4-bites bináris kódját

Részletesebben

28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK

28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK 28. EGYSZERŰ DIGITÁLIS ÁRMKÖRÖK Célkitűzés: z egyszerű kombinációs digitális áramkörök elvi alapjainak, valamint ezek néhány gyakorlati alkalmazásának megismerése. I. Elméleti áttekintés digitális eszközök

Részletesebben

Közlekedés gépjárművek elektronikája, diagnosztikája. Mikroprocesszoros technika. Memóriák, címek, alapáramkörök. A programozás alapjai

Közlekedés gépjárművek elektronikája, diagnosztikája. Mikroprocesszoros technika. Memóriák, címek, alapáramkörök. A programozás alapjai Közlekedés gépjárművek elektronikája, diagnosztikája Mikroprocesszoros technika. Memóriák, címek, alapáramkörök. A programozás alapjai TÁMOP-2.2.3-09/1-2009-0010 A Széchenyi István Térségi Integrált Szakképző

Részletesebben

Bevezetés. Forrás: http://e-oktat.pmmf.hu/digtech1. 1 O l d a l :

Bevezetés. Forrás: http://e-oktat.pmmf.hu/digtech1. 1 O l d a l : Bevezetés Forrás: http://e-oktat.pmmf.hu/digtech1 Jelen jegyzet a Pécsi Tudományegyetem Pollack Mihály Műszaki Főiskolai Karán folyó Műszaki Informatika képzés Robotirányítási rendszerek I-II. tantárgyaihoz

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3)

DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3) DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. Általános bevezetés. 1. ELŐADÁS 2. Bevezetés

Részletesebben

6. LOGIKAI ÁRAMKÖRÖK

6. LOGIKAI ÁRAMKÖRÖK 6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.

Részletesebben

IRÁNYÍTÁSTECHNIKA I.

IRÁNYÍTÁSTECHNIKA I. IRÁNYÍTÁSTECHNIKA I. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKOLA BUDAPESTI MŰSZAKI ÉS

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Logikai kapuáramkörök

Hobbi Elektronika. Bevezetés az elektronikába: Logikai kapuáramkörök Hobbi Elektronika Bevezetés az elektronikába: Logikai kapuáramkörök 1 Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja BME FKE: Logikai áramkörök Colin Mitchell: 200 Transistor

Részletesebben

Számítógép architektúrák 2. tétel

Számítógép architektúrák 2. tétel Számítógép architektúrák 2. tétel Elemi sorrendi hálózatok: RS flip-flop, JK flip-flop, T flip-flop, D flip-flop, regiszterek. Szinkron és aszinkron számlálók, Léptető regiszterek. Adatcímzési eljárások

Részletesebben

11.2. A FESZÜLTSÉGLOGIKA

11.2. A FESZÜLTSÉGLOGIKA 11.2. A FESZÜLTSÉGLOGIKA Ma a feszültséglogika számít az uralkodó megoldásnak. Itt a logikai változó két lehetséges állapotát két feszültségérték képviseli. Elvileg a két érték minél távolabb kell, hogy

Részletesebben

6. LOGIKAI ÁRAMKÖRÖK

6. LOGIKAI ÁRAMKÖRÖK 6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.

Részletesebben

Digitális Technika I. (VEMIVI1112D)

Digitális Technika I. (VEMIVI1112D) Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika I. (VEMIVI2D) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit

Részletesebben

A + B = B + A, A + ( B + C ) = ( A + B ) + C.

A + B = B + A, A + ( B + C ) = ( A + B ) + C. 6. LOGIKAI ÁRAMKÖRÖK Számítógépekben, műszerekben, vezérlő automatákban alapvető szerep jut az olyan áramköröknek, melyek valamilyen logikai összefüggést fejeznek ki. Ezeknek a logikai áramköröknek az

Részletesebben

Digitális technika kidolgozott tételek

Digitális technika kidolgozott tételek Digitális technika kidolgozott tételek 1. digit jel, kódok Analóg jel: általában lineáris egységek dolgozzák fel, időben folyamatos, valamilyen függvénnyel leírhatóak. Jellemzői: egyenszint átvitel, jel-zaj

Részletesebben

Előadó: Nagy István (A65)

Előadó: Nagy István (A65) Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,

Részletesebben

DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA

DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA 206.0.08. IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 5. ELŐÁS 5. ELŐÁS. z előzőek összefoglalása: kanonikus alakok, mintermek, maxtermek,

Részletesebben

SZÁMÍTÓGÉPES ARCHITEKTÚRÁK

SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Misák Sándor SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Nanoelektronikai és Nanotechnológiai Részleg 4. előadás A DIGITÁLIS LOGIKA SZINTJE I. DE TTK v.0.1 (2007.03.13.) 4. előadás 1. Kapuk és Boole-algebra: Kapuk; Boole-algebra;

Részletesebben

Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai

Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Elméleti anyag: Az általános digitális gép: memória + kombinációs hálózat A Boole

Részletesebben

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri

Részletesebben

Elektronika 11. évfolyam

Elektronika 11. évfolyam Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.

Részletesebben

Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0

Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0 Logikai áramkörök Feszültségszintek A logikai rendszerekben az állapotokat 0 ill. 1 vagy H ill. L jelzéssel jelöljük, amelyek konkrét feszültségszinteket jelentenek. A logikai algebrában a változókat nagy

Részletesebben

2. Alapfogalmak. 1. ábra

2. Alapfogalmak. 1. ábra 1. Bevezetés A Pécsi Tudományegyetem Pollack Mihály Műszaki Karán tanuló műszaki informatikus hallgatók mindezidáig más oktatási intézmények által kiadott jegyzetekből és a kereskedelemben kapható drága

Részletesebben

Digitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc)

Digitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc) Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás

Részletesebben

Digitális hálózatok. Somogyi Miklós

Digitális hálózatok. Somogyi Miklós Digitális hálózatok Somogyi Miklós Kombinációs hálózatok tervezése A logikai értékek és műveletek Két-értékes rendszerek: Állítások: IGAZ, HAMIS Bináris számrendszer: 1, 0 Kapcsolók: BEKAPCSOLVA, MEGSZAKÍTVA

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog

Részletesebben

Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta

Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta Elektronikus Eszközök Tanszék Mai témák Transzfer kapu Kombinációs logikai elemek különböző CMOS megvalósításokkal Meghajtó áramkörök

Részletesebben

Funkcionális áramkörök vizsgálata

Funkcionális áramkörök vizsgálata Dienes Zoltán Funkcionális áramkörök vizsgálata A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja:

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Boole algebra, logikai kifejezések

Hobbi Elektronika. Bevezetés az elektronikába: Boole algebra, logikai kifejezések Hobbi Elektronika Bevezetés az elektronikába: Boole algebra, logikai kifejezések 1 Felhasznált anyagok Mészáros Miklós: Logikai algebra alapjai, logikai függvények I. BME FKE: Logikai áramkörök Electronics-course.com:

Részletesebben

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22. ) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

30.B 30.B. Szekvenciális hálózatok (aszinkron és szinkron hálózatok)

30.B 30.B. Szekvenciális hálózatok (aszinkron és szinkron hálózatok) 30.B Digitális alapáramkörök Logikai alapáramkörök Ismertesse a szekvenciális hálózatok jellemzıit! Mutassa be a két- és többszintő logikai hálózatok realizálásának módszerét! Mutassa be a tároló áramkörök

Részletesebben

10-11. hét Sorrendi hálózatok tervezési lépései: szinkron aszinkron sorrendi hálózatok esetén

10-11. hét Sorrendi hálózatok tervezési lépései: szinkron aszinkron sorrendi hálózatok esetén Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 10-11. hét Sorrendi hálózatok tervezési lépései: szinkron aszinkron sorrendi hálózatok

Részletesebben

5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK

5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK 5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK A tananyag célja: a kódolással kapcsolatos alapfogalmak és a digitális technikában használt leggyakoribb típusok áttekintése ill. áramköri megoldások

Részletesebben

Az előadások anyagai letölthetők az alábbi honlapról: Rőmer Mária: Digitális technika példatár, KKMF 1105, Budapest 1999

Az előadások anyagai letölthetők az alábbi honlapról: Rőmer Mária: Digitális technika példatár, KKMF 1105, Budapest 1999 DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS ÁLTALÁNOS BEVEETÉS A digitális technika tantárgy Ajánlott irodalom Az előadások

Részletesebben

Méréstechnika. 3. Mérőműszerek csoportosítása, Elektromechanikus műszerek általános felépítése, jellemzőik.

Méréstechnika. 3. Mérőműszerek csoportosítása, Elektromechanikus műszerek általános felépítése, jellemzőik. 2 Méréstechnika 1. A méréstechnika tárgya, mérés célja. Mértékegységrendszer kialakulása, SI mértékegységrendszer felépítése, alkalmazása. Villamos jelek felosztása, jelek jellemző mennyiségei, azok kiszámítása.

Részletesebben

Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései

Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései Elméleti anyag: Lényegtelen kombináció (don t care) fogalma Kombinációs hálózatok

Részletesebben

Magyar nyelvű szakelőadások a 2000-2001-es tanévben

Magyar nyelvű szakelőadások a 2000-2001-es tanévben Erdélyi Magyar Műszaki Tudományos Társaság Magyar nyelvű szakelőadások a 2000-2001-es tanévben Kolozsvári Műszaki Egyetem Számítástechnika Kar Szerzők dr. Baruch Zoltán Bíró Botond dr. Buzás Gábor dr.

Részletesebben

Szekvenciális hálózatok Állapotdiagram

Szekvenciális hálózatok Állapotdiagram Szekvenciális hálózatok Állapotdiagram A kombinatorikus hálózatokra jellemző: A kimeneti paramétereket kizárólag a mindenkori bemeneti paraméterek határozzák meg, a hálózat jellegének, felépítésének megfelelően

Részletesebben

Dr. Oniga István. DIGITÁLIS TECHNIKA 10 Memóriák

Dr. Oniga István. DIGITÁLIS TECHNIKA 10 Memóriák Dr. Oniga István DIGITÁLIS TECHNIKA 10 Memóriák Memóriák Programot, és adatokat tárolnak D flip-flop egyetlen bit, a regiszter egy bináris szám tárolására alkalmasak Memóriák több számok tárolására alkalmasak

Részletesebben

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6 TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása

Részletesebben

Digitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton

Digitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton Digitális technika 1 Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés Készítette: Dudás Márton 1 Bevezető: A jegyzet a BME VIK első éves villamosmérnök hallgatóinak készült a Digitális technika

Részletesebben

DIGITÁLIS TECHNIKA 11. Előadás

DIGITÁLIS TECHNIKA 11. Előadás DIGITÁLIS TECHNIKA 11. Előadás Előadó: Dr. Oniga István Egyetemi docens 2010/2011 II félév Digitális integrált áramkörök technológiája A logikai áramkörök megépítéséhez elıször is ki kell választanunk

Részletesebben

Békéscsabai Kemény Gábor Logisztikai és Közlekedési Szakközépiskola "Az új szakképzés bevezetése a Keményben" TÁMOP-2.2.5.

Békéscsabai Kemény Gábor Logisztikai és Közlekedési Szakközépiskola Az új szakképzés bevezetése a Keményben TÁMOP-2.2.5. Szakképesítés: Log Autószerelő - 54 525 02 iszti Tantárgy: Elektrotechnikaelektronika Modul: 10416-12 Közlekedéstechnikai alapok Osztály: 12.a Évfolyam: 12. 32 hét, heti 2 óra, évi 64 óra Ok Dátum: 2013.09.21

Részletesebben

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben.

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. 1 1. z adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb eleel, a legegyszerűbben. F függvény 4 változós. MEGOLÁS: legegyszerűbb alak egtalálása valailyen egyszerűsítéssel lehetséges algebrai,

Részletesebben

Az előadások anyagai letölthetők az alábbi honlapról: Rőmer Mária: Digitális technika példatár, KKMF 1105, Budapest 1999

Az előadások anyagai letölthetők az alábbi honlapról: Rőmer Mária: Digitális technika példatár, KKMF 1105, Budapest 1999 DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS ÁLTALÁNOS BEVEETÉS A digitális technika tantárgy Ajánlott irodalom Az előadások

Részletesebben

Dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK

Dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK Dr Keresztes Péter DIGITÁLIS HÁLÓZATOK A jegyzet a HEFOP támogatásával készült Széchenyi István Egyetem Minden jog fenntartva A dokumentum használata A dokumentum használata Tartalomjegyzék Tárgymutató

Részletesebben

DIGITÁLIS ADATTÁRAK (MEMÓRIÁK)

DIGITÁLIS ADATTÁRAK (MEMÓRIÁK) DIGITÁLIS ADATTÁRAK (MEMÓRIÁK) A digitális berendezések a feladatuk ellátása közben rendszerint nagy mennyiségű adatot dolgoznak fel. Feldolgozás előtt és után rendszerint tárolni kell az adatokat ritka

Részletesebben

DIGITÁLIS TECHNIKA I 1. ELİADÁS A DIGITÁLIS TECHNIKA TANTÁRGY CÉLKITŐZÉSEI ÁLTALÁNOS BEVEZETÉS AZ 1. FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (2)

DIGITÁLIS TECHNIKA I 1. ELİADÁS A DIGITÁLIS TECHNIKA TANTÁRGY CÉLKITŐZÉSEI ÁLTALÁNOS BEVEZETÉS AZ 1. FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (2) DIGITÁLIS TECHNIKA I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet 1. ELİADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. ELİADÁS 1. Általános bevezetés az 1. félév anyagához. 2. Bevezetés

Részletesebben

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a

Részletesebben

Rőmer Mária: Digitális technika példatár, KKMF 1105, Budapest Az előadások ezen könyvek megfelelő fejezetein alapulnak.

Rőmer Mária: Digitális technika példatár, KKMF 1105, Budapest Az előadások ezen könyvek megfelelő fejezetein alapulnak. 06.0.. DIGITÁLIS TECHNIKA Dr. Lvassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikrelektrnikai és Technlógia Intézet. ELŐADÁS: LOGIKAI (BOOLE) FÜGGVÉNYEK ÉS ALKALMAZÁSAIK IRODALOM Arató Péter: Lgikai rendszerek

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Kívánalom: sok kapu kevés láb Kombinációs áramkörök efiníció: kimeneteket egyértelműen meghatározzák a pillanatnyi bemenetek Multiplexer: n vezérlő bemenet, 2 n adatbemenet, kimenet z egyik adatbemenet

Részletesebben

Boole algebra, logikai függvények

Boole algebra, logikai függvények Boole algebra, logikai függvények Benesóczky Zoltán 2004 jegyzetet a szerzői jog védi. zt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése

Részletesebben

DIGITÁLIS TECHNIKA I. Kutatók éjszakája szeptember ÁLTALÁNOS BEVEZETÉS A TANTÁRGY IDŐRENDI BEOSZTÁSA DIGITÁLIS TECHNIKA ANGOLUL

DIGITÁLIS TECHNIKA I. Kutatók éjszakája szeptember ÁLTALÁNOS BEVEZETÉS A TANTÁRGY IDŐRENDI BEOSZTÁSA DIGITÁLIS TECHNIKA ANGOLUL DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint Kutatók éjszakája 2016. szeptember 30. Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1

Részletesebben

PAL és GAL áramkörök. Programozható logikai áramkörök. Előadó: Nagy István

PAL és GAL áramkörök. Programozható logikai áramkörök. Előadó: Nagy István Programozható logikai áramkörök PAL és GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,

Részletesebben

DIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint 6... IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐÁS rató Péter: Logikai rendszerek tervezése, Tankönyvkiadó, udapest, Műegyetemi Kiadó,

Részletesebben

Számlálók és frekvenciaosztók Szinkron, aszinkron számlálók

Számlálók és frekvenciaosztók Szinkron, aszinkron számlálók Szinkron, aszinkron számlálók szekvenciális hálózatok egyik legfontosabb csoportja a számlálók. Hasonlóan az 1 és 0 jelölésekhez a számlálók kimenetei sem interpretálandók mindig számként, pl. a kimeneteikkel

Részletesebben

Standard cellás tervezés

Standard cellás tervezés Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Standard cellás tervezés A tanszéken rendelkezésre álló CENSORED technológia bemutatás és esettanulmány Figyelmeztetés! Ez

Részletesebben

Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel

Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedés- és Járműirányítási Tanszék Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Segédlet az Irányítástechnika I.

Részletesebben

Digitális hálózatok. Somogyi Miklós

Digitális hálózatok. Somogyi Miklós Digitális hálózatok Somogyi Miklós Kombinációs hálózatok tervezése A logikai értékek és műveletek Két-értékes rendszerek: Állítások: IGAZ, HAMIS Bináris számrendszer: 1, 0 Kapcsolók: BEKAPCSOLVA, MEGSZAKÍTVA

Részletesebben

Zalotay Péter Digitális technika I

Zalotay Péter Digitális technika I Zalotay Péter Digitális technika I Távoktatás előadási anyaga Kandó Kálmán Villamosmérnöki Kar Tartalomjegyzék Bevezetés...5 1. LOGIKAI ALAPISMERETEK...8 1.1. Halmazelméleti alapfogalmak...8 1.2. A logikai

Részletesebben

DIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS

DIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS DIGITÁLIS THNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai gyetem KVK Mikroelektronikai és Technológia Intézet. LŐDÁS PÉLD: KÖZÜL DKÓDÓLÓ / O O O Háromból nyolcvonalas dekódoló engedélyező bemenettel. kimeneti

Részletesebben

Aszinkron sorrendi hálózatok

Aszinkron sorrendi hálózatok Aszinkron sorrendi hálózatok Benesóczky Zoltán 24 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.

Részletesebben

PAL és s GAL áramkörök

PAL és s GAL áramkörök Programozható logikai áramkörök PAL és s GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó,

Részletesebben

2. Digitális hálózatok...60

2. Digitális hálózatok...60 2 60 21 Kombinációs hálózatok61 Kombinációs feladatok logikai leírása62 Kombinációs hálózatok logikai tervezése62 22 Összetett műveletek használata66 z univerzális műveletek alkalmazása66 kizáró-vagy kapuk

Részletesebben

Memóriák - tárak. Memória. Kapacitás Ár. Sebesség. Háttértár. (felejtő) (nem felejtő)

Memóriák - tárak. Memória. Kapacitás Ár. Sebesség. Háttértár. (felejtő) (nem felejtő) Memóriák (felejtő) Memória Kapacitás Ár Sebesség Memóriák - tárak Háttértár (nem felejtő) Memória Vezérlő egység Központi memória Aritmetikai Logikai Egység (ALU) Regiszterek Programok Adatok Ez nélkül

Részletesebben

Digitális technika (VIMIAA01) Laboratórium 4

Digitális technika (VIMIAA01) Laboratórium 4 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 4 Fehér Béla Raikovich Tamás,

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Máté: Számítógép architektúrák 20100922 Programozható logikai tömbök: PLA (315 ábra) (Programmable Logic Array) 6 kimenet Ha ezt a biztosítékot kiégetjük, akkor nem jelenik meg B# az 1 es ÉS kapu bemenetén

Részletesebben

Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc)

Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc). hét - Boole algebra (függvény, igazságtábla, kanonikus alak). Kombinációs Hálózatok

Részletesebben

I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ)

I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ) I.5. LOGIKI FÜGGVÉNEK EGSERŰSÍTÉSE (MINIMLIÁCIÓ) Nem mindegy, hogy a logikai függvényeket mennyi erőforrás felhasználásával valósítjuk meg. Előnyös, ha kevesebb logikai kaput alkalmazunk ugyanarra a feladatra,

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő

Részletesebben

Digitális technika VIMIAA01 5. hét

Digitális technika VIMIAA01 5. hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 5. hét Fehér Béla BME MIT Sorrendi logikák

Részletesebben

Digitális technika VIMIAA01 6. hét Fehér Béla BME MIT

Digitális technika VIMIAA01 6. hét Fehér Béla BME MIT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 6. hét Fehér Béla BME MIT Kiegészítés az eddigi

Részletesebben

Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor

Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék Mai témák A CMOS inverter, alapfogalmak működés, számitások, layout CMOS kapu áramkörök

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

SYS700-PLM Power Line Monitor modul DDC rendszerelemek, DIALOG-III család

SYS700-PLM Power Line Monitor modul DDC rendszerelemek, DIALOG-III család DDC rendszerelemek, DIALOG-III család KIVITEL ALKALMAZÁS A az energiaellátás minőségi jellemzőinek mérésére szolgáló szabadon programozható készülék. Épületfelügyeleti rendszerben (BMS), valamint önállóan

Részletesebben

Digitális elektronika Dr. Halmai, Attila

Digitális elektronika Dr. Halmai, Attila Digitális elektronika Dr. Halmai, Attila Digitális elektronika Dr. Halmai, Attila Publication date 2011 Szerzői jog 2011 Dr. Halmai Attila Kézirat lezárva: 2011. január 31. Készült a TAMOP-4.1.2.A/2-10/1

Részletesebben

L O G I K A I H Á L Ó Z A T O K

L O G I K A I H Á L Ó Z A T O K ELEKTRONIKAI TECHNIKUS KÉPZÉS 2 0 1 3 L O G I K A I H Á L Ó Z A T O K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Alapfogalmak...3 Digitális technikában alkalmazott számrendszerek...3

Részletesebben

2. hét Kombinációs hálózatok leírási módjai

2. hét Kombinációs hálózatok leírási módjai 2. hét Kombinációs hálózatok leírási módjai 2.1. A kombinációs hálózat alapfogalmai Logikai hálózatnak nevezzük azokat a rendszereket, melyeknek bemeneti illetve kimeneti jelei logikai jelek, a kimeneti

Részletesebben

Széchenyi István Egyetem. dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK

Széchenyi István Egyetem. dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK Széchenyi István Egyetem dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK 1 TARTALOMJEGYZÉK Bevezető 10 1. rész. Kombinációs hálózatok tervezése 11 1.1. LOGIKAI ÉRTÉKEK ÉS ALAPMŰVELETEK 11 1.1.1. A logikai változók

Részletesebben

MUNKAANYAG. Tordai György. Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása

MUNKAANYAG. Tordai György. Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása Tordai György Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja:

Részletesebben

Digitális Technika I. (VEMIVI1112D)

Digitális Technika I. (VEMIVI1112D) Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika I. (VEMIVI2D) 6. hét Hazárd jelenségek Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu Kapcsolódó jegyzet, segédanyag: http://www.virt.vein.hu

Részletesebben