Segédanyagok a Mikroökonómia (N_ak05) címő tárgyhoz

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Segédanyagok a Mikroökonómia (N_ak05) címő tárgyhoz"

Átírás

1 Segédanyagok a Mikroökonómia (N_ak05) címő tárgyhoz Összeállította: Farkas Péter Gyır, 00. szeptember 3. /5 oldal

2 Frissítések: Ssz. Dátum Frissítés tartalma Az anyag elsı változatának közzététele /5 oldal

3 Kedves hallgatók! Kérem figyelmesen olvassák el ezt a bevezetıt, mielıtt hozzáfognak a feladatok megoldásához! Ezek az anyagok azzal a céllal készültek, hogy a Mikroökonómia c. tárgy szemináriumi foglalkozásain megbeszélt anyaghoz további segítséget nyújtsanak az Önök számára. Az órákon hivatkozott, otthoni feldolgozásra ajánlott feladatokat is itt tudják majd megtekinteni. Az anyagot folyamatosan bıvíteni fogom, a frissítések idıpontját a dokumentum második oldala fogja tartalmazni. Kérem Önöket, hogy kövessék figyelemmel az új részek megjelenését. A javasolt feladatok megoldását nem minden esetben fogom közölni, ezek kiszámítása házi feladat. Az eredményeket csoporttársaikkal meg tudják beszélni, s ha egyforma jön ki sokuknak, valószínőleg jól számoltak. Fontos tudni, hogy az anyag elsı változata a 008/009-es tanévben készült. Ha esetleg valamilyen, a dolgozatok konkrét összetételére, idıpontokra, stb. vonatkozó utalás a szövegben benne maradt volna, akkor azokat hagyják figyelmen kívül! A 00/0. tanévben ebben az anyagban ilyen jellegő információk (szándékom szerint legalábbis már) nem szerepelnek. Pár fontos gondolat a tantárgy tanulásával kapcsolatban: Az anyag gyorsan bıvül, mélyül, így a röpdolgozatok elıtti kapkodásban nem lehet megfelelıen elsajátítani az ismereteket! Haladjanak folyamatosan együtt az elıadások és a szemináriumok anyagával, nézzék át otthon a tanultakat! Használják ki az oktatók konzultációs lehetıségét! Kereshetik az elıadásokat tartó, valamint a szemináriumot vezetı kollégákat is! Nézzék meg a honlapokon a konzultációs idıpontokat, s éljenek a lehetıséggel! Sokkal praktikusabb még a dolgozat elıtt megkérdezni a nem teljesen világos részeket, mint utólag próbálni egyegy pontért kuncsorogni! Tilos az anyagot magolni! Ez teljesen értelmetlen, nagyon rövid ideig tart csak az így megszerzett tudás! Ennél a tárgynál az anyagot megérteni kell! S bár ez elsı körben hosszabb ideig is tarthat a magolásnál, viszont többet nem kell újra megtanulni, csekély ismétléssel szinten tartható az ismeretanyag! Minden egyes függvényt értelmezzenek! Gondolják végig, hogy milyen változó szerepel a tengelyeken, milyen mértékegységgel tudjuk ezeket mérni. Gondolják végig azt is, hogy a változók közötti kapcsolatnak mi a normális iránya (azonos irányú kapcsolat pozitív meredekségő függvénygörbe, negatív irányú kapcsolat negatív lejtéső függvénygöbe, stb.) Ezek nagyon sokat segítenek az anyag megértésében. Ha az ábrához függvény (vagy a függvényhez ábra) is kapcsolódik, nézzék meg, hogy következetes-e a dolog: a függvény tényleg ilyen alakot vesz-e fel, illetve az adott függvénygörbe tényleg leírható-e egy ilyen típusú egyenlettel. Mindig gondolja végig, hogy mit is kérdez az adott feladat! Írja le magának, hogy mi a kívánt végeredmény! Egy szám? Egy képlet? Egy ábra? Gondolja meg, hogy tud-e valamilyen tartományt megadni a végeredményre (ha pl. tudja, hogy 0 és 500 Ft/db közötti ár lehet csak a megoldás, akkor egy 670 Ft/db-os végeredményt nem fog elfogadni és tovább fog keresgélni, hogy hol hibázott a számítás közben). 3/5 oldal

4 Értelmezzék a kapott eredményeket! Ha megoldottak egy feladatot MINDIG írják le a megoldást kerek, értelmes mondatokban! Ez nagyban segít abban, hogy meg tudja fogalmazni, hogy mi is az, amit kiszámolt. És végül talán a legfontosabb: a józan ész. Nagyon sokszor az egyszerő logikával ugyanúgy megoldható egy feladat, mint bonyolultabb módon. Ehhez viszont át kell látni az adott feladat, illetve témakört! Munkájukhoz sok sikert kívánok! Gyır, 00. szeptember 3. Farkas Péter 4/5 oldal

5 Az elsı és második tanulmányi héthez kapcsolódó anyagok. feladat: a deriválás használata Határozza meg a következı függvények deriváltjának alakját! Ezután vegyen ki pár függvény-értéket (x értéket), majd adja meg a függvény hozzá tartozó értékét, illetve azt, hogy ezekben a pontokban milyen meredek a függvény (mekkora a derivált nagysága). f ( x) = ; f ( x) = x ; f ( x) = x ; f ( x) = x f ( x) = 8 x ; f ( x) = x ; f ( x) = 0 x + 8 x 4 f ( x) = 0 x 5 x ; f ( x) = 50 x 0,5 x A szemináriumi foglalkozásokon megbeszéltek szerint a konstans függvény és a lineáris függvény esetén a derivált értéke ábrázolva is nagyon könnyen követhetı! Az ilyen típusú függvényeket ábrázolják is és a már ismert módon mutassák meg grafikusan is a meredekséget (rajzolják be)! Technikai megjegyzés Az elızı feladatban lévı hasznossági függvényeket az MS Word program egyenletszerkesztıjével készítettem. A gazdálkodási képzésben nagyon gyakran fognak képletekkel találkozni. Alapvetı elvárás, hogy amikor egy beadandó anyagot (majd késıbb TDK-dolgozatot, illetve szakdolgozatot) készítenek, akkor igényes külalakkal készítsék el azt. Még mindig sokszor találkozni a hagyományos szövegszerkesztıi alkalmazásokból felépített törtekkel (elsı sor: számláló, második sorban aláhúzásból kialakított törtvonal, harmadik sor nevezı). Ez egyrészt nagyon csúnya, másrészt eléggé igénytelen is. Ezért kérem Önöket, hogy nézzék meg a Word beszúrás menüpontját, abban találni fognak egy Objektum kapcsológombot, s az ezután feltőnı menüben pedig megtalálják az Egyenletszerkesztı, vagy Equation néven elérhetı alkalmazást. Ennek használata nagyon egyszerő, pár perc alatt elsajátítható, s egy kis gyakorlás után egész gyorsan fel lehet vele építeni bármilyen bonyolult képletet is. x xi i= Például álljon itt egy képlet statisztikából: σ =. n Ezt például képtelenség lenne máshogy elkészíteni, ennek az eszköznek a segítségével viszont semmilyen gondot nem okozott az megszerkesztése. n ( ). feladat. A teljes haszon függvény használata. Zoltán szeret kiállításra járni. Jelölje x a havonta meglátogatott kiállítások számát. Ebben az esetben Zoltán hasznosságát (ezt U-val jelöljük) a megtekintett kiállítások függvényében a következı összefüggéssel írhatjuk le: U =,5 x 0, 5 x a) Ábrázolja Zoltán hasznossági függvényét! b) Adja meg Zoltán határhaszon függvényének egyenletét! c) Ábrázolja Zoltán határhaszon görbéjét! d) Határozza meg, hogy hány kiállítást fog megnézni Zoltán egy héten, ha szeretné maximalizálni az ebbıl fakadó összhasznát? 5/5 oldal

6 3. feladat: a feltételes szélsıérték megkeresése Egy fogyasztó Ft-ot szán két termékre, x-re és y-ra. Az x termék ára 80 Ft, az y termék ára 40 Ft. A fogyasztó számára a hasznosságot leíró függvény alakja a következı: U ( x, y) = x y. a) Írja fel a fogyasztó lehetıségeit korlátozó egyenletet a szemináriumi órán látott módon! b) Adja meg az elızı egyenletet rendezett függvényalakban (y-ra rendezve) c) Határozza meg, hogy mekkora lesz a fogyasztó vásárlása x és y termékbıl, ha célja a maximális haszon elérése! d) Mekkora az elérhetı maximális haszon nagysága? e) Mutassa meg, hogy ha bármely tetszıleges másik, a fogyasztó jövedelmébıl elérhetı kombinációt választott volna, akkor az kisebb hasznosságot jelentene számára, mint a d) pontban adott megoldás! Miután ezt a példát megoldotta, változtassa a fogyasztó jövedelmét, valamint a termékek árait. Ezzel tetszıleges számú példát tud saját maga számára, gyakorlásra elıállítani. Csináljon is meg jópárat ezek közül! 4. feladat: a termelési lehetıségek határát megadó egyenletek A következıkben három vállalat termelési lehetıségek határait leíró összefüggést lát. Mindegyik vállalat ugyanazokat a termékeket (x és y). vállalat: y = 00 x. vállalat: y = 00 x 3. vállalat: y = 80 0, 5 x a) A megadott egyenletek alapján határozza meg, hogy maximálisan mennyit tudnak termelni az egyes vállalatok a két termékbıl, ha csak az egyik, vagy csak a másikra használják fel összes erıforrásukat! (Mekkora a függvények tengelymetszeteinek értéke?) b) Mindegyik függvénynek határozza meg néhány pontját! c) Vizsgálja meg, hogyan alakul az x termék költsége y-ban kifejezve! (Ugyanakkora mennyiséggel növelve x termelését, mennyivel csökken y termelése? Mindig ugyanannyival? Gyorsulva? Lassulva?) Értelmezze a függvények meredekségének alakulását! d) A megadott egyenletek alapján ábrázolja a három esetet! 5. feladat: a keresleti függvény kezelése Egy termék piacán a vevık 800 Ft-os ár esetén már egyetlen darabot sem vásárolnak. Tudjuk, hogy ha az ár 0 forinttal csökken, akkor a kereslet mindig 50 darabbal emelkedik meg. a) Határozza meg, hogy maximálisan mennyit igényelnének a vevık a termékbıl? (Mennyi lenne a kereslet, ha ingyen juthatnának a termékhez?) b) Ábrázolja a szöveges információk alapján a keresleti görbét! c) Adja meg a keresleti görbe egyenletét mindkét formában: Q-ra rendezett (normál) és P-re rendezett (inverz) alakban 6/5 oldal

7 d) A keresleti függvény egyenlete alapján határozza meg a kereslet nagyságát a P=750 Ft/db, P=700 Ft/db, P=400 Ft/db, P=300 Ft/db és P=0 Ft/db esetére! e) A keresleti függvény egyenlete alapján határozza meg, hogy milyen ár esetén lesz a kereslet nagysága 00 db, 00 db, 400 db, illetve 600 db! (Vegye észre, hogy az elızı pontban feltett kérdésre a keresleti görbe Q-ra, erre a kérdésre pedig a keresleti görbe P-re rendezett alakjából kiindulva kapható meg egyszerőbben a válasz). 6. feladat: a kínálati függvény kezelése Egy vállalat 500 Ft-os ár esetén hajlandó a piacra lépni, ennél olcsóbb ár esetén nem jelenik meg kínálattal. Minden egy forintos áremelkedés esetén 00 db-bal emeli az eladni szándékozott mennyiséget. a) Ábrázolja a kínálati függvényt! b) Írja fel a kínálati függvény egyenletét! c) Határozza meg a kínálatot a következı árak esetén: P=400 Ft/db, P=500 Ft/db, P=600 Ft/db, P=000 Ft/db, P=384 Ft/db d) Milyen árak esetén lesz a kínálat S=00 db, S=500 db, S=0000 db, S=0000 db? 7. feladat: a Marshall-kereszt használata Egy termék piacát a következı függvények írják le: Q = 0, P 00 és Q = 400 0, 3P a) Döntse el, hogy a két egyenlet közül melyik adja meg a keresleti és melyik a kínálati függvény! Állítását támassza alá! b) Határozza meg, hogy mennyi terméket igényelnek a fogyasztók, ha ingyen juthatnak hozzá a termékekhez! c) Mekkora az az ár, ahol a fogyasztók már nem vásárolnak terméket? d) Milyen ár alatt nem lépnek ki a cégek a piacra? e) Ábrázolja az elızıeket bemutató összefüggéseket a megszokott koordinátarendszerben! Jelölje a tengelyeken lévı változókat, mértékegységeket! Jelölje a tengelymetszéspontok koordinátáit. f) Határozza meg, hogy milyen ár mellett kerül egyensúlyba a piac! g) Mekkora termékmennyiség cserél gazdát az egyensúlyi ár esetén? h) Igaz-e, hogy ha a piac egyensúlyban van, akkor senki sincs a piacon, aki szeretne terméket venni, de az adott áron végül mégsem vásárol? i) Vizsgálja meg a piac helyzetét P=5000 Ft/db és P = 6800 Ft/db-os áron! Mutassa meg az egyensúlytalanság mértékén az ábrán! (Jelölje be a kereslet és a kínálat eltérését ezeknél az árszinteknél!) Kedves hallgatók! Most már bonyolódnak a példák, a megoldáson túl most már az értelmezésre is nagyon oda kell figyelni! Hiszen csak akkor fogják tudni megoldani jól a feladatokat, ha pontosan tudják, hogy mit miért csinálnak! A szemináriumokon sokszor elmondtam, most ismét kiemelem, hogy nem megtanulnunk kell a megoldást, hanem megértenünk!!! Ehhez sok gyakorlásra van szükség! A feladatgyőjteménybıl oldják meg az összes olyan feladatot, amelyeknek a témakörét már megnéztük a szemináriumon! Fontos, hogy ne csak a számítási és ábrázolási példákat nézzék meg, hanem a feladatgyőjtemény elméleti kérdéseit is nézzék végig, s keressék is meg ezekhez a megoldást! Gyır, 008. szeptember 8. 7/5 oldal

8 8. feladat: hasznossági függvények alakjának vizsgálata Döntse el, hogy a következı egyenletek közül melyek írhatják le az elıadáson látott helyzetet a jóléti hasznossági függvény kapcsán! (Elıször gondolja végig, hogy milyen a normális kapcsolat a függvény változói és a függvény által felvett érték (a hasznosság nagysága között!) Döntéséhez vizsgálja meg, hogyan változik a fogyasztó hasznossága (jóléte) ha a két változó (fogyasztás és munkaidı) mennyisége változik. Magyarázza meg, hogy miért viselkedik, vagy miért nem viselkedik normálisan az adott függvény! a) U = 6X L b) U = X + 6L c) U = 6X + L d) U = X + 6L 5X e) U = 6L 6L f) U = 5 X 9. feladat: hasznossági függvények értelmezése, használata 3 Egy fogyasztó jóléti hasznossági függvényét az U = 4 X L egyenlet adja meg. A fogyasztó órabére 90 Ft, az átlagos fogyasztás értéke 40 Ft-ba kerül. a) Írja fel a fogyasztó korlátját megadó költségvetési egyenest X(L) alakban! b) Az a)-ban meghatározott összefüggés alapján adja meg az alábbi táblázat második oszlopának értékeit! c) Adja meg a hasznossági függvény alapján a hasznosság értékét a táblázatban látható X-L kombinációkhoz! L X U Számítás: 0 0,5,0,5,0,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0 8,5 9,0 8/5 oldal

9 9,5 0,0 d) A táblázat kitöltése után döntse el, hogy melyik lenne a fogyasztó számár az optimális munkaidı? (Mennyit dolgozzon, hogy a legnagyobb jóléti szintet érhesse el?) e) Írja fel a d)-pontban meghatározott optimális helyzetet tartalmazó jóléti közömbösségi görbe egyenletét a szemináriumon látott módon! f) Ábrázolja az adott közömbösségi görbét! Ehhez határozza meg a görbe több pontját, s ezeket rajzolja is be az ábrába! g) A d) pont nem precíz megoldási módot használt. Hiszen mindössze annyit kellett tennie, hogy a c)-ben elkészített táblázat adatai közül megnézte, melyik esetben legnagyobb a hasznosság (U) értéke. Tudjuk, hogy ha bonyolult a példa, ha nem kerek a megoldás, vagy ha nincs mód az összes elképzelhetı lehetıség kiszámítására, más megoldást kellene találnunk. Határozza meg az optimális fogyasztói döntést a szemináriumon látott módon! Ehhez fejezze ki az L értékét az a)-ban meghatározott költségvetési korlátból az L értékét, helyettesítse be a hasznossági függvénybe, majd keresse meg ennek a függvénynek a szélsı értékét! Ha jól dolgozott, ugyanakkora munkamennyiség (L) esetén kell a legnagyobb hasznosságot kapnia, mint amit a táblázatból le is tudott olvasni. (Ennek a feladatnak az értelme az, hogy lássa: mit is keresünk valójában. A dolgozatban valószínőleg nem lesz táblázat, hanem pusztán az egyenletek alapján kell majd tudnia megadni a végeredményt. A táblázat abban segít, hogy lássa mit is keresünk egy kicsit precízebb módszerrel.) 0. feladat: hasznossági függvények alakjának vizsgálata Mutassa meg, hogy az U = X L hasznossági függvény miért nem ad olyan kellemes optimumot az elıbb látott problématípusnál, mint a korábban látottak? Segítség a megoldáshoz: ábrázolja a közömbösségi görbék alakját, s nézze meg, hogy a jólét maximális értéke hogy érhetı el adott költségvetési korlát esetén!. feladat: Marshall-kereszt Ez a feladat a korábbi órákon látott egyszerő piacmodell gyakorlására szolgál. Ha szükséges, vegye elı a korábbi jegyzeteit az ismeretek felfrissítésére! Az egyetem egyik büféjében a büfét üzemeltetı vállalkozó 00 Ft-os ár alatt nem hajlandó melegszendvicset árulni. Magasabb ár mellett nagyobb mennyiséget hajlandó készíteni, minden 0 Ft-os áremelkedés esetén 50 db-bal hajlandó növelni napi termelését. Az egyetemisták körében készített felmérés alapján senki sem adna 460 Ft-nál többet egy melegszendvicsért. Ismert még az is, hogy ha az ár 0 Ft-tal emelkedik, 5 db-bal kevesebb szendvics fogyna egy adott napon. a) Rajzolja meg a melegszendvics piacát bemutató Marshall-keresztet! Rajzolja be a keresleti és kínálati függvényt, a függvényeket és tengelyeket lássa el a megfelelı jelölésekkel! (A változók, mértékegységek jelölése nem maradhat el!) b) Határozza meg a tengelymetszéspontok nagyságát! c) Kerek, egész mondatokban fogalmazza meg a tengelymetszéspontok jelentését! d) Írja fel a keresleti függvény Q(P) típusú egyenletét! e) Írja fel a keresleti függvény P(Q) típusú egyenletét! f) Írja fel a kínálati függvény Q(P) típusú egyenletét! g) Írja fel a kínálati függvény P(Q) típusú egyenletét! 9/5 oldal

10 h) Határozza meg a piacon kialakuló egyensúlyi ár nagyságát! i) Határozza meg, hogy hány szendvics fogyna az egyensúlyi ár esetén egy nap alatt! j) Mekkora bevételre tenne szert a büfé így egy napon? k) Határozza meg, hogy milyen helyzet alakul ki a piacon P=80 Ft-os ár esetén! l) Határozza meg, hogy milyen helyzet alakul ki a piacon P=300 Ft-os ár esetén! m) Adja meg, hogy mekkora keresleti és kínálati ár tartozik a Q=800 db-os mennyiséghez? n) Milyen ár esetén lesz 80 db-os túlkínálat a piacon! Ellenırizze is a kapott eredményt!. feladat: a költségvetési egyenes tulajdonságai Egy fogyasztó költségvetési egyenesének függıleges tengelymetszete 00, míg vízszintes tengelymetszete 00 egységnél van. a) Rajzolja fel a költségvetési egyenest! b) Lássa el a szükséges jelölésekkel (változók, mértékegységek) c) Mit tudunk az ismert adatokból a két termék árára vonatkozóan? x alakban! e) Adjon meg olyan jövedelem-ár kombinációkat, amelyek ezt a költségvetési egyenest eredményezhetik! (Minden jövedelemhez két árat kell hozzárendelnie, s tetszıleges számú jövedelembıl elérhetı ez, így akár mindenkinél más megoldás alakulhat ki!) Legalább három ilyen egyenletet írjon fel a kiinduló alakban, vagyis az d) Adja meg a költségvetési egyenes egyenletét ( ) x I = p formulában. x x + px x f) Válasszon ki egy tetszıleges költségvetési egyenest az elızı ponthoz készítettek közül, s adjon meg legalább tíz olyan kombinációt, amely ezen az egyenesen van! g) Mit jelent az egyenes meredeksége? Hogyan értelmezhetı ennek segítségével az elızı pontban látható kombinációk közötti mozgás? h) Hogyan változik az e) pontban megadott egyenletek közül az elsı, ha a fogyasztó jövedelme megduplázódik, az árak viszont változatlanok? Írja fel az új egyenletet az alapformulával, valamint függvényalakban is, továbbá ábrázolja is a változást! i) Hogyan változik az e) pontban megadott egyenletek közül az elsı, ha az elsı termék (x) ára 5%-kal megemelkedik? Írja fel az új egyenletet a kiinduló alakban, majd függvényként is, végül ábrázolja az új helyzetet! j) Hogyan változik az e) pontban megadott egyenletek közül az elsı, ha a második termék (x) ára 0%-kal csökken? Írja fel az új egyenletet a kiinduló alakban, majd függvényként is, végül ábrázolja az új helyzetet! 3. feladat: a közömbösségi görbék Egy fogyasztó preferenciarendszerét az U ( x x ) x meg., = x alakú hasznossági függvény adja a) Adja meg a következı táblázatban látható fogyasztó kosarak által biztosított hasznosság nagyságát! x x U /5 oldal

11 b) Írjon fel olyan kombinációkat, amelyek a táblázat kivastagított kombinációjával azonos hasznosságot eredményeznek! Helyezze ezeket el úgy a következı táblázatban, hogy a táblázatban jobbra haladva az x termék mennyisége folyamatosan emelkedjen. x x c) Adja meg a táblázatban található pontokat (és az összes többi, ezzel azonos hasznossági szintet jelentı kombinációt tartalmazó) közömbösségi görbe egyenletét! d) Ábrázolja a c)-ben meghatározott közömbösségi görbét az alábbi ábrában! x x e) Mutassa meg, hogy a közömbösségi görbén kifelé haladva (az x termék mennyiségét növelve) a fogyasztó egyre kevesebb x -rıl hajlandó lemondani egy-egy újabb x termékért! (Tehát ki kell számolnia a helyettesítési rátát a görbe megadott pontjai között. A helyettesítési rátát RS-sel jelöljük, ne tévessze össze a precízebb módszert jelentı MRS-sel, ami a helyettesítési határráta!) f) Adja meg a közömbösségi görbe meredekségét jelentı MRS alakját! (Ne feledje: az MRS a termékek határhasznainak hányadosaként kapható meg, a határhaszon pedig a hasznossági függvénybıl kapható meg parciális deriválással.) g) Az f)-ben kapott MRS-alak ismeretében adja meg a b) pontban kitöltött táblázat (közömbösségi görbe) minden pontjában a görbe meredekségét! (Ne feledje, a görbe meredekségének egyre kisebbnek kell lennie, ahogy x mennyisége növekszik, hiszen a görbe egyre laposodik!) h) Oldja meg a feladat a-g pontjait akkor is, ha a preferenciarendszer az U ( x, x ) = x x alakot veszi fel! /5 oldal

12 4. feladat: Az MRS meghatározása kicsit bonyolultabb preferenciák esetén Adja meg a helyettesítési határráta (MRS) alakját a következı preferencia-rendszerek esetére!, x a) U ( x x ) = x 3 4, x b) U ( x x ) = x 4 3, x c) U ( x x ) = x 3 8 0, x d) U ( x x ) = x 0 5. feladat: optimalizálás Egy fogyasztó Ft-ot szán két termékre (x és x ). Az elsı termék ára 50 Ft, a második termék ára 40 Ft. A fogyasztó preferenciarendszerét az U ( x, x ) = x x formula adja meg. a) adja meg a költségvetési egyenes egyenletét a kiinduló alakban, valamint a szokásos függvényalakban is! b) Válasszon ki legalább öt, a költségvetési egyenesen található termékkombinációt, majd ezeket jegyezze fel az alábbi táblázatban, végül pedig határozza meg az ezekhez tartozó hasznossági szintet is! x x U c) Írja fel az elsı kombináción keresztülhaladó közömbösségi görbe egyenletét! Az egyenlet alapján adja meg ennek a közömbösségi görbének öt másik pontját az alábbi táblázatban. Számolja ki, hogy mennyibe kerülnek ezek a kombinációk! x x U A kombináció költsége Számítás Figyelje meg, hogy a költségvetési egyenes tulajdonsága, hogy annak minden pontja ugyanannyiba kerül, viszont minden egyes pontjában eltérı az elérhetı hasznossági szint, ugyanakkor a közömbösségi görbe minden pontjában ugyanakkor hasznosságot biztosít a fogyasztó számára, viszont minden ilyen kombináció eltérı pénzösszegbe kerül! d) Írja fel az optimális döntés feltételét a tanult összefüggés alapján! Ehhez elıször határozza meg az MRS képletét (ami mint tudjuk a közömbösségi görbe meredekségét /5 oldal

13 adja meg), majd tegye egyenlıvé a két termék árának hányadosával (ez pedig mint ismert, a költségvetési egyenes meredekségét adja). e) Határozza meg, hogy az optimális döntés d)-pontban megadott feltételét megtartva mely kombinációt vásárolja meg a fogyasztó! (Mi lesz az optimális döntés?) f) Adja meg, hogy az optimális döntés esetén mekkora hasznosságot ért el a fogyasztó! g) Mutassa meg, hogy ha más, elérhetı (tehát a költségvetési egyenesen rajta lévı) kombinációkat választott volna, akkor az f)-ben számítottnál kisebb hasznosságot ért volna el a fogyasztó! h) Vizsgálja meg b) ponthoz készített táblázatot! Ha jól dolgozott, akkor az f)-ben számított hasznosságnak nagyobbnak kell lennie, a táblázat összes hasznosságadatánál. (Elıfordulhat, hogy véletlenül a legjobb kombinációt is tartalmazza az Ön által készített táblázat, de nagyobb U-érték semmilyen esetben sem lehet a táblázatban, mint amit az optimalizációs módszerrel megkapott!) i) Adja meg az optimumhoz tartozó közömbösségi görbe egyenletét, majd adja meg ennek a görbének legalább 5 pontját a következı táblázatban! x x U j) Készítse el a fogyasztó lehetıségeit, illetve optimális döntését tartalmazó ábrát! Az ábrán szerepeljen a fogyasztó költségvetési egyenese, valamint rajzolja be az optimumhoz tartozó közömbösségi görbét is! 6. feladat: optimalizálás Egy fogyasztó x és x t terméket vásárol, s ezekre havonta Ft-ot szán két termékre. Az elsı termék 80 Ft, a második termék pedig 50 Ft-ba kerül A fogyasztó hasznossági görbéjét az U ( x x 3 ) x 4 4 = formula adja meg., x a) Határozza meg a fogyasztó által elérhetı legmagasabb hasznossági szint nagyságát! b) Határozza meg a fogyasztó választását, ha az elsı termék ára 5%-kal megemelkedik! Mekkora lesz így a maximálisan elérhetı hasznossági szint? c) Határozza meg a fogyasztó választását, ha (a kiinduló helyzethez képest) a második termék ára duplájára emelkedik! Mekkora hasznosságot érhet el így? d) Mi lesz a fogyasztó döntése, ha mindkét termék ára 5%-kal emelkedik, s közben jövedelme is ugyanilyen mértékben változik? e) Mi lenne a legjobb választás a fogyasztó részérıl, ha az induló helyzetben az U ( x x ) x 3 3 = preferenciarendszer lett volna jellemzı rá?, x 3/5 oldal

14 7. feladat: bemelegítés a kamatszámításhoz Oldja meg a következı feladatokat! a) Egy fogyasztó jövedelmébıl Ft-ot nem költ el az idei évben, hanem leköti éves futamidıre. A bank erre az idıtartamra 9%-os kamatláb mellett fogadja be a betétet. Mekkora összeg lesz a bankszámlán a futamidı lejártakor? b) Mekkora összeget kellett volna elhelyezni ahhoz, hogy egy év múlva Ft legyen a bankszámlán? c) Hitelt veszünk fel a banktól. A bank most kifizeti az összeget, s nekünk egy év múlva kell majd visszafizetnünk a hitelt, s annak egy év alatt felhalmozódott kamatait egy összegben. A felvett hitel nagysága Ft, s a bank 9%-os kamatláb mellett folyósítja a hitel összegét. Mennyit kell majd fizetnünk egy év múlva? Vegye észre, hogy ez a feladat azonos az a)-ban lévıvel, csak a szerepek megfordultak. Az a) részben a bank játszotta azt a szerepet, amit a c)-ben a fogyasztó. Az a)-ban a fogyasztó hitelezte meg évig a bankot, hiszen a bank használta a fogyasztó pénzét, míg a c)-nél már fordítva történik: a fogyasztó használja egy évig a kamat fejében a bank pénzeszközeit. d) Jövıre Ft-ot fogunk kapni egy már most ismert szerzıdés alapján. A pénz megérkezésére garancia van, s mivel türelmetlen típusok vagyunk szeretnénk már most elıre elkölteni. A bank 7,5%-os kamatláb mellett hajlandó hitelt adni. Milyen összegő hitelt vehetünk fel, ha a jövı évi Ft-ból szeretnénk visszafizetni a felvett hitelt a kamatokkal együtt? (Most is olyan konstrukciót feltételezünk, amikor a futamidı végén egyösszegben kell kifizetni a tartozást és a felhalmozódott kamatot.) 8. feladat: az intertemporális költségvetési egyenes tulajdonságai Egy fogyasztó jövedelme 008-ban Ft. A 009-es jövedelem (várható) nagysága Ft. A 008-ra és 009-re érvényes kamatláb a fogyasztó bankjában 6,5%. (Tegyük fel, hogy a bank ilyen hosszú futamidıre rögzítette, valamint nem különbözteti meg a betéti és a hitelkamatláb nagyságát. Egyébként ahogy nyilván érzi is ez nagyon életszerőtlen feltevés, hiszen a bank haszna az alacsony költséggel megszerzett források [betétek] magasabb áron történı kihelyezésébıl [hitelnyújtásból] származik.) a) Mennyit költhet 009-ben a fogyasztó, ha 008-ban Ft-ot költ? Adja meg az eredményt, majd értelmezze a szituációt! b) Mennyi lehet a 009-es költekezés nagysága, ha 008-ban Ft-ot költ? Adja meg az eredményt, majd értelmezze a szituációt! c) Mennyi lehetne a 009-es költekezés elvi maximális értéke? (szemináriumon: C max) d) Mennyi lehetne a 008-as költekezés elvi maximális értéke? (szemináriumon: C max) e) Mennyit költhet 008-ban a fogyasztó, ha 009-es költekezése Ft? f) Ábrázolja a fogyasztó tıkepiaci egyenesét, jelölje a tengelyeken szereplı változókat, azok mértékegységét, valamint az a), b), c), d) és e) pontokat is! g) Adja meg az egyenes meredekségének nagyságát! Értelmezze a meredekséget! h) Adja meg a fogyasztó tıkepiaci egyenesének egyenletét! 9. feladat: az intertemporális költségvetési egyenes változásai Az elızı példában szereplı bank döntése nyomán emelkedik a kamatláb: a korábbi 6,5%-os érték helyett 8%-ra változik. a) Adja meg a fogyasztó tıkepiaci egyenesének új egyenletét! b) Adja meg az új egyenes tengelymetszéspontjait! 4/5 oldal

15 c) Ábrázolja egy új ábrában az elızı példa f) pontjában már ábrázolt egyenest és ennek a példának az a) pontjában meghatározott egyenest! d) A bank ezután (különbözı piaci események hatására) úgy dönt, hogy csökkenti a kamatláb nagyságát, méghozzá az induló szint alá, s 5,5%-on rögzíti a kamatláb nagyságát. Írja fel az új egyenes egyenletét! e) Rajzolja be ezt az egyenest is az ábrába az elızı kettıhöz! f) Melyik pont közös a három egyenesen? g) Vonjon le következtetést arra vonatkozóan, hogyan változik a tıkepiaci egyenes alakja a kamatláb emelkedésekor és csökkenésekor! 0. feladat: az intertemporális közömbösségi görbék U C, C = C C alakkal tudjuk megadni. a) Adja meg a következı kombinációk által biztosított hasznossági szintek nagyságát: C C U Egy fogyasztó intertemporális közömbösségi görbéit az ( ) b) Írjon fel olyan kombinációkat, amelyek a táblázat kivastagított kombinációjával azonos hasznosságot eredményeznek! Helyezze ezeket el úgy a következı táblázatban, hogy a táblázatban jobbra haladva az x termék mennyisége folyamatosan emelkedjen. C C c) Adja meg a táblázatban található pontokat (és az összes többi, ezzel azonos hasznossági szintet jelentı kombinációt tartalmazó) intertemporális közömbösségi görbe egyenletét! d) Ábrázolja a c)-ben meghatározott közömbösségi görbét az alábbi ábrában! 5/5 oldal

16 C e) Hogy alakul a közömbösségi görbe meredeksége, ha az egyre nagyobb idei fogyasztás felé mozdulunk el? (Idei év alatt az elsı évet, jövı év alatt a második évet értjük ebben a példában). Állítását grafikusan igazolja! f) Adja meg a közömbösségi görbe meredekségét jelentı MRS alakját! (Ne feledje: az MRS a parciális deriváltak hányadosaként kapható meg, ahogy a fogyasztói optimalizálásnál a határhaszon esetében már gyakoroltuk!) g) Az f)-ben kapott MRS-alak ismeretében adja meg a b) pontban kitöltött táblázat (közömbösségi görbe) minden pontjában a görbe meredekségét! (Ne feledje, a görbe meredekségének egyre kisebbnek kell lennie, ahogy C értéke növekszik, hiszen a görbe egyre laposodik!) h) Oldja meg a feladat a-g pontjait akkor is, ha a preferenciarendszer az U ( C, C ) = C C alakot veszi fel!. feladat: az intertemporális optimalizálás elıkészítése Adja meg az MRS alakját a következı intertemporális hasznossági függvények esetében! U C, C = C C a) ( ) U C, C = C C b) ( ) U C 3 4, C = C C c) ( ) 4 U C 3 4, C = C C d) ( ) 4 U C 3, C = C C e) ( ) 3 U C 3 5, C = C C f) ( ) 5 U C 7 3 0, C = C C g) ( ) 0 C 6/5 oldal

17 . feladat: az intertemporális optimalizálás Egy fogyasztó idei jövedelme Ft, jövı évi jövedelme pedig Ft. A bank 5,00%-os kamatlábbal dolgozik. A fogyasztó preferenciarendszerét megadó intertemporális hasznossági függvény egyenlete: ( ) 4 4 U C, C = C C. a) Írja fel a fogyasztó tıkepiaci egyenesének egyenletét! b) Adja meg az MRS képletét! c) Írja fel az optimum feltételét! (Amit fel kell írnia: a görbe meredeksége egyenlı kell, hogy legyen az egyenes meredekségével. A görbe meredekségét az MRS adja meg, az egyenes meredeksége pedig a korábbi példákban látott módon az [+i] formulával adható meg, ahol i a kamatláb nagysága.) Rendezze a kapott összefüggést C -re! d) Adja meg a fogyasztó költekezésének optimális idıbeli megoszlását! (Mennyit költsön idén és jövıre, hogy a legmagasabb hasznosságot érje el?) e) Adja meg, hogy mekkora az így elérhetı legmagasabb hasznossági szint? f) Írja fel az optimális kombinációt tartalmazó intertemporális közömbösségi görbe egyenletét! g) Ábrázolja a feladatot! 3. feladat: az intertemporális optimum változásai Az elızı feladatot oldja meg a következı változásokkal: a) A fogyasztó jövedelme az elsı évben 0%-kal emelkedik. b) A fogyasztó jövedelme a második évben 0%-kal emelkedik. c) A fogyasztó jövedelme az elsı és a második évben egyaránt 0%-kal emelkedik! d) A kamatláb nagysága %-kal emelkedik. e) A kamatláb nagysága %-kal emelkedik. f) A kamatláb nagysága %-kal csökken. g) A kamatláb nagysága %-kal emelkedik! A változásokat mindig a kiinduló helyzethez (vagyis az elızı példában megadott jövedelmekhez és kamatlábhoz) képest értelmezze! Minden pont esetében készítsen egy ábrát, amelyben berajzolja az elızı példa költségvetési egyenesét és optimális választását (a közömbösségi görbét is!), illetve a változás utáni tıkepiaci egyenest és optimális választást (természetesen most sem csak az optimumot, hanem az ezt tartalmazó közömbösségi görbét is). A fogyasztó preferenciái változnak, az új helyzetben a ( ) 3 U C, C = C C függvény írja le a fogyasztó preferenciáit. h) Adja meg a fogyasztó optimális választását ebben a helyzetben! (A tıkepiaci egyenes nem változik, tehát lehetıségei azonosak, csak a preferenciák módosulása miatt változik a legjobb választás). i) Hogyan változhatott a fogyasztó kockázathoz való viszonya, ha így módosult a preferenciarendszer (s emiatt az optimum is)? 4. feladat: paraméteres optimum-meghatározás Ez a feladat jóval nehezebb, mint amilyenre lehet számítani a dolgozatban, ugyanakkor kis odafigyeléssel bárki meg tudja oldani, aki az eddigi anyagokat megfelelıen feldolgozta és megértette. 7/5 oldal

18 Ilyen nehézségi szintő példa a dolgozatban egészen biztosan nem lesz. Ha valaki érdemi megoldást hoz ki rá, akkor azt vissza tudja ellenırizni azoknál a feladatoknál, amelyeknél a preferenciarendszer megfelel ennek a típusnak. Ehhez mindössze be kell helyettesíteni a most kapott képletbe a korábbi példák indulóadatait. A feladat tehát: Határozza meg, hogy mekkora lesz a fogyasztó optimális fogyasztása az elsı és a második évben (C és C ), ha a fogyasztó I és I jövedelemmel rendelkezik, a kamatláb nagysága i, s a a a preferenciarendszert az U = A C C alakot veszi fel! 5. feladat: ICC és Engel-görbe Egy fogyasztó jövedelmét két termékre, x -re és x -re költi el. Az x termék ára 00 Ft, az x termék 300 Ft-ba kerül. A fogyasztó preferenciáit a két termék vonatkozásában az U ( x, x ) = x x preferenciarendszer írja le. a) Adja meg az x termék vonatkozásában az ICC-görbe egyenletét! b) Ábrázolja az ICC-görbét! c) Írja fel az x termékre az Engel-görbe egyenletét! d) Ábrázolja az Engel-görbét! e) Határozza meg a fogyasztó optimális vásárlását az Engel-görbe segítségével az x termékbıl, ha a fogyasztó jövedelme 4000/0000/5000/60000 Ft. f) Ábrázolja ezeket a pontokat az Engel-görbén! 6. feladat: ICC és Engel-görbe Hajtsa végre az elızı feladatban látott utasításokat az x termékre vonatkozóan is! 7. feladat: ICC-görbék a korábbi feladatokban. Nézze meg az optimális termékszerkezetre vonatkozó korábbi feladatokat! Vegye észre, hogy az összes ilyen példában ki kellett már számítania az ICC-görbét! Amikor az optimumfeltétel felirat szerepel a példáknál, akkor tulajdonképpen mindig az ICC-t számoltuk ki! Nézze át az összes korábbi ilyen példát és jelölje meg, hogy mely egyenletek voltak az ICC-görbék azokban a példákban! 8. feladat: ICC és Engel-görbe összetett jószág esetén Egy fogyasztó jövedelmét két termékre, x -re és x -re költi el. Az x termék ára 00 Ft, az x termék összetett jószág. A fogyasztó preferenciáit a két termék vonatkozásában az U ( x x ) ( x ) ( )40 = preferenciarendszer írja le., x a) Adja meg az x termék vonatkozásában az ICC-görbe egyenletét! b) Ábrázolja az ICC-görbét! c) Írja fel az x termékre az Engel-görbe egyenletét! d) Ábrázolja az Engel-görbét! e) Határozza meg az x termék keresletét, az Engel-görbe segítségével, ha a fogyasztó jövedelme 6000/40000/60000 Ft 8/5 oldal

19 f) Ábrázolja a kiszámított értékeket az Engel-görbén! 9. feladat: PCC és egyéni keresleti görbe Egy fogyasztó havi jövedelmébıl Ft-ot két termékre, x -re és x -re költ. Tudjuk, hogy az x termék 0 Ft-ba kerül. A fogyasztó preferenciáit a két termék vonatkozásában az U 3 ( x x ) ( x ) ( )3, x = preferenciarendszer írja le. a) Adja meg az x termék vonatkozásában az PCC-görbe egyenletét! b) Ábrázolja az PCC-görbét! c) Írja fel az x termékre az egyéni keresleti görbe egyenletét logikai úton a PCC-görbe alakjának felhasználásával (ahogy azt a szemináriumon is csináltuk)! d) Vezesse le az egyéni keresleti görbe egyenletét! e) Ábrázolja az egyéni keresleti görbét! f) Határozza meg a fogyasztó optimális vásárlását az x termékbıl az egyéni keresleti görbe segítségével, ha annak ára 80Ft/00Ft/00Ft/50Ft! g) Ábrázolja ezeket a pontokat az egyéni keresleti görbén! 30. feladat: PCC és egyéni keresleti görbe Oldja meg az elızı feladatot az x termékre vonatkozóan is! 3. feladat: PCC és egyéni keresleti görbe összetett jószág esetén Egy fogyasztó havi jövedelmébıl Ft-ot két termékre, x -re és x -re költ. Tudjuk, hogy az x termék összetett jószág. A fogyasztó preferenciáit a két termék vonatkozásában az U ( x x ) ( x 3 ) 5 ( )5 = preferenciarendszer írja le., x a) Adja meg az x termék vonatkozásában az PCC-görbe egyenletét! b) Ábrázolja az PCC-görbét! c) Írja fel az x termékre az egyéni keresleti görbe egyenletét logikai úton a PCC-görbe alakjának felhasználásával (ahogy azt a szemináriumon is csináltuk)! d) Vezesse le az egyéni keresleti görbe egyenletét! e) Ábrázolja az egyéni keresleti görbét! f) Határozza meg a fogyasztó optimális vásárlását az x termékbıl az egyéni keresleti görbe segítségével, ha annak ára 50Ft/00Ft/40Ft/480Ft! g) Ábrázolja ezeket a pontokat az egyéni keresleti görbén! 3. feladat: egyéni és piaci keresleti függvény azonos optimalizálási feladatból származtatott preferenciák esetén Vegye az elızı feladatban meghatározott egyéni keresleti függvényt! Tegyük fel, hogy a termék piacán 5000, teljesen egyforma preferenciákkal és jövedelmi helyzettel rendelkezı vevı van. (Ez tehát azt jelenti, hogy mindegyiküknek azonos lesz az egyéni keresleti függvénye az x termékre vonatkozóan!) a) Adja meg a piaci keresleti függvény egyenletét! b) Ábrázolja a piaci keresleti függvényt! 33. feladat: egyéni és piaci keresleti függvény azonos, lineáris egyéni keresleti függvények esetén 9/5 oldal

20 Egy piacon 500, teljesen azonos keresleti függvénnyel rendelkezı vásárló van. Egy szereplı keresleti függvényének alakja a termékre vonatkozóan: P = 500 Q. a) Határozza meg egy adott fogyasztó keresleti görbéjének mindkét tengelymetszetét! b) Ábrázolja az egyéni keresleti görbét! c) Grafikusan rajzolja be, hogyan fog kinézni az 500 szereplıre vonatkozó piaci keresleti görbe! Ehhez gondolja végig az alábbiakat! a. El fog-e térni a piac egészére vonatkozó rezervációs ár a feladat elsı pontjában meghatározott, egy adott szereplıre vonatkozó rezervációs ártól, ha a szereplık mindannyian egyformák? b. Honnan fog akkor indulni a P tengelyen a piaci keresleti függvény? c. Mekkora egy fogyasztó maximális kereslete a termékbıl? d. Mekkora lesz ebbıl adódóan az 500 fogyasztó együttes kereslete a termék piacán? e. Hol lesz tehát a piaci keresleti függvény vízszintes tengelymetszépontja? d) Adja meg a piaci keresleti görbe egyenletét! Vegye figyelembe a következıket! a. A piaci kereslet a példában az egyéni kereslet 500-szorosa lesz. Ehhez tehát a függvény egyenletét is 500-zal kell szoroznia. b. Mennyiségeket akar szorozni, így az egyenletnek is ezt kell tükröznie! Figyelem!!!! A feladat P-re rendezett alakkal indított, így ahhoz, hogy mennyiségeket tudjon leolvasni, elıször Q-ra kell átrendeznie! c. A Q-ra rendezett alaknál már végrehajthatja az 500-zal való szorzást! 34. feladat: egyéni és piaci keresleti függvény eltérı, lineáris egyéni keresleti függvények esetén kétszereplıs (két vevıvel rendelkezı) piacon Egy termék piacán két vevı van. Keresleti függvényeik a termékre vonatkozóan a következı egyenletekkel adhatóak meg: D D : : P = 500 0,8 Q P = 400 Q a) Határozza meg a két szereplı keresleti görbéinek tengelymetszeteit! b) Ábrázolja ezek alapján a két keresleti görbét egy közös koordináta-rendszerben! c) Rajzolja be kettejük együttes keresleti görbéjét (ami itt egyben a piaci keresletet adja meg) a következık szerint: a. Döntse el, melyik szereplınek magasabb a rezervációs ára. Amikor az ár efölött van, akkor egyikük sem jelenik meg a piacon, a kereslet nulla. b. Amikor az ár már alacsonyabb, mint a magasabb rezervációs árral rendelkezı szereplı rezervációs ára, de még magasabb, mint a másik szereplı rezervációs ára, akkor csak az elıbb említett szereplı lesz a piacon (utóbbinak még túl drága a termék). Ebben az esetben a piaci keresleti görbe a magasabb rezervációs árral rendelkezı szereplı keresleti görbéjével azonos. c. Ha az ár alacsonyabb a kisebb rezervációs árral jellemezhetı szereplı saját rezervációs áránál, akkor már mindkét szereplı vásárol, így az összesített kereslet kettejük keresletének összege lesz. d. A piaci keresleti görbe tehát megtörik ott, ahol belép a második szereplı is. A vízszintes tengelymetszéspont egyszerően kalkulálható: a két fogyasztó maximális keresleteinek összegébıl adódik. (Egyéni keresleti függvényeik vízszintes tengelymetszeteit kell mindössze összeadnunk). 0/5 oldal

21 d) A rajz alapján határozza meg tehát, hogy mely árnál fog megtörni a keresleti görbe! Ezután adja meg a görbe (illetve ebben, a lineáris keresleti görbékkel megadott példák esetén egyenes) egyenletét a két szakasz segítségével! Ne feledje, itt is csak akkor adhat össze keresleteket, ha a függvények Q-ra rendezett alakban szerepelnek! Ha nem így adja meg ıket a példa (például most sem ilyenek), akkor elıször át kell ıket rendezni! 35. feladat: egyéni és piaci keresleti függvény eltérı, lineáris egyéni keresleti függvények esetén három szereplıs piacon Ezt a példát ugyanúgy kell megoldania, mint az elızıt, a különbség annyi, hogy most három szereplı lesz, s ehhez három külön rezervációs ár tartozik. (Elképzelhetı lenne, hogy mindhárom szereplınek azonos a rezervációs ára, keresleti görbéik mégis eltérnek, mert más az árra való érzékenységük). Az, hogy három szereplı és három rezervációs ár van, azt jelenti, hogy két helyen fog törni a piaci keresleti görbe, s így három lineáris szakaszból fog állni. Az összesített kereslet megadásához elıször mindig a töréspontok koordinátáit (P és Q érték) számolja ki, ez alapján könnyen tudja ábrázolni a példát, ami sokat segít aztán az egyenletek meghatározásában is! A feladat tehát a következı: Egy piacon három szereplı van. Keresleti függvényeik: Q = P Q Q 3 = P = P Adja meg a három szereplıbıl álló piac összesített keresleti függvényét! A megoldáshoz kövesse az alábbi lépéseket! a) határozza meg az egyéni keresleti függvények tengelymetszeteit! b) A tengelymetszetek alapján ábrázolja méretarányosan a három függvényt! (Az ábránál figyeljen arra, hogy a vízszintes tengelyen ki kell férnie a három tengelymetszéspont összegének!) c) Rajzolja meg a piaci összesített keresleti függvényt! a. A függvény a legmagasabb rezervációs árból indul ki, s egészen addig megegyezik a legmagasabb rezervációs árral rendelkezı szereplı egyéni keresleti függvényével, amíg el nem érjük a második szereplı rezervációs árát. b. Amíg a harmadik (a legalacsonyabb rezervációs árral rendelkezı) szereplı rezervációs ára fölött, de már a középsı rezervációs árral rendelkezı szereplı rezervációs ára alatt vagyunk, akkor már két szereplı összesített függvényével dolgozunk. c. A második töréspont ott lesz, ahol a harmadik (a legalacsonyabb rezervációs árral rendelkezı) szereplı is belép. Ezen az áron a kereslet a két magasabb rezervációs árral rendelkezı szereplı ehhez az árhoz tartozó keresleteinek összege lesz. d. Ezután már csak a függvény végpontját kell megrajzolnunk, ami egyben az összesített függvény vízszintes tengelymetszéspontja lesz. Itt pedig egyszerően össze kell adnunk a három egyéni tengelymetszéspontot, ezek összege adja a /5 oldal

22 piaci kereslet maximális értékét (vagyis a nulla árhoz tartozó összesített keresletet). d) A rajz logikáját követve írja fel egyenlettel is az összesített keresleti függvényt! Figyeljen rá, hogy a függvény (most, ebben a példában) három szakaszból fog állni: a. Az elsı szakaszon csak egy szereplı keresleti függvényébıl áll b. Majd a két magasabb rezervációs árral rendelkezı szereplı függvényét kell összeadnia c. Mindhárom szereplı keresletét kell összegeznie, ha már a legalacsonyabb rezervációs árral jellemezhetı szereplı is belép a piacra (ha már elég alacsony ehhez az ár). d. Fontos, hogy ehhez az összegzéshez csak és kizárólag a keresleti függvények Q ( P) alakja használható! A feladat így adta meg a függvényeket, így nincs külön tennivaló, az összeadások gond nélkül elvégezhetıek. Ha egy példa inverz, vagyis P ( Q) alakban adná meg a függvényeket, akkor viszont elıször át kellene rendeznünk ıket a normál alakra! 36. feladat: A rugalmassági mutatók felépítése Írja fel általánosságban, hogy adható meg egy tetszıleges, A változó B változóra vonatkozó rugalmassága a legegyszerőbb képlet segítségével! Ne feledje: a rugalmassági mutató azt adja meg, hogy egy változó %-os változása mekkora (hány százalékos) módosulást eredményez egy másik változóban. Így mindig a változást kiváltó tényezı (vagyis az ok) egységnyi változására kell vetíteni a következményt (vagyis a másik változó módosulását). Ez pedig azt jelenti, hogy a nevezıben mindig annak kell majd szerepelnie, ami a változást elindította! a) Adja meg a rugalmassági képletet ívrugalmassági formulával (tehát két pont közötti változásra vonatkozóan) b) Rendezze úgy át a képletet, hogy a pontrugalmassági formula alakjára is következtetni lehessen belıle! c) Adja meg ezután a pontrugalmassági formula képletét az A és B mutatók vonatkozásában! 37. feladat: A rugalmassági mutatók képlete Az elızı feladatban látott logika alapján írja fel a tanult három kereslet-rugalmassági mutató képletét mindkét módszerrel, illetve válaszoljon az egyéb kérdésekre! A képleteknél a keresletet Q, az árakat P jelöléssel lássa el (ahogy az a piaci függvényekben látható), majd írja fel úgy, hogy x és p szerepel (ahogyan az egyéni optimalizálásból kapott függvényeknél szerepelne). Eszerint tehát minden feladatra két megoldást kell adnia a két jelölésnek megfelelıen a) Adja meg a kereslet saját-árrugalmasságának képletét ívrugalmassági formulával! b) Adja meg a kereslet saját-árrugalmasságának képletét pontrugalmassági formulával! /5 oldal

23 c) Adja meg a kereslet kereszt-árrugalmasságának képletét ívrugalmassági formulával! d) Adja meg a kereslet kereszt-árrugalmasságának képletét pontrugalmassági formulával! e) Adja meg a kereslet jövedelem-rugalmasságának képletét ívrugalmassági formulával! f) Adja meg a kereslet jövedelem-rugalmasságának képletét pontrugalmassági formulával! g) Gondolja végig, hogy melyik rugalmassági mutatót milyen függvényekbıl számíthatjuk! (Tehát milyen függvényt [vagy annak pontjait] kell ismernünk ahhoz, hogy például saját-, vagy kereszt-árrugalmasságot számíthassunk? Milyen függvénybıl nyerhetık ki pl. a jövedelem-rugalmassághoz szükséges adatok?) Vegye észre, hogy a szükséges függvények a korábbi órákon látottak lesznek (pl. Engelgörbe, egyéni keresleti görbe)! 38. feladat: A rugalmassági mutatók elıjelének, nagyságának értelmezése Válaszoljon a következı kérdésekre! A válaszhoz gondolja végig, hogy épül fel a rugalmassági mutató (általános alakja, tehát függetlenül attól, hogy a három közül épp melyikkel dolgozunk). a) Mit jelent a rugalmassági mutató elıjele? Mikor lesz negatív a mutató? Mikor kapunk pozitív eredményt? b) Mikor lesz nulla egy rugalmassági mutató értéke? Most tegye félre az elıjel kérdését! A továbbiaknál a mutató abszolút értékére vonatkozóan dolgozzon, tehát a -0,83 és a +0,83 értékek azonosak lesznek a vizsgálat szempontjából! De ne feledje az elıjel fontos információkat hordoz, miután ezeket kinyertük, már a mutató értékére koncentrálhatunk, ekkor pedig az elıjelet már nem kell néznünk. c) Mikor lesz pontosan egy a mutató értéke? Mit jelent ez? d) Mikor kapunk egynél nagyobb eredményt egy rugalmassági mutatóra? Mit jelent ez? e) Mikor lesz egy rugalmassági mutató értéke egynél kisebb? Mit jelent ez? f) Használja tudatosan a rugalmas, rugalmatlan, egységnyi rugalmasságú kifejezéseket, s ezek segítségével fogalmazza újra a c), d) és e) kérdésekre adott válaszait! (persze elıször el kell döntenie, hogy melyik kifejezés melyik esethez használható!) Írja le kerek, egész mondatokkal, hogy mit tud kiolvasni a rugalmassági mutatók következı értékeibıl! (Még mindig úgy dolgozzon, hogy nem adjuk meg, hogy konkrétan melyik mutatóról van szó, általános megfogalmazást várok!) a) ε = +0, 3 b) ε = + c) ε = +, 85 d) ε = +4, 3 e) ε = 0 3/5 oldal

24 f) ε = 0, 45 g) ε = h) ε =, 93 i) ε = 7, 39. feladat: A saját-árrugalmasság elıjelének, értékének értelmezése Válaszoljon a következı kérdésekre! Válaszát már kifejezetten a saját-árrugalmasságra vonatkozóan adja meg a) Mit jelent, ha a saját-árrugalmasság elıjele negatív? Mennyire tőnik elfogadhatónak ez? Milyen termékek esetében fordulhat ez elı? b) Mit jelent, ha a saját-árrugalmasság elıjele pozitív? Mennyire tőnik elfogadhatónak ez? Milyen termékek esetében fordulhat ez elı? c) Mit jelent, ha a saját-árrugalmasság értéke nulla? Mennyire tőnik elfogadhatónak ez? Milyen termékek esetében fordulhat ez elı? Adja meg szövegesen a saját-árrugalmassági mutató következı értékeinek jelentését: d) ε Q, P =, 5 e) ε Q, P = 4, 5 f) ε = Q, P g) ε Q, P = 0, 47 h) ε Q, P = 0, 9 i) ε 0 Q, P = j) ε Q, P = +0, 4 k) ε Q, P = +, feladat: A kereszt-árrugalmasság elıjelének, értékének értelmezése Válaszoljon a következı kérdésekre! Válaszát már kifejezetten a kereszt-árrugalmasságra vonatkozóan adja meg! Ne feledje, a kereszt-árrugalmasságnál két termék adataival kell dolgoznia!!! a) Mit jelent, ha a kereszt-árrugalmasság elıjele negatív? Milyen termékek esetében jöhet ki ilyen eredmény? b) Írjon konkrét példákat ilyen termékekre! c) Mit jelent, ha a saját-árrugalmasság elıjele pozitív? Milyen termékek esetében jöhet ki ilyen eredmény? d) Írjon konkrét példákat ilyen termékekre! 4/5 oldal

25 e) Mit jelent, ha a saját-árrugalmasság értéke nulla Milyen termékek esetében jöhet ki ilyen eredmény? f) Írjon konkrét példákat ilyen termékekre! Adja meg szövegesen az kereszt-árrugalmassági mutató következı értékeinek jelentését: g) ε = 5 Q X P Y,, h) ε = 9 Q X P Y, 3, i) ε = Q X, P Y j) ε = 7 Q X P Y, 0, k) ε 0 Q X, P Y = l) ε = 86 Q X P Y, +0, m) ε = 4 Q X P Y, +, 4. feladat: Saját-árrugalmasság számítása lineáris keresleti görbébıl Egy termék piacán a keresleti függvény Q = 5000 P. a) Adja meg a termék keresletének saját-árrugalmasságát ívrugalmassági formulával, ha a termék ára 500-ról 000 Ft-ra emelkedik! b) Adja meg ugyanezt, ha az ár 000 Ft-ról 500 Ft-ra emelkedik! c) Mekkora a mutató értéke (ugyanilyen módszerrel számítva) ha az ár 500-ról 000 Ftra módosul? d) Határozza meg a saját-árrugalmasság képletét az a) b) és c) pontokban szereplı valamennyi értékre és az értékeket írja be a következı táblázatba. Határozza meg a táblázatban szereplı egyéb értékekre is a rugalmassági mutató értékét. Majd ez alapján vonjon le következtetéseket arra, hogyan változik az árrugalmasság egy lineáris keresleti görbén! (Nézze meg, hogy van-e tendencia a mutató értékének alakulásában, ahogy a görbén haladunk valamelyik irányban!) Termék ára Kereslet ε Q, P /5 oldal

Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba

Mikroökonómia előadás. Dr. Kertész Krisztián   Fogadóóra: minden szerdán között Helyszín: 311-es szoba Mikroökonómia előadás Dr. Kertész Krisztián e-mail: k.krisztian@efp.hu Fogadóóra: minden szerdán 10.15 11.45. között Helyszín: 311-es szoba Irodalom Tankönyv: Jack Hirshleifer Amihai Glazer David Hirshleifer:

Részletesebben

Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba

Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba Mikroökonómia előadás Dr. Kertész Krisztián Fogadóóra: minden szerdán 10.15 11.45. között Helyszín: 311-es szoba Költségvetési egyenes Költségvetési egyenes = költségvetési korlát: azon X és Y jószágkombinációk

Részletesebben

Közgazdaságtan alapjai I. Dr. Karajz Sándor Gazdaságelméleti Intézet

Közgazdaságtan alapjai I. Dr. Karajz Sándor Gazdaságelméleti Intézet Közgazdaságtan alapjai I. Dr. Karajz Sándor Gazdaságelméleti Elérhetőség e-mail: karajz.sandor@uni-miskolc.hu tel.:46-565111/1899 Kötelező irodalom Szilágyi Dezsőné dr. szerk: Közgazdaságtan alapja I.

Részletesebben

14.1.ábra: Rezervációs árak és a fogyasztói többlet (diszkrét jószág) 6. elıadás: Fogyasztói többlet; Piaci kereslet; Egyensúly

14.1.ábra: Rezervációs árak és a fogyasztói többlet (diszkrét jószág) 6. elıadás: Fogyasztói többlet; Piaci kereslet; Egyensúly (C) htt://kgt.bme.hu/ / 6. elıadás: Fogyasztói többlet; Piaci kereslet; Egyensúly 4..ábra: Rezervációs ak és a fogyasztói többlet (diszkrét jószág) Ár r r 2 Ár r r 2 r 3 r 4 r 5 r 6 r 3 r 4 r 5 r 6 2 3

Részletesebben

Gyakorló feladatok a 2. zh-ra MM hallgatók számára

Gyakorló feladatok a 2. zh-ra MM hallgatók számára Gyakorló feladatok a. zh-ra MM hallgatók számára 1. Egy vállalat termelésének technológiai feltételeit a Q L K függvény írja le. Rövid távon a vállalat 8 egységnyi tőkét használ fel. A tőke ára 000, a

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 4. hét A KERESLETELMÉLET ALKALMAZÁSAI

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 4. hét A KERESLETELMÉLET ALKALMAZÁSAI KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALKALMAZÁSAI Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely 2010. június Vázlat

Részletesebben

13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő.

13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő. 1. Minden olyan jószágkosarat, amely azonos szükségletkielégítési szintet (azonos hasznosságot) biztosít a fogyasztó számára,.. nevezzük a. költségvetési egyenesnek b. fogyasztói térnek c. közömbösségi

Részletesebben

2. szemináriumi. feladatok. Fogyasztás/ megtakarítás Több időszak Több szereplő

2. szemináriumi. feladatok. Fogyasztás/ megtakarítás Több időszak Több szereplő 2. szemináriumi feladatok Fogyasztás/ megtakarítás Több időszak Több szereplő 1. feladat Egy olyan gazdaságot vizsgálunk, ahol a fogyasztó exogén jövedelemfolyam és exogén kamat mellett hoz fogyasztási/megtakarítási

Részletesebben

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás 1. szemináriumi feladatok két időszakos fogyasztás/ megtakarítás 1. feladat Az általunk vizsgál gazdaság csupán két időszakig működik. A gazdaságban egy reprezentatív fogyasztó hoz döntéseket. A fogyasztó

Részletesebben

Bevezetés s a piacgazdaságba. gba. Alapprobléma. Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények

Bevezetés s a piacgazdaságba. gba. Alapprobléma. Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények A mikroökonómia és makroökonómia eltérése: Bevezetés s a piacgazdaságba gba Alapfogalmak, piaci egyensúly Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények Makroökonómia:

Részletesebben

Mikroökonómia előadás. Dr. Kertész Krisztián főiskolai docens

Mikroökonómia előadás. Dr. Kertész Krisztián főiskolai docens Mikroökonómia előadás Dr. Kertész Krisztián főiskolai docens k.krisztian@efp.hu Árrugalmasság A kereslet árrugalmassága = megmutatja, hogy ha egy százalékkal változik a termék ára, akkor a piacon hány

Részletesebben

Mikroökonómia - Bevezetés, a piac

Mikroökonómia - Bevezetés, a piac Mikroökonómia szeminárium Bevezetés, a piac Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011 szeptember 21. A témakör alapfogalmai Keresleti (kínálati) görbe - kereslet (kínálat) fogalma - kereslet

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely

Részletesebben

Mikroökonómia. Vizsgafeladatok

Mikroökonómia. Vizsgafeladatok Mikroökonómia Vizsgafeladatok Bacsi, Mikro feladatok 1 1, Marshall- kereszt, piaci egyensúly Mennyi a savanyúcukorka egyensúlyi mennyisége, ha a cukorka iránti kereslet és kínálat függvénye a következı:

Részletesebben

Bevezetés s a piacgazdaságba. gba. Alapprobléma. Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények

Bevezetés s a piacgazdaságba. gba. Alapprobléma. Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények A közgazdask zgazdaságtan gtan részei: r Bevezetés s a piacgazdaságba gba Alapfogalmak, piaci egyensúly Elméleti: mikroökonómia makroökonómia nemzetközi gazdaságtan világgazdaságtan komparatív gazdaságtan

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

MIKROÖKONÓMIA I. B. Készítette: K hegyi Gergely, Horn Dániel és Major Klára. Szakmai felel s: K hegyi Gergely június

MIKROÖKONÓMIA I. B. Készítette: K hegyi Gergely, Horn Dániel és Major Klára. Szakmai felel s: K hegyi Gergely június MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

1. feladat megoldásokkal

1. feladat megoldásokkal 1. feladat megoldásokkal Az általunk vizsgált gazdaságban két iparág állít elő termékeket, az és az. A termelés során mindekét iparág reprezentatív vállalata két termelési tényező típust használ egy iparágspecifikusat,

Részletesebben

MIKROÖKONÓMIA. Externális hatások: valamilyen külső gazdasági hatás következtében történik a változás.

MIKROÖKONÓMIA. Externális hatások: valamilyen külső gazdasági hatás következtében történik a változás. A közgazdaságtan társadalomtudomány, a társadalom tagjait vizsgálja. Közgazdaságtan főbb területei: 1. Mikroökonómia: egyéni viselkedéseket vizsgálja (1. féléves anyag) 2. Makroökonómia: a gazdasági szereplők

Részletesebben

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek Révész Sándor reveszsandor.wordpress.com 2011. december 20. Elmélet Termelési függvény Feladatok Parciális termelési függvény Adott a következ

Részletesebben

Keynesi kereszt IS görbe. Rövid távú modell. Árupiac. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem.

Keynesi kereszt IS görbe. Rövid távú modell. Árupiac. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem. Árupiac Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Mit tudunk eddig? Ismerjük a gazdaság hosszú távú m ködését (klasszikus modell) Tudjuk, mit l függ a gazdasági növekedés (Solow-modell)

Részletesebben

Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény

Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény 84-85.) Bock Gyula [2001]: Makroökonómia feladatok. TRI-MESTER, Tatabánya. 38. o. 16-17. (Javasolt változtatások: 16. feladat: I( r) 500

Részletesebben

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban tehát attól függ, hogy x milyen értéket vesz fel. A függvényeket a közgazdaságtanban is a jól ismert derékszögû koordináta-rendszerben ábrázoljuk, ahol a változók nevének megfelelõen általában a vízszintes

Részletesebben

1. A vállalat. 1.1 Termelés

1. A vállalat. 1.1 Termelés II. RÉSZ 69 1. A vállalat Korábbi fejezetekben már szóba került az, hogy különböző gazdasági szereplők tevékenykednek. Ezek közül az előző részben azt vizsgáltuk meg, hogy egy fogyasztó hogyan hozza meg

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Mikroökonómiai alapismeretek. Ingatlanvagyon-értékelı és közvetítı Szakképzés A-III. modul

Mikroökonómiai alapismeretek. Ingatlanvagyon-értékelı és közvetítı Szakképzés A-III. modul Mikroökonómiai alapismeretek Ingatlanvagyon-értékelı és közvetítı Szakképzés A-III. modul Harnos László (1) 375-3121 (1) 375-2202 E-mail: harnos@futiomega.hu A mikroökonómia helye a gazdaság-tudományban

Részletesebben

Mikroökonómia 2009 őszi félév

Mikroökonómia 2009 őszi félév Mikroökonómia 2009 őszi félév Budapesti Corvinus Egyetem, Közgazdaságtudományi Kar. 3. előadás Fogyasztás és kereslet Előadó: Berde Éva A jelen előadás fóliáiban többször felhasználtam a Hirshleifer Glazer

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Debreceni Egyetem AGTC

Debreceni Egyetem AGTC Debreceni Egyetem AGTC GAZDÁLKODÁSTUDOMÁNYI ÉS VIDÉKFEJLESZTÉSI KAR Gazdaságelméleti Intézet Közgazdaságtan és Környezetgazdaságtan Tanszék 4032 DEBRECEN, Böszörményi út 138., 4015 DEBRECEN Pf.36. : (52)

Részletesebben

Mikroökonómia (GTGKG601EGL) Egészségügyi szervező szakos levelező hallgatóknak

Mikroökonómia (GTGKG601EGL) Egészségügyi szervező szakos levelező hallgatóknak Mikroökonómia (GTGKG601EGL) Egészségügyi szervező szakos levelező hallgatóknak közgazdaságtan szükséglet mikroökonómia makroökonómia nemzetközi közgazdaságtan ceteris paribus elv piac kereslet kínálat

Részletesebben

Közgazdaságtan műszaki menedzsereknek II. SGYMMEN227XXX SGYMMEN2073XA. Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens

Közgazdaságtan műszaki menedzsereknek II. SGYMMEN227XXX SGYMMEN2073XA. Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens Közgazdaságtan műszaki menedzsereknek II. SGYMMEN227XXX SGYMMEN2073XA Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens Tárgyelőadó: dr. Paget Gertrúd főiskolai docens Gyakorlatvezető: dr. Paget Gertrúd

Részletesebben

7. lecke FELADATOK. Elektronikus példatár Dr. Koppány Krisztián PhD, SZE 2012

7. lecke FELADATOK. Elektronikus példatár Dr. Koppány Krisztián PhD, SZE 2012 Elektronikus példatár Dr. Koppány Kritián PhD, SZE 7. lecke FELADATOK 3.) Egy munkavállaló ámára a napi abadidõ és övedelem együttes hanosságát az U (, ) ( 8) függvény íra le, ahol a napi abadidõ mennyisége

Részletesebben

BUDAPESTI GAZDASÁGI FİISKOLA KÜLKERESKEDELMI FİISKOLAI KAR KÖZGAZDASÁGTAN ÉS TÁRSADALOMTUDOMÁNYI INTÉZETI TANSZÉK

BUDAPESTI GAZDASÁGI FİISKOLA KÜLKERESKEDELMI FİISKOLAI KAR KÖZGAZDASÁGTAN ÉS TÁRSADALOMTUDOMÁNYI INTÉZETI TANSZÉK BUDAPESTI GAZDASÁGI FİISKOLA KÜLKERESKEDELMI FİISKOLAI KAR KÖZGAZDASÁGTAN ÉS TÁRSADALOMTUDOMÁNYI INTÉZETI TANSZÉK Vizsgatételek a Közgazdaságtan alapjai (Mikroökonómia) tárgyból a nappali tagozat I.évfolyamának

Részletesebben

Tisztelt hallgatók! Farkas Péter egyetemi adjunktus, tananyagfejlesztõ, tutor (gyõri és pécsi csoport) egyetemi adjuntus, tutor (budapesti csoport)

Tisztelt hallgatók! Farkas Péter egyetemi adjunktus, tananyagfejlesztõ, tutor (gyõri és pécsi csoport) egyetemi adjuntus, tutor (budapesti csoport) Tisztelt hallgatók! E-LEARNING KÉZÉS Az alábbiakban a Gazdálkodási szakos, e-learning rendszerben mûködõ képzés tananyagához készült hibalistát olvashatja. A visszajelzések és az anyag folyamatos gondozása

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 240 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM MIKROÖKONÓMIA

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK 2007. május 25. 8:00 KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

Előadó: Dr. Kertész Krisztián

Előadó: Dr. Kertész Krisztián Előadó: Dr. Kertész Krisztián E-mail: k.krisztian@efp.hu A termelés költségei függenek a technológiától, az inputtényezők árától és a termelés mennyiségétől, de a továbbiakban a technológiának és az inputtényezők

Részletesebben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztáselméletek 64.) Bock Gyula [2001]: Makroökonómia ok. TRI-MESTER, Tatabánya. 33. o. 1. 65.) Keynesi abszolút

Részletesebben

Mikroökonómia - 6. elıadás

Mikroökonómia - 6. elıadás Mikroökonómia - 6. elıadás A FOGYASZTÁSI ELMÉLET KITERJESZTÉSE Bacsi, 6. ea. 1 A fogyasztói többlet p1 p2 p3 * A további termékegységekért megadandó árak Rezervációs ár: az a legnagyobb ár, amelyet az

Részletesebben

Mikroökonómia elıadás

Mikroökonómia elıadás Mikroökonómia -. elıadás ÁLTLÁNOS EGYENSÚLY ELMÉLET 1 Bevezetés - mit tartalmaz az általános egyensúlyelmélet? Eddigi vizsgálatokban: egy piac viszonyai (részpiaci elemzés) a többi piac változatlanságát

Részletesebben

Kereslet törvénye: ha az árak nőnek, a keresett mennyiség csökken. Az árak csökkenésével a keresett mennyiség növekszik.

Kereslet törvénye: ha az árak nőnek, a keresett mennyiség csökken. Az árak csökkenésével a keresett mennyiség növekszik. 2 Ha az ár nő a költségvetési egyenes meredekebb lesz: B A U2 U1 U3 I2 I1 I0 1 d = egyéni keresleti függvény Kereslet: az a termékmennyiség, amennyit a vevő vásárolni kíván adott áruból. d iaci kereslet:

Részletesebben

Közgazdaságtan BMEGT30A002 (Mikroökonómia BMEGT30A014) Kupcsik Réka október 4. 12:15-13:45 E305

Közgazdaságtan BMEGT30A002 (Mikroökonómia BMEGT30A014) Kupcsik Réka október 4. 12:15-13:45 E305 Közgazdaságtan BMEGT30A002 (Mikroökonómia BMEGT30A014) Kupcsik Réka 2016. október 4. 12:15-13:45 E305 Emlékeztető Első zh a 7. héten Az anyaga az 1-5. heteken tanultak Tesztek, számolási feladatok Mikor

Részletesebben

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1. Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y

Részletesebben

A FOGYASZTÓI MAGATARTÁS

A FOGYASZTÓI MAGATARTÁS A FOGYASZTÓI MAGATARTÁS Kiindulópont: a fogyasztó racionálisan viselkedik a termékek árai és a fogyasztó jövedelme mellett szükséglet-kielégítésének maximalizálására törekszik. A szükségletek kielégítéséhez

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

szemináriumi D csoport Név: NEPTUN-kód: Szabó-Bakos Eszter

szemináriumi D csoport Név: NEPTUN-kód: Szabó-Bakos Eszter 2. szemináriumi ZH D csoport Név: NEPTUN-kód: A feladatlapra írja rá a nevét és a NEPTUN kódját! A dolgozat feladatainak megoldására maximálisan 90 perc áll rendelkezésre. A helyesnek vált válaszokat a

Részletesebben

x jószágkombinációk halmaza,

x jószágkombinációk halmaza, . Tegyük fel, hogy egy piacon a kereslet és a kínálat az alábbi összefüggésekkel adhatók meg: Q = 60 p és Q = p/2, ahol p az árat jelöli forintban! A kormány elrendeli, hogy a termelőknek a szóban forgó

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. május 26. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

Excel Hivatkozások, függvények használata

Excel Hivatkozások, függvények használata Excel Hivatkozások, függvények használata 1. Fejezet Adatok, képletek, függvények Adatok táblázat celláiba írjuk, egy cellába egy adat kerül lehet szám, vagy szöveg * szám esetén a tizedes jegyek elválasztásához

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2006. május 18. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. május 18. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

Mit jelent az optimalizálás?

Mit jelent az optimalizálás? Mikroökon konómiai optimumfeladatok megoldási módszereim Alapvetõ deriválási szabálok. Feltételes szélsõ érték feladatok megoldása. Mit jelent az optimalizálás? feltételes szélsõérték-feladat döntési helzet

Részletesebben

szemináriumi C csoport Név: NEPTUN-kód: Szabó-Bakos Eszter

szemináriumi C csoport Név: NEPTUN-kód: Szabó-Bakos Eszter 2. szemináriumi ZH C csoport Név: NEPTUN-kód: A feladatlapra írja rá a nevét és a NEPTUN kódját! A dolgozat feladatainak megoldására maximálisan 90 perc áll rendelkezésre. A helyesnek vált válaszokat a

Részletesebben

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Gazdasági ismeretek emelt szint 1011 ÉRETTSÉGI VIZSGA 2011. május 23. GAZDASÁGI ISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A javítás során

Részletesebben

Levelező hallgatóknak pótzh lehetőség: a félév rendje szerinti pótlási napok egyikén

Levelező hallgatóknak pótzh lehetőség: a félév rendje szerinti pótlási napok egyikén Közgazdaságtan II. Mikroökonómia SGYMMEN202XXX Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens Tárgyelőadó: dr. Paget Gertrúd főiskolai docens Gyakorlatvezető: dr. Paget Gertrúd Tantárgyi leírás építőmérnök

Részletesebben

A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése

A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése 1 /11 (C) http://kgt.bme.hu/ A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése Varian 20.3-6. 21. fejezet Termelési és hasznossági függvény (ismétlés

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. október 24. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK 0611 ÉRETTSÉGI VIZSGA 2006. május 18. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM MIKROÖKONÓMIA I. FELELETVÁLASZTÓS KÉRDÉSEK

Részletesebben

A jövedelem- és árváltozások hatása a fogyasztói döntésre. Az ICC görbe. Az Engel-görbe. 4-5. előadás

A jövedelem- és árváltozások hatása a fogyasztói döntésre. Az ICC görbe. Az Engel-görbe. 4-5. előadás 4-5. előadás A jövedelem- és árváltozások hatása a fogasztói döntésre ICC és Engel-görbe, PCC és egéni keresleti függvén. A iaci keresleti görbe származtatása. A fogasztói többlet. Kereslet-rugalmassági

Részletesebben

A dokumentum egy feladatgyűjtemény harmadik fejezetének előzetes változata.

A dokumentum egy feladatgyűjtemény harmadik fejezetének előzetes változata. A dokumentum egy feladatgyűjtemény harmadik fejezetének előzetes változata. Amennyiben a következő oldalakon bármilyen hibát talál, legyen az szakmai probléma, vagy helyesírási hiba, esetleg ötlete, vagy

Részletesebben

Szabó-bakoseszter. Makroökonómia. Árupiacrövidtávon,kiadásimultiplikátor, adómultiplikátor,isgörbe

Szabó-bakoseszter. Makroökonómia. Árupiacrövidtávon,kiadásimultiplikátor, adómultiplikátor,isgörbe Szabó-bakoseszter Makroökonómia Árupiacrövidtávon,kiadásimultiplikátor, adómultiplikátor,isgörbe Számítási és geometriai feladatok 1. feladat Tételezzük fel, hogy az általunk vizsgált gazdaságban a gazdasági

Részletesebben

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ IDŽ KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack Hirshleifer, Amihai

Részletesebben

A fogyasztási kereslet elméletei

A fogyasztási kereslet elméletei 6. lecke A fogyasztási kereslet elméletei A GDP, a rendelkezésre álló jövedelem, a fogyasztás és a megtakarítás kapcsolata. Az abszolút jövedelem hipotézis és a keynesi fogyasztáselmélet. A permanens jövedelem

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. október 24. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. október 24. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

A belföldi és a külföldi gazdasági szereplőket az alábbi adatokkal jellemezhetjük:

A belföldi és a külföldi gazdasági szereplőket az alábbi adatokkal jellemezhetjük: 1 feladat A belföldi és a külföldi gazdasági szereplőket az alábbi adatokkal jellemezhetjük: U i = D X,i D Y,i, ahol i = belföld,külföld Q X,belföld = K X,belföld Q X,külföld = K X,külföld Q Y,i = K 0,5,

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

Gyakorlófeladatok a neoklasszikus modellhez

Gyakorlófeladatok a neoklasszikus modellhez Gyakorlófeladatok a neoklasszikus modellhez Egy gazdaság a neoklasszikus modell leírása szerint működik. A megtakarítási függvény: S(i)=300+1000i, a beruházási függvény: I(i)=1800-500i. Egységnyi forgalomban

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Minta. MELLÉKLETEK KÖZGAZDASÁG-MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA ÍRÁSBELI TÉTEL Középszint TESZTFELADATOK. Mikroökonómia

Minta. MELLÉKLETEK KÖZGAZDASÁG-MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA ÍRÁSBELI TÉTEL Középszint TESZTFELADATOK. Mikroökonómia MELLÉKLETEK KÖZGAZDASÁG-MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA ÍRÁSBELI TÉTEL Középszint TESZTFELADATOK 1. Feleletválasztás Mikroökonómia a) Az alábbi jövedelemformák közül melyik a vállalkozó vállalkozói

Részletesebben

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Gazdasági ismeretek emelt szint 1212 ÉRETTSÉGI VIZSGA 2013. május 27. GAZDASÁGI ISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA I. TESZTFELADATOK

Részletesebben

Pénzkereslet, pénzkínálat, a pénzügyi szektor közvetítı szerepe

Pénzkereslet, pénzkínálat, a pénzügyi szektor közvetítı szerepe Pénzkereslet, pénzkínálat, a pénzügyi szektor közvetítı szerepe Pénzügy I. Sportszervezı II. évfolyam Onyestyák Nikolett A központi bank mérlege 1 A központi bank mérlege általunk használt formája A jegybank

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

5. hét Költségvetési korlát, a fogyasztó optimális döntése. PCC- és ICC-görbe, egyéni keresleti függvény és Engel-görbe.

5. hét Költségvetési korlát, a fogyasztó optimális döntése. PCC- és ICC-görbe, egyéni keresleti függvény és Engel-görbe. () htt://kgt.be.hu/ 1 /12 5. hét Költségvetési korlát, a fogasztó otiális döntése. P- és I-görbe, egéni keresleti függvén és Engel-görbe. Varian: 2. 5.6. fejezet MIT FOGYSZTÓ MEGENGEDHET MGÁNK KÖLTSÉGVETÉSI

Részletesebben

Közgazdaságtan I. 2015. február 18. 2. alkalom Tóth-Bozó Brigitta

Közgazdaságtan I. 2015. február 18. 2. alkalom Tóth-Bozó Brigitta Közgazdaságtan I. 2015. február 18. 2. alkalom Tóth-Bozó Brigitta Általános bevezető Fogalmak a mai alkalomra: - kereslet/keresleti függvény/keresleti görbe - kínálat/kínálati függvény/keresleti görbe

Részletesebben

A lecke célja... A tényezőpiac keresleti és kínálati oldala. 14. hét / #1 A vállalatok termelési tényezők iránti kereslete. fogyasztási javak piaca

A lecke célja... A tényezőpiac keresleti és kínálati oldala. 14. hét / #1 A vállalatok termelési tényezők iránti kereslete. fogyasztási javak piaca 4. hét / # A vállalatok termelési tényezők iránti kereslete A vállalatok egyéni munkakereslete rövid és hosszú távon. Az iparági munkakeresleti görbe. A munkapiaci egyensúly és a munkavállalók gazdasági

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. május 14. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 14. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 18. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN)

KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) ÉRETTSÉGI VIZSGA 2008. október 20. KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Mikroökonómia - 2. elıadás. Speciális közömbösségi görbék Az ICC és PCC

Mikroökonómia - 2. elıadás. Speciális közömbösségi görbék Az ICC és PCC Mikroökonómia - 2. elıadás Speciális közömbösségi görbék z I és P 1 FOGYSZTÓI DÖNTÉS TÉNYEZİI FOGYSZTÓ OPTIMÁLIS VÁLSZTÁS (ism.) Optimális választás: z U* és a költségvetési egenes érintési pontja (jól

Részletesebben

Bevásárlás, árak összehasonlítása, fogyasztói döntések

Bevásárlás, árak összehasonlítása, fogyasztói döntések Bevásárlás, árak összehasonlítása, fogyasztói döntések Rövid leírás: ez a lecke a személyes pénzeszközökkel történı gazdálkodásról szól. Megvizsgálja az áruk tényleges megvásárlása elıtti piackutatás és

Részletesebben

Miért készítünk modellt Hogyan készítünk modellt. Dolgozat Házi feladatok Esettanulmányok MATLAB. Kétidőszakos modell. Kétidőszakos modell

Miért készítünk modellt Hogyan készítünk modellt. Dolgozat Házi feladatok Esettanulmányok MATLAB. Kétidőszakos modell. Kétidőszakos modell Követelmények Dolgozat Házi feladatok Esettanulmányok MATLAB Kétidőszakos modell Miért készítünk modellt Hogyan készítünk modellt Kétidőszakos modell Tematika a honlapon, www.makrokurzusok.wordpress.com

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK Közgazdasági-marketing alapismeretek emelt szint 051 ÉRETTSÉGI VIZSGA 007. október 4. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI

Részletesebben

szemináriumi A csoport Név: NEPTUN-kód: Szabó-Bakos Eszter

szemináriumi A csoport Név: NEPTUN-kód: Szabó-Bakos Eszter 3. szemináriumi ZH A csoport Név: NEPTUN-kód: A feladatlapra írja rá a nevét és a NEPTUN kódját! A dolgozat feladatainak megoldására maximálisan 90 perc áll rendelkezésre. A helyesnek vált válaszokat a

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 2. hét KERESLET, KÍNÁLAT, EGYENSÚLY

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 2. hét KERESLET, KÍNÁLAT, EGYENSÚLY KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. KERESLET, KÍNÁLAT, EGYENSÚLY Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely 2010. június Vázlat 1

Részletesebben

A gazdaság szerkezeti vázlata

A gazdaság szerkezeti vázlata 3. lecke Hogyan működik a iac? A iacelemzés alafogalmai. A keresleti, a kínálati oldal és az egyensúly. A mikroökonómiai iacmodell: a Marshallkereszt. A keresleti és kínálati görbék kezelése. Példák és

Részletesebben

Módszertani megjegyzés: A kikötés az osztás műveletéhez kötődik. A jobb megértés miatt célszerű egy-két példát mu-

Módszertani megjegyzés: A kikötés az osztás műveletéhez kötődik. A jobb megértés miatt célszerű egy-két példát mu- . modul: ELSŐFOKÚ TÖRTES EGYENLETEK A következő órákon olyan egyenletekkel foglalkozunk, amelyek nevezőjében ismeretlen található. Ha a tört nevezőjében ismeretlen van, akkor kikötést kell tennünk: az

Részletesebben

1. gyakorlat. Oktatási segédlet hallgatók számára

1. gyakorlat. Oktatási segédlet hallgatók számára másik termék mennisége. gakorlat Transzformációs görbe, mikroökonómiai optimumfeladatok megoldásának alapmódszere Oktatási segédlet hallgatók számára Eg fontos közgazdasági alapmodell TLH, alternatív költség,

Részletesebben

Adminisztratív kérdések. A makroökonómiáról általánosan. Fontos fogalmak 01: GDP. Az előadás-vázlatok és segédanyagok megtalálhatók a moodle-ön!

Adminisztratív kérdések. A makroökonómiáról általánosan. Fontos fogalmak 01: GDP. Az előadás-vázlatok és segédanyagok megtalálhatók a moodle-ön! 1 Adminisztratív kérdések. A makroökonómiáról általánosan. Fontos fogalmak 01: GDP. Az előadás-vázlatok és segédanyagok megtalálhatók a moodle-ön! 2 Van Tematika! Az előadás A szeminárium is 3 Van 60 pont

Részletesebben

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Gazdasági ismeretek emelt szint 1211 ÉRETTSÉGI VIZSGA 2012. május 24. GAZDASÁGI ISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM I. TESZTFELADATOK

Részletesebben

Rövid távú modell III. Pénzkereslet, LM görbe

Rövid távú modell III. Pénzkereslet, LM görbe Rövid távú modell III. Pénzkereslet, Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Rövid távú modell III. Pénzkereslet, Félév végi dolgozat 40 pontos vizsga május 23. hétf 10 óra május

Részletesebben

KÖZGAZDASÁGTAN, ÍRÁSBELI FELVÉTELI FELADAT, 2004

KÖZGAZDASÁGTAN, ÍRÁSBELI FELVÉTELI FELADAT, 2004 KÖZGAZDASÁGTAN, ÍRÁSBELI FELVÉTELI FELADAT, 2004 Kedves Felvételiző! A feladatlap két részből áll. Az első rész mikroökonómiai ismereteire, a második rész a makroökonómiai tananyagra vonatkozik. Kövesse

Részletesebben

MIKROÖKONÓMIA I. Készítette: Kőhegyi Gergely, Horn Dániel. Szakmai felelős: Kőhegyi Gergely. 2010. június

MIKROÖKONÓMIA I. Készítette: Kőhegyi Gergely, Horn Dániel. Szakmai felelős: Kőhegyi Gergely. 2010. június MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Termelési tényezık piaca

Termelési tényezık piaca 1 /17 Termelési tényezık piaca inputpiac Keresleti oldal Kínálati oldal Vállalat: kereslete származékos kereslet Függ: - Az inputtényezı határterméke - Az inputtényezı ára - Az inputok helyettesíthetısége

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2011. május 13. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. május 13. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI

Részletesebben

Fazekas Tamás - Nagy Rózsa: Makroökonómia feladatok megoldása Levelező tagozat számára

Fazekas Tamás - Nagy Rózsa: Makroökonómia feladatok megoldása Levelező tagozat számára Szolnoki Főiskola, Üzleti Fakultás Közgazdasági - Pénzügyi Tanszék Fazekas Tamás - Nagy Rózsa: Makroökonómia feladatok megoldása Levelező tagozat számára 1. A makroökonómia tudománya 1. feladat. 1. Ábrázolás

Részletesebben