Bevezetés. 1. előadás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bevezetés. 1. előadás"

Átírás

1 Bevezetés. előadás

2 Tartalom Bevezetés A LKN kiegyenlítés különböző esetei Pontossági mérőszámok Geodéziai hálózatok kiegyenlítése S-transzformáció 2

3 Bevezetés A kiegyenlítő számítások: (nem csak) geodéziai mérések matematikai feldolgozásának alapvető módszere tantárgy célja a Kiegyenlítő számítások BSc tárgyban megszerzett ismeretek továbbfejlesztése és geodéziai alkalmazásainak bemutatása + óra előadás és gyakorlat 3

4 24/5. tanév őszi félév szept. 9. szept. 6. szept. 23. szept. 3. okt. 7. okt. 4..ea: Bevezetés; LKN kiegy. -2D hálózatok, S-transzformáció 2.ea: 3D GNSS és foto. hálózatok +2.gy: Hálózatkiegyenlítés; példa; EULER 3.gy: GNSS kiegy. Bernese-zel 3. ea: Csoportos és szekvenciális kiegy.;. HF 4. ea: Robusztus becslés és kiegyenlítés; RANSAC 4

5 24/5. tanév őszi félév okt. 2. okt. 28. nov. 4. nov.. nov. 8. nov. 25. dec. 2. dec gy: Síkbeli Helmert transzformáció számítása; 2. HF 5.ea: Durvahibaszűrési eljárások 6.ea: Folyamatosan változó mennyiségek feldolgozása I. TDK konferencia 5.gy: VizsgaZH előkészítés; HF konzultáció 6. gy: VizsgaZH 7.ea: Folyamatosan változó mennyiségek feldolgozása II. 7. gy: PótZH, konzultáció / Benford 5

6 Irodalom Kiegyenlítő számítások BSc HEFOP segédlet MSc HEFOP segédlet (27 oldal, Detrekői Á.: Kiegyenlítő számítások (Tankönyvkiadó, Budapest, 99): BME Tankönyvolvasóban olvasható, kölcsönözhető 6

7 A matematikai modell Egyszerűsítő feltételezések több vagy kevesebb célszerű A modell részei: funkcionális determinisztikus mat. és fiz. törvényszerűségek sztochasztikus véletlen jellegű mérési hibákra vonatkozó feltételezések Példák: szintfelület (sík); kép (tárgy centrális vetítése; mest. hold pálya (Kepler-f. ellipszis) 7

8 Példa Az ABC háromszögnek megmértük mindhárom oldalát és a szögeit b C g a síkháromszög: a+ b+ g 8 gömbháromszög: a + b+ g 8 + e a b A c B 8

9 Funkcionális modell szinusz és koszinusztétel síkháromszögben b C g a a b 2 sina sinb 2 2 c a + b - a c sina sing 2abcosg a b A c B 9

10 Funkcionális modell paraméterek A, B, C koordinátái: C A( y A, A) g B( y B, B) b a C ( y C, C) a b A y c B

11 A legkisebb négyzetek elve kiegyenlített mérési eredmények U i L i + v i paraméterek és előzetes értékek X j X j + j feltételi egyenletek mért mennyiségek és paraméterek közötti összefüggések

12 A feltételi egyenletek típusai. közvetítő egyenletek egyetlen mért mennyiség és az azzal kapcsolatban lévő paraméterek 2. csak mért mennyiségek 3. kényszerfeltételek a feltételi egyenletben csak paraméterek szerepelnek lineáris vagy nem lineáris egyenletek 2

13 3 Feltételi egyenletek mért mennyiségek és paraméterek: A B A B A C A C AB AC y y y y U arctg arctg d d a 2 2 ) ( ) ( B C B C a y y U C y A B a c b a b g csak mért mennyiségek: g b a U U U sin sin - b b U U U U b a

14 A LKN módszere alkalmazásának esetei közvetítő egyenletek alapján történő kiegyenlítés (II. kiegy. csoport) közvetett mérések kiegyenlítésének, vagy paraméteres kiegyenlítésnek is nevezik közvetlen mérések kiegyenlítése (III. kiegy. csoport) csak mérési eredményeket tartalmazó feltételi egyenletek alapján történő kiegyenlítés korrelátás kiegyenlítésnek is nevezik 4

15 A LKN módszere alkalmazásának ritkább esetei kiegyenlítés közvetítő és kényszerfeltételi egyenletek felhasználásával (IV. kiegy. csoport), kiegyenlítés mért mennyiségeket és paramétereket tartalmazó feltételi egyenletekkel (V. kiegy. csoport), kiegyenlítés mért mennyiségeket és paramétereket tartalmazó feltételi egyenletekkel és kényszerfeltételi egyenletekkel (VI. kiegy. csoport). 5

16 Mérési hibák L mérési eredmény ε hibája (Λ a hibátlan érték): Eredetük szerint: személyi eredetű műszerhibák ε L Λ külső körülményekből adódó hibák Jellegük szerint: durva szabályos (modellhiba) szabálytalan (véletlen jellegű) 6

17 A mérési hibákat jellemző mérőszámok (egyetlen mennyiség) középhiba: a még kimutatható legkisebb durva hiba: ÑL a középhibából levezetett hibák: H relatív középhiba p sly m M p ( e 2 ) c becslése az m slyegység középhiba J Laplace-féle átlagos hiba ρ valószínű hiba c m 2 2 7

18 Sztochasztikus modell mért mennyiségek középhibái C g távolságok: m a mb mc ±5 mm b a szögek: ma mb mg ±2" a b A y c B 8

19 A mérési hibákat jellemző mérőszámok (n mennyiség) n szám µ i középhiba, és n(n )/2 szám c ij kovariancia n n méretű kovarianciamátri M ( n, n) ém m L ëmn 2 m m L m 2 22 n2 L L L L m m m n 2n L nn ù û ahol m ii µ i2, és m ij m ji c ij 9

20 2 Slykoefficiens-mátri n n méretű mátri (más néven kofaktormátri): ahol c egy arányossági tényező û ù ë é nn n n n n n n n n q q q q q q q q q c L L L L L L L ), ( 2 ), ( M Q

21 2 Slymátri n n méretű mátri (független mérések esetében átlós mátri): det Q û ù ë é - nn n n n n n n n n p p p p p p p p p L L L L L L L ), ( ), ( Q P

22 A kovarianciamátri, a slykoefficiens-mátri és a slymátri kapcsolata M c Q c P M 2 Q P c P Q c M

23 D és 2D geodéziai hálózatok kiegyenlítése. világ-, kontinentális-, országos-, helyi hálózatok egyes pontokhoz rendelt koordináták száma egydimenziós (D) kétdimenziós (2D) háromdimenziós (3D) időben változó koordináták 23

24 D és 2D geodéziai hálózatok kiegyenlítése 2. mérések típusa D: szintezés, trigonometriai magasságmérés, gravimetria 2D: hosszmérés, szög(irány) mérés, földrajzi helymeghatározás, fotogrammetria 3D: geodéziai, fotogrammetriai, szatellita geodéziai, inerciális geodéziai 24

25 D és 2D geodéziai hálózatok kiegyenlítése 3. kiegyenlítés módszerei legkisebb négyzetek szerinti (LKN) robusztus kiegyenlítés (hibaszűrés) kiegyenlítés célja a hálózat alakjának (kiegyenlített mérési eredmények) a hálózati pontok koordinátáinak meghatározása gyakran 2 lépésben történik:. hálózat alakjának meghatározása 2. hálózat elhelyezése és tájékozása (hálózati dátum megadása) 25

26 Pontossági mérőszámok meghatározása kiegyenlített mennyiségek pontossági és megbízhatósági jellemzői M kovariancia mátri ÑL a még kimutatható legkisebb durva hiba hibaszűrés nagyon fontos tömeges / automata mérőrendszerrel nyert adatok feldolgozásakor Baarda-féle data snooping 26

27 Hálózatkiegyenlítési eljárások. II. kiegy. csoport (közvetítő egyenletek) alapján paraméterek (koordináták) meghatározása III. kiegy. csoport (hálózat alakjának meghatározása) V. kiegy. csoport (mért menny. + paraméterek) főleg fotogrammetriai hálóz. eredeti méréseknél kisebb szám fiktív mérést képezünk ( előzetes kiegyenlítés) 27

28 Hálózatkiegyenlítési eljárások 2. egy lépéses kiegyenlítés több lépéses (csoportos / szekvenciális) kiegyenlítés nagyból kicsi felé haladva: hierarchikus kiegyenlítés (önálló + beillesztett hálózat) dinamikus kiegyenlítés (a magasabb rendű hálózat pontjai sem hibátlanok) 28

29 Előzetes kiegyenlítés fiktív mérésekkel szintezési hálózatok oda-vissza mérések számtani közepe előzetes hibaszűrés, a priori középhiba trigonometriai magasságmérés (t, z, h, H) ΔZ magasságkülönbség hosszmérések több mérés (slyozott) számtani közepe iránymérések Z i tájékozási állandók előzetes értékei 29

30 D hálózatok kiegyenlítése szintezési / trig.mag hálózatok közvetítő egyenletekkel lineáris javítási egyenletek slymátri elemei p i c 2 / t i2 (szint. szakasz hossza) p i c 2 / n i2 (vonalon belüli műszerálláspontok száma) ha nincs ismert magasság pont pont magasságot kap ( helyi rendszer ) általánosított inverz használata csak mért mennyiségeket tartalmazó feltételi egyenletekkel klasszikus módszer zárt poligonban Σ ±(L i + v i ) (önálló hálózat) beillesztett hálózatban Σ ±(L i + v i ) ΔZ AB 3

31 2D vízszintes hálózatok kiegyenlítése. szinte kizárólag közvetítő egyenletekkel (II. csop) alapfelület ellipszoid (kevesebb redukció, bonyolultabb összefüggések) sík (több redukció, egyszerűbb összefüggések) lépései előzetes kiegyenlítés tényleges kiegyenlítés elhelyezés és tájékozás (csak III. csop. esetén) 3

32 2D vízszintes hálózatok kiegyenlítése 2. II. csoportos kiegy. (közvetítő egyenletek) előny: azonos típus mérésekhez ugyanolyan felépítésű (nem lineáris) közvetítő egyenletek tartoznak (jól automatizálható) előny: koordináták + kiegyenlített mérések pontossági jellemzői könnyen előállíthatók hátrány: szinguláris együttható mátri (önálló hálózatok esetén) a defektusnak megfelelő szám koordinátát önkényesen megkötünk (helyi rendszer) hátrány: hibaszűrés elvileg csak a kiegyenlítés után hátrány: hibajellemzők (pl. Q XX ) függnek a hálózati dátumtól zavaró peremhatás dátumprobléma megoldása szomszédos pontokra jellemző relatív Q ΔXΔX slykoefficiens mátri meghatározása S-transzformáció (Baarda) további feltétel megadása (pl. Σ i2 min.) hálózat optimális illesztése adott keretpontok rendszerébe (kényszerített pontok) 32

33 2D vízszintes hálózatok kiegyenlítése 3. III. csoportos kiegy. (csak mért mennyiségek közötti feltételi egyenletek) előny: nem függ a megoldás a hálózati dátumtól (önálló hálózat) hátrány: a feltételi egyenletek felírása bonyolult hátrány: a hálózat elhelyezése, tájékozása külön lépésként számítandó hátrány: a koordináták Q XX hibajellemzőit hibaterjedéssel kell számítani a kiegyenlített mérések Q LL slykoefficienseiből slymátri felvétele a hálózatkiegyenlítéshez egyes mérések a priori középhibái (általában korrelálatlanok, de pl. a GPS vektorok esetén teljes kovariancia mátri kell) p i c 2 / µ i2, c 2 felvétele indokolt (statisztikai próba durva hiba kimutatására) 33

34 Példa: szintezési hálózat kiegyenlítése Adott három ismeretlen Z, Z 2, Z 3 magasság pont. A pontok magasságkülönbségeit (L, L 2, L 3 )szintezéssel határozzuk meg. A mérési eredmények egymástól függetlenek és azonos pontosságak. Cél: a pontok magasságának meghatározása. mérési eredmények: L m L 2.2 m L m előzetes magasságok: Z. m Z 2 2. m Z 3 3. m 2 L L 2 L

35 Közvetítő és javítási egyenletek U Z 2 Z, U 2 Z 3 Z 2, U 3 Z 3 Z v -z + z 2 + (Z 2 Z L ) -z + z 2 + v 2 -z 2 + z 3 + (Z 3 Z 2 L 2 ) -z 2 + z 3 2 v 3 -z + z 3 + (Z 3 Z L 3 ) -z + z (tisztatagok mm egységben) A (3,3) é- ë ù + + û l (3,) é-ù + 2 ë -2û 35

36 Normálegyenlet független és azonos pontosság mérések normálegyenlet együtthatómátria és tisztatag vektora N (3,3) det(n) ( 3) (3), az N mátri szinguláris és az miért?? A * A (3,3) (3,3) (3,) é 2 - -ù ë - - 2û N - (3,3) P (3,3) n (3,) E (3,3) n (3,) nem használható A * l (3,3) (3,) é+ 3ù -3 ë û 36

37 Hálózatfajták és a szükséges dátumparaméterek Hálózatfajta Szintezési (D) Háromszögelési (2D) (csak irány- vagy szögmérés) Vegyes (2D) (irány- és hosszmérés) Térbeli (3D) fotogrammetriai vegyes (szög és hosszmérés) Defektus (rang hiány) Szükséges mennyiség eltolás 2 eltolás, elforgatás, méretarány 2 eltolás, elforgatás 3 eltolás, 3 elforgatás méretarány 3 eltolás, 3 elforgatás 37

38 Defektus A geodéziai és fotogrammetriai hálózatokban a a defektus mértéke megegyezik a hálózat helyzetének és méretének egyértelmű meghatározásához szükséges mennyiségek számával szintezési hálózatban legalább ismert magasság ponttal kell rendelkeznünk 38

39 Megoldás. a defektussal megegyező szám ismeretlen paraméter megkötésével 2. általános inverzek felhasználásával 3. az ismeretlen paraméterekre felírt célfüggvények felvételével 39

40 Ismeretlen paraméter megkötése egyszerű a megkötött paraméterek kiválasztása önkényes a megkötött paraméter hibátlan, a többi paraméter becslése hibával terhelt a középhibák eloszlása függ a megkötés helyétől 4

41 Közvetítő és javítási egyenletek U Z 2 Z, U 2 Z 3 Z 2, U 3 Z 3 Z, megkötés: Z. m v z 2 + (Z 2 Z L ) z 2 + v 2 -z 2 + z 3 + (Z 3 Z 2 L 2 ) -z 2 + z 3 2 v 3 z 3 + (Z 3 Z L 3 ) z A (3,2) é+ - ë ù + + û l (3,) é-ù + 2 ë -2û 4

42 Normálegyenlet független és azonos pontosság mérések P (3,3) normálegyenlet együtthatómátria és tisztatag vektora E (3,3) N (2,2) A * A (2,3) (3,2) é 2 ë - -ù 2û n (2,) A * l (2,3) (3,) é-3ù ë û det(n) 4 3, az N mátri reguláris és az megoldható (2,) é-2ù - N n (2,2) (2,) ë -û 42

43 ismeretlen pontok magassága mérési javítások v (3,) A X (2,) (3,2) (2,) - X (2,) l (3,) + Eredmények (2,) é-ù - ë + û é9.998ù ë û slyegység középhiba m 2 * f - v P v (,3) (3,3) (3,) m

44 44 Eredmények kiegyenlített paraméterek slykoefficiens-mátria kiegyenlített magasságok középhibái û ù ë é ) ( (2,2) (2,2) * (2,2) N A A Q mm.4 mm q m m q m m

45 Általánosított inverzek használata egyértelmű minimális normáj a legkisebb négyzetek módszerének megfelelő javításokat biztosít 45

46 Közvetítő és javítási egyenletek U Z 2 Z, U 2 Z 3 Z 2, U 3 Z 3 Z v -z + z 2 + (Z 2 Z L ) -z + z 2 + v 2 -z 2 + z 3 + (Z 3 Z 2 L 2 ) -z 2 + z 3 2 v 3 -z + z 3 + (Z 3 Z L 3 ) -z + z (tisztatagok mm egységben) A (3,3) é- ë ù + + û l (3,) é-ù + 2 ë -2û 46

47 Normálegyenlet független és azonos pontosság mérések normálegyenlet együtthatómátria és tisztatag vektora N (3,3) A * A (3,3) (3,3) é 2 - -ù ë - - 2û általánosított (pszeudo) inverz használata (3,) N + P (3,3) n (3,3) (3,) E (3,3) n (3,) A * l (3,3) (3,) é+ 3ù -3 ë û 47

48 ismeretlen pontok magassága mérési javítások v (3,) A (3,2) (2,) - l (3,) Eredmények é-ù - ë + û X (3,) X (3,) + (3,) é.ù ë3. û slyegység középhiba m 2 * f - v P v (,3) (3,3) (3,) m

49 49 Eredmények kiegyenlített paraméterek slykoefficiens-mátria kiegyenlített magasságok középhibái û ù ë é (3,3) (3,3) N Q mm.82 mm.82 mm q m m q m m q m m

50 S-transzformáció Adott elhelyezésre jellemző: hálózati pontok kiegyenlített koordinátái koordináták slykoefficiens-mátria A hálózat elhelyezésének módosítására lehet szükség: j koordináták j slykoefficiens-mátri S-transzformáció (Similarity transformation hasonlósági transzformáció): Baarda,973 pl. mozgásvizsgálatnál az egyes epochák közös dátumra transzformálása 5

51 Koordináták és slykoefficiensek traszformálása T koordinátaváltozások: T S T Q XTXT slykoefficiens-mátri: az S mátri S T Q XTXT E- * STQ XXST * G( G TG) - * G T 5

52 Az S T mátri számítása az S T mátri: S T E - * G( G TG) - * G T E egységmátri a T mátri olyan átlós mátri, amely főátlójában a vizsgált pontok koordinátáihoz -et rendelünk hozzá, a főátló többi eleme viszont zérus 52

53 53 A G mátri számítása a G mátri a szabad dátum paraméterekhez tartozó konfigurációs mátri A hálózat egészét jellemző G mátri a hálózat egyes pontjaihoz tartozó G i mátriok alapján így írható fel: û ù ë é r i G G G G G 2

54 A G i mátriok számítása egydimenziós hálózatok esetén: G i kétdimenziós hálózatok esetén: ha hosszat is mértünk: G i é - X ë Yi ha csak irányokat és szögeket mértünk: i ù û G i é - X ë Yi i Y X i i ù û 54

55 55 A G i mátriok számítása háromdimenziós hálózatok esetén: vegyes (6 dátumparaméter): fotogrammetriai hálózatban (7 dátumparaméter): û ù ë é i i i i i i i X Y X Z Y Z G û ù ë é i i i i i i i i i i Z X Y Y X Z X Y Z G

56 S-transzformáció gyakorlati szempontjai slyponti koordináták használata az előforduló számértékek csökkentése számítási egyszerűsítések előnyei nem változtatja meg a hálózat geometriáját nem szükséges ismerni azt a dátumot, amelyből transzformálunk bizonyos dátumhibák kiküszöbölhetők (pl. méretaránytényező hibája, különböző mérési epochák közötti elfordulás vagy eltolódás) 56

Mérnökgeodéziai hálózatok feldolgozása

Mérnökgeodéziai hálózatok feldolgozása Mérnökgeodéziai hálózatok feldolgozása dr. Siki Zoltán siki@agt.bme.hu XIV. Földmérő Találkozó Gyergyószentmiklós 2013.05.09-12. Mérnökgeodéziai hálózatok nagy relatív pontosságú hálózatok (1/100 000,

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP

Részletesebben

Hálózat kiegyenlítés dr. Siki Zoltán

Hálózat kiegyenlítés dr. Siki Zoltán Hálózat kiegyenlítés dr. Siki Zoltán siki.zoltan@epito.bme.hu 2017-09-26 MMK-GGT Továbbképzési tananyag 2016-2017 1 Legkisebb négyzetek módszere Közvetítő egyenletek, kapcsolat az ismeretlenek és a mérési

Részletesebben

Mérnökgeodéziai hálózatok dr. Siki Zoltán

Mérnökgeodéziai hálózatok dr. Siki Zoltán Mérnökgeodéziai hálózatok dr. Siki Zoltán siki@agt.bme.hu Mérnökgeodézia BSc Mérnökgeodéziai hálózatok nagy relatív pontosságú hálózatok (1/1, 1/1), pontok távolsága néhány tíz, száz méter, Homogén hálózat:

Részletesebben

Matematikai geodéziai számítások 8.

Matematikai geodéziai számítások 8. Matematikai geodéziai számítások 8 Szintezési hálózat kiegyenlítése Dr Bácsatyai, László Matematikai geodéziai számítások 8: Szintezési hálózat kiegyenlítése Dr Bácsatyai, László Lektor: Dr Benedek, Judit

Részletesebben

Matematikai geodéziai számítások 9.

Matematikai geodéziai számítások 9. Matematikai geodéziai számítások 9 Szabad álláspont kiegyenlítése Dr Bácsatyai, László Created by XMLmind XSL-FO Converter Matematikai geodéziai számítások 9: Szabad álláspont kiegyenlítése Dr Bácsatyai,

Részletesebben

Matematikai geodéziai számítások 9.

Matematikai geodéziai számítások 9. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 9 MGS9 modul Szabad álláspont kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői

Részletesebben

Matematikai geodéziai számítások 8.

Matematikai geodéziai számítások 8. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 8 MGS8 modul Szintezési hálózat kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői

Részletesebben

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Célja: Várható elmozdulások előrejelzése (erőhatások alatt, Siógemenci árvízkapu) Már bekövetkezett mozgások okainak vizsgálata (Pl. kulcsi löszpart) Laboratóriumi

Részletesebben

4. Előadás: Magassági hálózatok tervezése, mérése, számítása. Hálózatok megbízhatósága, bekapcsolás az országos hálózatba

4. Előadás: Magassági hálózatok tervezése, mérése, számítása. Hálózatok megbízhatósága, bekapcsolás az országos hálózatba 4. előadás: Magassági hálózatok tervezése 4. Előadás: Magassági hálózatok tervezése, mérése, számítása. Hálózatok megbízhatósága, bekapcsolás az országos hálózatba Magassági hálózatok tervezése, mérése

Részletesebben

Matematikai geodéziai számítások 7.

Matematikai geodéziai számítások 7. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 7. MGS7 modul Súlyozott számtani közép számítása és záróhibák elosztása SZÉKESFEHÉRVÁR 2010 Jelen

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 5 MGS5 modul Hibaterjedési feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek

A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek TRANSZFORMÁCIÓ A Föld alakja -A föld alakja: geoid (az a felület, amelyen a nehézségi gyorsulás értéke állandó) szabálytalan alak, kezelése nehéz -A geoidot ellipszoiddal közelítjük -A földfelszíni pontokat

Részletesebben

GeoCalc 3 Bemutatása

GeoCalc 3 Bemutatása 3 Bemutatása Gyenes Róbert & Kulcsár Attila 1 A 3 egy geodéziai programcsomag, ami a terepen felmért, manuálisan és/vagy adatrögzítővel tárolt adatok feldolgozására szolgál. Adatrögzítő A modul a felmérési

Részletesebben

Paksi Atomerőmű II. blokk lokalizációs torony deformáció mérése

Paksi Atomerőmű II. blokk lokalizációs torony deformáció mérése Siki Zoltán, Dede Károly, Homolya András, Kiss Antal (BME-ÁFGT) Paksi Atomerőmű II. blokk lokalizációs torony deformáció mérése siki@agt.bme.hu http://www.agt.bme.hu Geomatikai Szeminárium, 2008 Sopron

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Hálózat kiegyenlítés modul

Hálózat kiegyenlítés modul Hálózat modul GeoEasy V2.05+ Geodéziai Feldolgozó Program (c)digikom Kft. 2008-2010 Tartalomjegyzék Bevezetés A előkészítése A végrehajtása A eredményei Exportálás GNU GaMa XML formátumba Bevezetés A Hálózat

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben

Gépészeti berendezések szerelésének geodéziai feladatai. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán

Gépészeti berendezések szerelésének geodéziai feladatai. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Gépészeti berendezések szerelésének geodéziai feladatai Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Gépészeti berendezések szerelésének geodéziai feladatai '80 Geodéziai elvű módszerek gépészeti alkalmazások

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Geodéziai mérések feldolgozását támogató programok fejlesztése a GEO-ban

Geodéziai mérések feldolgozását támogató programok fejlesztése a GEO-ban Geodéziai mérések feldolgozását támogató programok fejlesztése a GEO-ban Gyenes Róbert, NYME GEO Geodézia Tanszék, Kulcsár Attila, NYME GEO Térinformatika Tanszék 1. Bevezetés Karunkon a hároméves nappali

Részletesebben

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve GEODÉZIA I. 1.2 Azonosító (tantárgykód) BMEEOAFAT41 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus előadás (elmélet)

Részletesebben

3. Előadás: Speciális vízszintes alappont hálózatok tervezése, mérése, számítása. Tervezés méretezéssel.

3. Előadás: Speciális vízszintes alappont hálózatok tervezése, mérése, számítása. Tervezés méretezéssel. 3. Előadás: Speciális vízszintes alappont hálózatok tervezése, mérése, számítása. Tervezés méretezéssel. Speciális vízszintes alappont hálózatok tervezése, mérése, számítása Egy-egy ipartelep derékszögű

Részletesebben

Matematika tanmenet 10. évfolyam 2018/2019

Matematika tanmenet 10. évfolyam 2018/2019 Matematika tanmenet 10. évfolyam 2018/2019 Műveltségi terület: MATEMATIKA Iskola, osztályok: Vetési Albert Gimnázium, 10.A, 10.B, 10.C, 10.D Tantárgy: MATEMATIKA Heti óraszám: 3 óra Készítette: a matematika

Részletesebben

A kivitelezés geodéziai munkái II. Magasépítés

A kivitelezés geodéziai munkái II. Magasépítés A kivitelezés geodéziai munkái II. Magasépítés Építésirányítási feladatok Kitűzési terv: a tervezési térkép másolatán Az elkészítése a tervező felelőssége Nehézségek: Gyakorlatban a geodéta bogarássza

Részletesebben

Egyenletek, egyenletrendszerek, matematikai modell. 1. Oldja meg az Ax=b egyenletrendszert Gauss módszerrel és adja meg az A mátrix LUfelbontását,

Egyenletek, egyenletrendszerek, matematikai modell. 1. Oldja meg az Ax=b egyenletrendszert Gauss módszerrel és adja meg az A mátrix LUfelbontását, Egyenletek egyenletrendszerek matematikai modell Oldja meg az A=b egyenletrendszert Gauss módszerrel és adja meg az A mátri LUfelbontását ahol 8 b 8 Oldja meg az A=b egyenletrendszert és határozza meg

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 1. tétel Hibaelméleti alapismertek Ön egy földmérési tevékenységet folytató vállalkozásnál a mérési eredmények ellenőrzésével

Részletesebben

Automatikus irányzás digitális képek. feldolgozásával TURÁK BENCE DR. ÉGETŐ CSABA

Automatikus irányzás digitális képek. feldolgozásával TURÁK BENCE DR. ÉGETŐ CSABA Automatikus irányzás digitális képek feldolgozásával TURÁK BENCE DR. ÉGETŐ CSABA Koncepció Robotmérőállomásra távcsővére rögzített kamera Képek alapján a cél automatikus detektálása És az irányzás elvégzése

Részletesebben

Geodéziai számítások

Geodéziai számítások Geodézia I. Geodéziai számítások Pontkapcsolások Gyenes Róbert 1 Pontkapcsolások Általános fogalom (1D, 2D, 3D, 1+2D) Egy vagy több ismeretlen pont helymeghatározó adatainak a meghatározása az ismert pontok

Részletesebben

FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ 1 / 6 feladatlap Elméleti szöveges feladatok 1. Egészítse ki az alábbi szöveget a Glonassz GNSS alaprendszerrel

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

LOKÁLIS IONOSZFÉRA MODELLEZÉS ÉS ALKALMAZÁSA A GNSS HELYMEGHATÁROZÁSBAN

LOKÁLIS IONOSZFÉRA MODELLEZÉS ÉS ALKALMAZÁSA A GNSS HELYMEGHATÁROZÁSBAN LOKÁLIS IONOSZFÉRA MODELLEZÉS ÉS ALKALMAZÁSA A GNSS HELYMEGHATÁROZÁSBAN Juni Ildikó Budapesti Műszaki és Gazdaságtudományi Egyetem BSc IV. évfolyam Konzulens: Dr. Rózsa Szabolcs MFTT 29. Vándorgyűlés,

Részletesebben

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

Példa GPS hálózat kiegyenlítésére a Bernese szoftver segítségével. 3. gyakorlat

Példa GPS hálózat kiegyenlítésére a Bernese szoftver segítségével. 3. gyakorlat Példa GPS hálózat kiegyenlítésére a Bernese szoftver segítségével 3. gyakorlat 1 A Bernese 5.0 szoftver tudományos igényű, nagypontosságú GNSS (GPS és GLONASS) feldolgozó szoftver grafikus felület (QT

Részletesebben

Lineáris regressziós modellek 1

Lineáris regressziós modellek 1 Lineáris regressziós modellek 1 Ispány Márton és Jeszenszky Péter 2016. szeptember 19. 1 Az ábrák C.M. Bishop: Pattern Recognition and Machine Learning c. könyvéből származnak. Tartalom Bevezető példák

Részletesebben

Geodézia terepgyakorlat számítási feladatok ismertetése 1.

Geodézia terepgyakorlat számítási feladatok ismertetése 1. A Geodézia terepgyakorlaton Sukorón mért geodéziai hálózat új pontjainak koordináta-számításáról Geodézia terepgyakorlat számítási feladatok ismertetése 1. Dr. Busics György 1 Témák Cél, feladat Iránymérési

Részletesebben

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008 Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi

Részletesebben

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata Piri Dávid Mérőállomás célkövető üzemmódjának pontossági vizsgálata Feladat ismertetése Mozgásvizsgálat robot mérőállomásokkal Automatikus irányzás Célkövetés Pozíció folyamatos rögzítése Célkövető üzemmód

Részletesebben

Mozgásmodellezés. Lukovszki Csaba. Navigációs és helyalapú szolgáltatások és alkalmazások (VITMMA07)

Mozgásmodellezés. Lukovszki Csaba. Navigációs és helyalapú szolgáltatások és alkalmazások (VITMMA07) TÁVKÖZLÉSI ÉS MÉDIAINFORMATIKAI TANSZÉK () BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM (BME) Mozgásmodellezés Lukovszki Csaba Áttekintés» Probléma felvázolása» Szabadsági fokok» Diszkretizált» Hibát

Részletesebben

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus

Részletesebben

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS Dr. Soumelidis Alexandros 2018.10.04. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérés-feldolgozás

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Dr. Jancsó Tamás. Fotogrammetria 13. FOT13 modul. Légiháromszögelés

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Dr. Jancsó Tamás. Fotogrammetria 13. FOT13 modul. Légiháromszögelés Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Jancsó Tamás Fotogrammetria 13. FOT13 modul Légiháromszögelés SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI. törvény

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás robotra

Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás robotra Budapesti M szaki És Gazdaságtudományi Egyetem Gépészmérnöki Kar M szaki Mechanikai Tanszék Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás

Részletesebben

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás 5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )

Részletesebben

Matematikai geodéziai számítások 4.

Matematikai geodéziai számítások 4. Matematikai geodéziai számítások 4. Vetületi átszámítások Dr. Bácsatyai, László Matematikai geodéziai számítások 4.: Vetületi átszámítások Dr. Bácsatyai, László Lektor: Dr. Benedek, Judit Ez a modul a

Részletesebben

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11 Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

A méretaránytényező kérdése a földmérésben és néhány szakmai következménye

A méretaránytényező kérdése a földmérésben és néhány szakmai következménye A méretaránytényező kérdése a földmérésben és néhány szakmai következménye Dr. Busics György c. egyetemi tanár Óbudai Egyetem Alba Regia Műszaki Kar Székesfehérvár MFTTT Vándorgyűlés, Békéscsaba, 2019.

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA

Részletesebben

Óbudai Egyetem Alba Regia Műszaki Kar Szakdolgozat védés 2015. január 2. GNSS technika alkalmazása tervezési alaptérképek készítésekor

Óbudai Egyetem Alba Regia Műszaki Kar Szakdolgozat védés 2015. január 2. GNSS technika alkalmazása tervezési alaptérképek készítésekor Óbudai Egyetem Alba Regia Műszaki Kar Szakdolgozat védés 2015. január 2. GNSS technika alkalmazása tervezési alaptérképek készítésekor Péter Tamás Földmérő földrendező mérnök BSc. Szak, V. évfolyam Dr.

Részletesebben

GEOSTATISZTIKA. Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány. 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

GEOSTATISZTIKA. Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány. 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ GEOSTATISZTIKA Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet

Részletesebben

MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:.

MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:. MAv A. csoport Név:... Tekintsük az alábbi mátriot! A 7 a Invertálható-e az A mátri? Ha igen akkor bázistranszformációval határozza meg az inverzét! Ellenőrizze számításait! b Milyen egyéb mátritulajdonságokra

Részletesebben

GBN304G Alkalmazott kartográfia II. gyakorlat

GBN304G Alkalmazott kartográfia II. gyakorlat GBN304G Alkalmazott kartográfia II. gyakorlat TEREPI FELMÉRÉSI FELADATOK Unger János unger@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan Földtudományi BSc (Geográfus, Földrajz

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Tarsoly Péter. Geodézia 12. GED12 modul. 12 A mérési hibák

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Tarsoly Péter. Geodézia 12. GED12 modul. 12 A mérési hibák Nyugat-magyarországi Egyetem Geoinformatikai Kara Tarsoly Péter Geodézia 12. GED12 modul 12 A mérési hibák SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI. törvény védi.

Részletesebben

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

FÖLDMÉRÉS ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA

FÖLDMÉRÉS ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA FÖLDMÉRÉS ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA I. RÉSZLETES A földmérés ismeretek ágazati szakmai érettségi vizsga részletes érettségi vizsgakövetelményei a XXXV. Földmérés ágazat szakképesítésének

Részletesebben

TANMENET. a matematika tantárgy tanításához 11.E osztályok számára

TANMENET. a matematika tantárgy tanításához 11.E osztályok számára Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 11.E osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján Használatos

Részletesebben

Kéregmozgás-vizsgálatok a karon: múlt és jelen

Kéregmozgás-vizsgálatok a karon: múlt és jelen Kéregmozgás-vizsgálatok a karon: múlt és jelen Busics György Nyugat-magyarországi Egyetem, Geoinformatikai Kar Geomatikai Intézet, Geodézia Tanszék MTA GTB ülés, Székesfehérvár, 2009. november27. Tartalom

Részletesebben

Beltéri geodéziai mikrohálózat létesítésének tapasztalatai

Beltéri geodéziai mikrohálózat létesítésének tapasztalatai Beltéri geodéziai mikrohálózat létesítésének tapasztalatai Készítette: Nagy Nándor Antal Építőmérnök Bsc-s hallgató Konzulens: Dr. Égető Csaba Adjunktus, Általános- és Felsőgeodéziai Tanszék 1 Tartalomjegyzék

Részletesebben

MÉRNÖKGEODÉZIA GBNFMGEOB ÓE AREK GEOINFORMATIKAI INTÉZET

MÉRNÖKGEODÉZIA GBNFMGEOB ÓE AREK GEOINFORMATIKAI INTÉZET MÉRNÖKGEODÉZIA GBNFMGEOB ÓE AREK GEOINFORMATIKAI INTÉZET MÉRNÖKGEODÉZIA tárgy felépítése Témakör Óraszám Előadások: A mérnökgeodézia fogalma, a tárgy tartalma és témakörei A mérnöki létesítmények tervezésének

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

PROGRAMOK GEODÉZIAI MÉRÉSEK FELDOLGOZÁSÁRA

PROGRAMOK GEODÉZIAI MÉRÉSEK FELDOLGOZÁSÁRA Térinformatika tanszék * Keresztmetszet 2004. Nyugat-Magyarországi Egyetem, Geoinformatikai Főiskolai Kar, Székesfehérvár. PROGRAMOK GEODÉZIAI MÉRÉSEK FELDOLGOZÁSÁRA Kulcsár Attila * Gyenes Róbert ** *

Részletesebben

NT Matematika 11. (Heuréka) Tanmenetjavaslat

NT Matematika 11. (Heuréka) Tanmenetjavaslat NT-17302 Matematika 11. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 11. tankönyv a Heuréka-sorozat harmadik tagja. Ebben a segédanyagban ehhez a könyvhöz a tizenegyedikes tananyag

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága

Részletesebben

TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára

TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 10. E.osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján

Részletesebben

GEOSTATISZTIKA II. Geográfus MSc szak. 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

GEOSTATISZTIKA II. Geográfus MSc szak. 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ GEOSTATISZTIKA II. Geográfus MSc szak 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy adatlapja Tantárgy neve:

Részletesebben

A valós idejű, térinformatikai célú műholdas helymeghat{roz{s a barlangkataszterben

A valós idejű, térinformatikai célú műholdas helymeghat{roz{s a barlangkataszterben A valós idejű, térinformatikai célú műholdas helymeghat{roz{s a barlangkataszterben Megfelelni az új kihívásoknak*gisopen-konferencia, 2011, Tarsoly Péter Bevezető A GNSS technológiák mára széles körben

Részletesebben

Példa: Háromszög síkidom másodrendű nyomatékainak számítása

Példa: Háromszög síkidom másodrendű nyomatékainak számítása Példa: Háromszög síkidom másodrendű nyomatékainak számítása Készítette: Dr. Kossa Attila kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék. február 6. Határozzuk meg az alábbi ábrán látható derékszögű háromszög

Részletesebben

2018/2019. Matematika 10.K

2018/2019. Matematika 10.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Földmérés ismeretek emelt szint 1721 ÉRETTSÉGI VIZSGA 2018. május 16. FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Kozmikus geodézia MSc

Kozmikus geodézia MSc Kozmikus geodézia MSc 1-4 előadás: Tóth Gy. 5-13 előadás: Ádám J. 2 ZH: 6/7. és 12/13. héten (max. 30 pont) alapismeretek, csillagkatalógusok, koordináta- és időrendszerek, függővonal iránymeghatározása

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

1. Előadás: A mérnökgeodézia általános ismertetése. Alapfogalmak, jogszabályi háttér. Vízszintes értelmű alappont hálózatok tervezése, létesítése.

1. Előadás: A mérnökgeodézia általános ismertetése. Alapfogalmak, jogszabályi háttér. Vízszintes értelmű alappont hálózatok tervezése, létesítése. 1. előadás: A mérnökgeodézia általános ismertetése. Alapfogalmak, jogszabályi háttér. 1. Előadás: A mérnökgeodézia általános ismertetése. Alapfogalmak, jogszabályi háttér. Vízszintes értelmű alappont hálózatok

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

Bevezetés a geodéziába

Bevezetés a geodéziába Bevezetés a geodéziába 1 Geodézia Definíció: a földmérés a Föld alakjának és méreteinek, a Föld fizikai felszínén, ill. a felszín alatt lévő természetes és mesterséges alakzatok geometriai méreteinek és

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

1. gyakorlat: Feladat kiadás, terepbejárás

1. gyakorlat: Feladat kiadás, terepbejárás 1. gyakorlat: Feladat kiadás, terepbejárás 1. gyakorlat: Feladat kiadás, terepbejárás A gyakorlathoz szükséges felszerelés csapatonként: - 2 db 50 m-es mérőszalag - kalapács, hilti szög A gyakorlat tartalma:

Részletesebben

Haladó lineáris algebra

Haladó lineáris algebra B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc

Részletesebben