Benzilpiperidin és benzilpirrolidin származékok általánosítható, iparilag alkalmazható szintézise

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Benzilpiperidin és benzilpirrolidin származékok általánosítható, iparilag alkalmazható szintézise"

Átírás

1 Budapesti Műszaki és Gazdaságtudományi Egyetem Szerves Kémiai Technológia Tanszék Benzilpiperidin és benzilpirrolidin származékok általánosítható, iparilag alkalmazható szintézise Ph.D. értekezés Készítette: Proszenyák Ágnes okl. vegyészmérnök Témavezető: Dr. Ágai Béla egyetemi docens Konzulens: Dr. Faigl Ferenc egyetemi tanár 004

2 Tartalomjegyzék Tartalomjegyzék Bevezetés Az MDA receptor szerkezete és antagonistái Benzilpiperidinek előállítása Irodalmi áttekintés Benzilpiperidinek irodalmi előállítása, I Benzilpiridinek előállítása A piridingyűrű telítése Benzilpiperidinek irodalmi előállítása, II Benzilpiperidinek előállítása Benzilpiperidinek előállítása Benzilpiperidinek előállítása Az irodalmi megoldások jellemzése Saját eredmények Benzilpiperidinek előállítása 5, és -Benzilpiperidinek előállítása, I Kinetikai vizsgálatok Az oldószer hatása A katalitikusan aktív fémek hatása A katalizátor mennyiségének a hatása A hőmérséklet hatása és 4-Benzilpiperidinek előállítása, II Deutériummal jelzett származékok előállítása α-aril-piperidilmetanolok előállítása Irodalmi áttekintés Saját eredmények Benzilpiperidin-,6-dionok előállítása Irodalmi áttekintés Saját eredmények Benzilpirrolidinek előállítása Irodalmi áttekintés Saját eredmények Kísérleti rész Általános megjegyzések

3 7.. A 3..1., 3... és fejezetekhez tartozó kísérletek A fejezethez tartozó kísérletek A 4. fejezethez tartozó kísérletek Az 5. fejezethez tartozó kísérletek A 6. fejezethez tartozó kísérletek Összefoglalás Irodalomjegyzék Köszönetnyilvánítás... 99

4 1. Bevezetés Az MDA (-metil-d-aszparaginsav) receptorok normálistól eltérő aktivitása számos neurodegeneratív és pszichiátriai betegség előidézője lehet, ezért az utóbbi néhány évben jelentősen megnövekedett az érdeklődés az MDA receptor antagonisták, mint új farmakológiai terület iránt. Ezt jól szemlélteti az MDA receptor antagonistákkal foglalkozó szabadalmak számának változása (1. ábra, kék oszlop). Az MDA receptor aktivitásának csökkenése a különböző kötőhelyek gyógyszeres blokkolásával lehetséges, azonban a terápiásan hatásos mennyiség mellett gyakran igen komoly mellékhatások léptek fel. Ezek kiküszöbölhetők altípus-szelektív MDA antagonisták alkalmazásával, amelyek közül az RB jelzésű az első MDA receptor altípus, amelyre hatásos és szelektív antagonisták várhatók MDA receptor antagonista MDA receptor antagonista + piperidin benzil-piperidin szabadalmak száma év 1. ábra A témakörben megjelent szabadalmak számának változása az év függvényében. * Doktori munkám szorosan kapcsolódik a Richter Gedeon Rt. új, szelektív RB altípusú MDA receptor antagonisták előállítását célzó kutatásához. Az egyik ilyen vegyületcsalád megtervezéséhez egy MDA receptor antagonistaként már ismert vegyületet (. ábra, CI-1041) választottak alapmolekulának. * A diagramot a weboldalon elérhető elektronikus szabadalmi tár adatai alapján állítottam össze. A keresés során a cím, illetve az összefoglaló tartalmazta a megfelelő kritériumot (MDA receptor antagonista stb.)

5 S F. ábra CI-1041 Ennek a vegyületnek a szisztematikus módosításával a kiindulóknál lényegesen aktívabb molekulákat állítottak elő, amelyeket szabadalmakban közöltek. 3-5 Egyik származékkal megkezdték 003 őszén a klinikai vizsgálatokat is. 6 A szerkezet - biológiai hatás összefüggés feltárásához szubsztituált benzilcsoportot tartalmazó piperidinek előállítása volt szükséges. Meg kívánták vizsgálni továbbá, hogy benzilpiperidin egység helyettesítése benzilpirrolidinnel, valamint a nitrogén bázicitásának megszűntetése a benzilhelyetesített -heterociklusban milyen változásokat eredményez a végső molekula biológiai hatásában. Doktori munkámban különböző módon helyettesített benzilcsoportot tartalmazó piperidinek és pirrolidinek előállítását kaptam feladatul, különös tekintettel az eljárás általánosíthatóságára, méretnövelhetőségére és ipari megvalósíthatóságára. Ezek a vegyületek potenciálisan szelektív MDA receptor antagonisták, valamint más farmakológiailag értékes anyagok bioblokkjai, amelyet jól szemléltet a benzilpiperidineket is tartalmazó szabadalmak számának növekedése (1. ábra, sárga oszlop). A dolgozatban szereplő általános képletekben a legelső szám a piridin/piperidin gyűrűhöz 4-es, a középső a 3-as és a legutolsó szám a -es pozícióban kapcsolódó származékot jelöli. A függelék első két oldala kivehető, és a dolgozat követését segítő hozzárendeléseket (képlet-szám, illetve szubsztituens minősége-betűjelzés) tartalmaz. 4

6 . Az MDA receptor szerkezete és antagonistái Az MDA receptor a legfontosabb excitátoros transzmitter, a glutaminsav posztszinaptikus receptora az agyban, amely nemcsak egy receptor, hanem egy ioncsatorna is. Az -metil-d-aszparaginsav (MDA), amelyről a nevét is kapta, a legismertebb agonistája e receptornak. Feltehetően szerepet játszik a túlzott mértékű glutaminsav bevitel mérgező hatásában, és sok más folyamatban is, mint például a szinaptikus plaszticitásban, amely egy memóriafolyamat. A receptor egy, az idegsejtmembránban található transzmembrán fehérje, amely nyitott állapotában a kálcium ionok sejtbe történő bejutását teszi lehetővé. 3. ábra Az MDA receptor komplex működése Aktiválása akkor következik be, amikor a glutaminsav (Glu) vagy az -metil-daszparaginsav (MDA), továbbá a glicin (Gly) kötődik a receptor molekulához. A receptor csatornát a magnézium ion (Mg + ) blokkolja, azaz megakadályozza a komplexen belül az ionok áthaladását. Amikor a magnézium eltávozik a csatornáról, és a receptor aktiválódik, kálcium (Ca + ) és nátrium (a + ) ionok áramlanak a sejtbe, és kálium (K + ) ionok távoznak onnan. Az MK-801 megakadályozza az ionok áramlását azáltal, hogy egy, a csatornán belüli kötőhelyhez kapcsolódik, tehát blokkolja az MDA receptor működését. Amikor az MDA receptoron keresztül túl sok kálcium ion jut a posztszinaptikus idegsejtbe, az mérgező hatást fejt ki a másodlagos messenger rendszeren keresztül, ami a sejt duzzadását és végül a halálát Az MDA receptor szerkezetére vonatkozó ismereteket különböző weboldalakról ( keresőbe beírva az MDA receptor kifejezést) szerzett információk alapján állítottam össze. 5

7 eredményezi (excitotoxicitás). A neurodegenerálódás mind akut, mind progresszív neurológiai rendellenességekhez kapcsolódik (pl. stroke, epilepszia, untington betegség, Parkinson kór, AIDS-hez társult demencia). A glutaminsav magas szintjével összefüggésbe hozható toxicitás MDA receptorokon keresztül valósul meg. Az MDA receptor antagonistákról kimutatták, hogy ezt a mérgező hatást mérséklik. 4. ábra MDA receptoron keresztül megvalósuló excitotoxicitás Az első generációs MDA receptor antagonisták három fő osztályát különböztetjük meg: kompetitív antagonisták, amelyek a glutaminsav, valamint nemkompetitív antagonisták, amelyek a csatorna kötőhelyen (MK 801), illetve a glicin kötőhelyen hatnak. Az antagonisták neuroprotektív hatással bírnak, ugyanakkor sokuknál pszichotomimetikus mellékhatások léptek fel, amelyek életet veszélyeztető helyzetben elfogadhatók volnának, viszont hosszútávú gyógykezelést igénylő betegségek esetén nem. Az emlősök MDA receptorai R1 és R alegységekből állnak. Az R1 alegység nyolc variánsból épül fel, míg az R négy altípusból (RA-RD) áll. A különböző altípusok léte teszi lehetővé az altípus szelektív MDA receptor antagonisták kutatását. Az R1 alegységű receptorok az agy legkülönbözőbb részén megtalálhatók, ugyanakkor az R 6

8 alegységek jól meghatározott eloszlást mutatnak, így az antagonistájuk hatása az agy megfelelő területeire korlátozódik, ami a mellékhatásprofilt jelentősen javítja. Szerkezetük alapján az RB altípus-szelektív MDA receptor antagonistákat különböző csoportokba oszthatjuk. 7,8 Egy meglehetősen népes csoportot alkotnak azok a vegyületek, amelyekben egy -donor egység kapcsolódik - kettő vagy három atomon keresztül egy helyettesített fenil-, illetve benzilpiperidin nitrogénjéhez (pl. CI-1041,. ábra, 3. oldal). A Richter Gedeon Vegyészeti Gyár Rt. Szint II. kutatólaboratóriumában számos - acilezett 4-benzilpiperidint szintetizáltak (pl. 5. ábra), amelyek hatékony és szelektív MDA receptor antagonistáknak bizonyultak ábra Az indol szerkezeti elemben levő előnyösnek bizonyult, valamint a nem bázikus 4-benzilpiperidin egység növelte a más receptorokkal szembeni szelektivitást. Ezen vegyület szisztematikus módosításával - az általunk szintetizált benzilpiperidineket felhasználva egy új oxamid származékot állítottak elő (6. ábra), amely mind kötő, mind funkcionális tesztekben kétszer hatásosabbnak bizonyult, mint az eredeti vegyület ábra Mivel a fenolos hidroxilcsoportot tartalmazó vegyületeknek általában kedvezőtlen metabolikus tulajdonságaik vannak, ezért ezt a csoportot olyan kondenzált heterociklusra cserélték, amely legalább egy -t tartalmaz. Számos ilyen oxamid származékot állítottak elő és teszteltek (7. ábra). 7

9 Q R Q: benzimidazolon -benzoxazolinon benzotiazolin--on indolin--on 7. ábra Ezek mind hatásos és RB altípus-szelektív MDA receptor antagonistáknak bizonyultak. In vitro aktivitásuk az irodalomban ismert származékokéhoz hasonló, míg néhány esetben kiemelkedő in vivo aktivitást tapasztaltak. A Richter Gedeon Rt. a szelektív MDA receptor antagonisták kutatásában elért eredmények alapján egy származékkal 003 őszén megkezdte a klinikai vizsgálatokat. 6 8

10 3. Benzilpiperidinek előállítása 3.1. Irodalmi áttekintés A benzilpiperidinek nem csupán MDA receptor antagonisták esszenciális építőelemei, de nagy affinitást mutatnak más központi idegrendszeri receptorok, mint például az 5T 1A és az 5T iránt is. 11 A 3-benzil származékok fungicid hatású vegyületek, 1 míg a benzilpiperidinek dopamin receptor antagonisták. 13 Az irodalomban ismert előállítási lehetőségeket két csoportra oszthatjuk. I. A piridingyűrű és az aromás egység összekapcsolása, majd ezt követően az - heterociklus telítése II. A piperidin és az aromás gyűrű összekapcsolása Benzilpiperidinek irodalmi előállítása, I Benzilpiridinek előállítása Csicsibabin az 1900-as évek elején benzilklorid és piridin C-on történő összekapcsolásával az aromás gyűrűn helyettesítőt nem tartalmazó benzilpiridineket állított elő (8. ábra) Cl 8. ábra C 3, 4, 5 9

11 A fémorganikus reakciókkal 17-1 előállítható aril-piridilmetanolok dehidroxilálásával (Zn, SmI, 3 in situ előállított ISiMe 3 19, 0 vagy Pd/C katalizált redukció 4 ) szintén benzilpiridineket lehet előállítani (9. ábra). C R + X 6 7, 8, 9 R R R X + C 10 11, 1, 13 14, 15, 16 3, 4, 5 X= Br, Cl, I 9. ábra Friedel-Crafts acilezéssel, 5 fémorganikus reakcióval, 6-30 illetve katalitikus karbonilezéssel 31 előállítható aril-piridilmetanonok hidrogénjodid/foszforos, 15 illetve hidrazinos redukciójával 6, 7 ugyancsak benzilpiridinekhez juthatunk (10. ábra). Cl R + 17, 18, 19 0 AlCl 3 C R + X 6 1,, 3 R R R + X 5, 6, 7 3, 4, 5 C 4 11, 1, 13 X Pd 11, 1, 13 + C + PhB() X= Br, Cl, I 10. ábra 10

12 -Benzilpiridin speciális előállítása 13 A C-savas vegyületek mint 8 fenilacetonitril erős bázis (a) jelenlétében arilezhetők. Arilezőszerként a -klórpiridint (9) használták, mivel szerkezeténél fogva (amidklorid) jelentős reakciókészsége van. Az aktiváló nitrilcsoportot két lépésben távolították el: lúgos hidrolízissel, majd dekarboxilezéssel (5) (11. ábra). C 3 C 3 R R C + a toluol Cl atm. 8 9 C K. 3 P 4 C 3 R 11. ábra A piridingyűrű telítése A benzilpiridinek előállításával foglalkozó publikációk általában nem foglalkoznak a heterociklus telítésével (1. ábra). R R 3 kat 3, 4, 5 31, 3, ábra Csicsibabin nátriummal alkoholban telítette a benzilpiridinek heteroaromás gyűrűjét. 15, 11

13 Platinaoxid katalizátor széles körben elterjedt a piridingyűrű telítésére. 13, 33, 34 Például -(3-metoxibenzil)piridin redukciója Pt mellett 0 C-on, 1,5 bar nyomáson ecetsavban 60 %-os termeléssel játszódik le. 13 Platina, 35 palládium, 36 ródium 37 és ruténium 38 ugyancsak használhatók e hidrogénezés katalizátoraként. Raney-i 39 esetén magasabb hőmérséklet és nyomás szükséges (100 C, 110 bar), mint az előbb említett katalizátorokkal történő hidrogénezéseknél. Annak ellenére, hogy a Pd/C katalizátort sokszor használják - heterociklusok redukciójára, az irodalomban csak egy példa található, amely ezzel végzi a benzilpiridin katalitikus gyűrűtelítését: a 3-benzilpiridin redukcióját 00-ben írták le 10 %-os Pd/C katalizátor jelenlétében, 3,5 bar nyomáson, ecetsavban és 9 %-os termeléssel kapták a terméket Benzilpiperidinek irodalmi előállítása, II Benzilpiperidinek előállítása A 4-benzilpiperidinek előállítására szolgáló A, B, C módszerek szinte kivétel nélkül azonos kezdeti lépéseken keresztül érnek el egy intermedierig, melyből eltérő átalakításokkal jutnak el a célvegyületekhez. Ebből a megfontolásból közös ábrán (13. ábra) foglaltam össze ezeket a lehetőségeket. A közös kiindulási anyag az izonipekotinsav (34), már tartalmazza a piperidingyűrűt, melyből a nitrogén acetilezéssel történő védése (35) után savkloridot képeznek (36), majd a megfelelően szubsztituált aromás vegyülettel Friedel Crafts reakcióban történő arilezéssel 11, 5, kapják 37 kulcsintermediert. Innen a különböző színű nyilak irányában haladnak tovább. 46 A zöld, 11 ill. piros 46 színnel jelzett úton haladva (A, ill. B módszer) a nitrogén védőcsoportjának eltávolítása után (38) egy, ill. két lépésben kapják 31 terméket. Az egylépéses reakcióban 11 négy nap szükséges. A kétlépéses út 46 trietilszilánnal redukálják 38 karbonilcsoportját; az átalakuláshoz a karbonilcsoport nátrium tetrahidrido-borátos redukcióján (39), majd a keletkező hidroxilcsoport eltávolításán keresztül vezet. Utóbbi reakciót hidrogénjodid és foszfor segítségével hajtják végre. 1

14 C C CCl 34 Ac SCl 8 ó forr % 97% 1 ó forr. AlCl 3 PhR R R R.X 39 71% ab 4 Et.X 38 98% + ó forr % I Ac 10 ó forr. Et 3 Si/TFA 4 nap!!! - R R.X 31 45% 54% 75% K-W--M o C, ó 40 77% A, 0,74 0,97 0,5 0,98 0,71 0,75 = Σ19% (6) B, 0,74 0,97 0,5 0,98 0,45 = Σ15-16% (5) C, 0,74 0,97 0,5 0,77 0,54 = Σ15% (5) 13. ábra A kék színnel jelzett reakcióút 5 megvalósításához (C módszer) a rendkívül karcinogén hidrazinhidrátot feleslegben kell alkalmazni, majd 40 hidrazonból Kizsnyer-Wolf- uang-minlon reakcióval jutnak el 31 termékhez. Ez utóbbi lépést dietilénglikolban végzik, 13

15 amely R = F esetében maga is részt vesz a reakcióban és szennyezésként 4-[-(- hidroxietoxi)etoxi]benzil származék (14. ábra) keletkezik, 11 melynek eltávolítása jelentősen csökkenti a célvegyület kitermelését. 14. ábra Mindhárom szintézisút 5, ill. 6 lépésben szolgáltatja a célvegyületet, a bruttó termelések % közöttiek. Zhou 4-benzilpiperidineket - egy 1999-es közleménye szerint - a 15. ábrán feltűntetett úton állított elő. 47 Eszerint 41 benzilbromidokból trifenilfoszfinnal képzett 4 benzilfoszfóniumsókból Wittig-reakcióban keletkeznek 43 benzilidénpiperidin-származékok. R R Ph 3 P R Bn Br Br - + PPh a/dms t 80 0 C % R: F, CF 3, Me, Et, i-pr, i-bu R R 43 83% Bn 1. /Pt 3, bar 8 ó. Cl /10% PdC Et.Cl 31 98% 15. ábra.cl Bn 44 96% 14

16 Ezután a kettős kötés telítését platinaoxidos, a benzilcsoport eltávolítását palládiumcsontszenes katalitikus hidrogénezéssel végzik, és így négy lépésben bruttó 64 %-os termeléssel nyerték 31 termékeket. A módszer hátránya, hogy 43 vegyület csak kromatográfiásan tisztítható, valamint a kiindulási anyagként használt 41 benzilbromidok előállítása általában több lépésben, környezetkárosító reagensek alkalmazásával valósítható meg (pl. tionilklorid, foszfortribromid). Továbbá a Wittig-reakcióban keletkező trifenilfoszfinoxid szintén jelentős környezetvédelmi problémákat vet fel. Egy lengyel kutatócsoport 003-ban általuk hatékonynak jellemzett módszert publikált 4-benzilpiperidinek előállítására. 48 A kulcslépés egy allilsziláncsoportot tartalmazó imin (45) ciklizálása, amelyet egy palládiumkatalizált kapcsolás követ (16. ábra). TMS 4 lépés Yb(Tf) 3 R. TsCl R 46 Ts 47 Ar ArB() Pd(Ac) Ar R Pd/C R Ts Ts ábra A 45 imin előállítását 4 lépésben oldották meg összesen 40 %-os termeléssel. Így a kettős kötés telítését nem számítva (termelése nincs megadva, a végterméket oszlopkromatográfiával tisztították) az eljárás termelése mindössze 9 %. Továbbá a publikáció nem tartalmazza a detozilezési lépést, ami bizonyos benzilpiperidin származékok esetén problémát jelent. Az alacsony termelés, a sok lépés, valamint a különleges [Yb(Tf) 3 ] 15

17 és környezetszennyező reagensek (trifenilfoszfin) ennek a hatékony megoldásnak az ipari alkalmazhatóságát kizárja Benzilpiperidinek előállítása 3-Benzilpiperidinek előállítására egy korszerű módszer 49 ad lehetőséget, amely jól hozzáférhető valerolaktámból (50) kiindulva lítiálással, majd a megfelelő szubsztituált benzilbromiddal történő alkilezéssel szolgáltatja 51 vegyületet, amelyből nagy feleslegű (négyszeres mennyiségű) lítium tetrahidrido-aluminátos (LiAl 4 ) redukcióval keletkezik 3 termék (17. ábra). Az alkilezőszer előállításának problémáiról már említést tettem a Zhou által kidolgozott módszer kapcsán (14. oldal). A redukálószerként alkalmazott LiAl 4 nemcsak drága, de nagy feleslegének megsemmisítése megfelelő biztonságtechnikát igényel. 1. BuLi/TF C. ArC Br 5 ó forr. 1 ó % 75% Ar 4 LiAl 4 /TF Ar 17. ábra Benzilpiperidinek előállítása -Benzilpiperidinek előállíthatók -benzil-3,4,5,6-tetrahidropiridin (55) lítium tetrahidrido-aluminátos redukciójával. 50 Az 55 vegyület a piperidin -terc-butilformamidin származékának (5) butillítiumos reakciójával, majd a kapott 53 vegyület fémorganikus intermedieren keresztül történő alkilezésével szintetizálható (18. ábra). 16

18 Bu t Li BuLi benzilbromid Bu Bu t t t 5 53 hidrazin 54 Bu LiAl ábra Az 55 vegyület 56 acetilén származék ruténium-karbonillel végzett intramolekuláris hidroaminálásával is előállítható (19. ábra). 51 Ru 3 (C) 1 10 C ábra Az irodalmi megoldások jellemzése Az irodalmi megoldásoknak általános hátrányai: Különleges (ennek megfelelően drága) és/vagy veszélyes reagensek és körülmények Soklépéses szintézisek alacsony termelés Jelentős mennyiségű környezetre káros melléktermék Sok esetben nem általánosítható megoldások Ezen hátrányok szükségessé tették egy egyszerű, jól általánosítható, környezetbarát, iparilag is alkalmazható szintézis kidolgozását benzilpiperidinek előállítására. 17

19 3.. Saját eredmények Munkahipotézisünk szerint különböző arilbromidok és piridinaldehidek Grignardreakciója jó termeléssel szolgáltatja az eljárás kulcsintermedierjének számító arilpiridilmetanolokat (14, 15, 16). A benzilhelyzetű hidroxilcsoport hidrogenolízise, valamint a piridingyűrű katalitikus hidrogénezése külön-külön ismert a szakirodalomban. Mivel a 14, 15, 16 jelű vegyületek két redukálható funkciós csoporttal rendelkeznek (hidroxilcsoport, piridingyűrű), redukciójuk során elvileg három féle termék keletkezhet (0. ábra): Benzilpiperidinek (31, 3, 33) a két redukciós lépés egy-edényes megoldása Benzilpiridinek (3, 4, 5) (szakirodalomban ismert termékek) katalitikus gyűrűtelítéssel benzilpiperidinekké alakíthatók α-aril-piperidilmetanolok (57, 58, 59) a hidroxilcsoport eltávolításával feltehetően benzilpiperidinekké alakíthatók E megfontolások alapján egy egyszerű, kétlépéses megoldással elő lehetne állítani a megfelelő benzilpiperidineket környezetkímélő, iparilag is alkalmazható módon. R' C R'' + Br 6 7, 8, 9 R' R'' 14, 15, 16 R' R' R' R'' R'' R'' 3, 4, 5 31, 3, 33 57, 58, ábra

20 Benzilpiperidinek előállítása 5,53 Munkahipotézisünk megvalósítását a 3-benzilpiperidinek előállításával kezdtük. A különböző arilbromidok (6) és a kereskedelemben kapható piridin-3-aldehid (8) Grignardreakciója jó termeléssel eredményezte az aril-piridilmetanolokat (15), amelyek katalitikus hidrogénezésekor (Pd/C katalizátoron, ecetsavban, 8-10 bar nyomáson, C hőmérsékleten) a megfelelő 3-benzilpiperidineket (3) kaptuk egy-edényes megoldással (1. ábra). R' R'' R''' 6a-h Br + C R' Mg/I R'', Pd/C TF R''' 8 15a-h 3a-g, i R' R''' R'' 1. ábra Az eredményeket és a redukció körülményeit az 1. táblázatban foglaltam össze. 1. táblázat. 3-Benzilpiperidinek előállítása Kiindulási anyag Intermedier idrogénezés Termék o. Szubsztituens (R, R, R ) o. Termelés (%) yomás (bar) őmérséklet ( C) o. Termelés (%) 6a 4-C 3 15a a 76 6b -C 3 15b b 91 6c 4-C 3 15c c 89 6d 3-CF 3 15d d 70 6e 4-F 15e e a 76 6f 3,4-(C 3 ) 15f f 8 6g 3,5-(C 3 ) -4-C 3 15g g 75 6h 4-[C =C(C 3 )C ] 15h i a, b 6 a Bázis formájában izolálva. b 3i: 4-[C 3 -C(C 3 )C ]. 19

21 és -Benzilpiperidinek előállítása, I. 54 Szintézisstratégiánknak megfelelően a különböző szubsztituált aromás brómvegyületekből in situ előállított Grignard-reagenseket piridin- ill. 4-aldehiddel reagáltattuk (. ábra). Az eredmények a. táblázatban találhatók. R'' R' Br 6a-e, j-s + 7, 9 C Mg. ábra TF R' R'' 14a-e, j-s, 16a-d, j. táblázat. Aril- és 4-piridilmetanolok előállítása Kiindulási brómvegyület Piridin- Termék o. R R aldehid o. Termelés (%) 6a 4-C a 80 6b -C b 75 6c 4-C c 74 6d 3-CF d 87 6e 4-F 7 14e 85 6j 3-C j 86 6k,-dimetil-,3-dihidrobenzofurán-5-il * 7 14k 37 6l 3-F 7 14l 49 6m 3-C m 88 6n -C n 95 6o 3-F 5-F 7 14o 7 6p 3-C 3 5-CF p 5 6q 3-CF 3 5-CF q 49 6r 4-Bn 7 14r 9 6s 3-Bn 7 14s 5 6a 4-C a 83 6b -C b 7 6c 4-C c 89 6d 3-CF d 96 6j 3-C j 64 * A származék neve tartalmazza a benzolgyűrűt is. 0

22 Bizonyos származékok esetén (14a-c, j, k) a 3-benzilpiperidinek előállításánál alkalmazott redukciós körülmények között (Pd/C, ecetsav, C) jó termeléssel keletkeztek a kívánt benzilpiperidinek (31) (3. táblázat). Azonban a kívánt benzilpiperidin és az α-aril-piperidilmetanol elegye keletkezett abban az esetben, amikor a 14-es származék benzolgyűrűje meta helyzetben trifluormetilcsoportot tartalmazott, viszont a 14o, p redukciójakor már kizárólag aril-piperidilmetanolokat (57o, p) kaptuk (3. ábra). R' R' R' R'', Pd/C ecetsav, C 14a-d, j, k, o, p 31a-d, j, k 57d, o, p R'' + R'' 3. ábra 3. táblázat. A 14, 16-os vegyületek hidrogénezése ecetsavban, o C-on Grignard-termék idrogénezés körülményei idrogénezés termékei vegyületek arány a termelés b (%) 14a Ac c, 1 bar, 75 o C 31a + 57a 100 : b Ac, 1 bar, 75 o C 31b + 57b 100 : c Ac, 1 bar, 60 o C 31c + 57c 100 : d Ac, 1 bar, 60 o C Ac, 10 bar, 70 o C 31d + 57j 31d + 57d 95 : 5 90 : 10 14j Ac, 10 bar, 80 o C 31j + 57j 100 : k Ac, 10 bar, 60 o C 31k + 57k 100 : o Ac, 1 bar, 75 o C 31o + 57o 0 : p Ac, 1 bar, 70 o C 31p + 57p 0 : j Ac, 10 bar, 70 o C 33j + 59j 0 : a A termékarány a termékek 1 -MR spektruma alapján. b Az izolált, tisztított termékre vonatkozó termelés. c Ac: ecetsav

23 A 3-metoxifenil--piridinmetanol (16j) redukciója hasonló eredményhez vezetett. A kívánt benzilpiperidin származék helyett kizárólag a megfelelő aril-piperidilmetanol származék (59j) keletkezett (4. ábra). Me Me, Pd/C ecetsav, C 16j 59j 4. ábra Ecetsavban, még magas hőmérsékleten, hosszabb reakcióidő alatt (80 C, 4 óra) sem sikerült 57d hidroxilcsoportját - a piridingyűrű telítése után - eltávolítani. Ezen eredmények alapján megállapítható, hogy a benzilhelyzetű hidroxilcsoport hidrogenolízise nagymértékben függ az α-hidroxi-benzilcsoport helyzetétől és a benzolgyűrű helyettesítőjének minőségétől. a ez a folyamat lassú, vagyis a piridingyűrű telítése gyorsabban játszódik le, mint a hidroxilcsoport redukciója, akkor aril-piperidilmetanolok (7, 59) keletkeznek. Mivel a hidroxilcsoport a piridingyűrű telítését követően - az általunk alkalmazott redukciós körülmények között - nem távolítható el, ezért a katalitikus hidrogénezés paramétereit oly módon kellett megváltoztatnunk, hogy a hidroxilcsoport eltávolítását követően valósuljon meg a heterociklus telítődése, azaz csak valódi konszekutív reakció biztosításával lehet tisztán előállítani a benzilpiperidineket. Célunk volt olyan kétlépéses megoldás kidolgozása, amely során először a hidroxilcsoport lehasadása, a következő lépésben pedig a piridingyűrű telítése játszódik le. E két lépés sikeres elválasztása érdekében, valamint a technológiai fejlesztéshez szükséges optimalizálás céljából először a piridingyűrű telítésének kinetikáját vizsgáltuk meg részletesen.

24 3..3. Kinetikai vizsgálatok 55 A kinetikai vizsgálat modellreakciójának a 4-(4-fluorbenzil)piridin (3e) gyűrűtelítését választottuk, ugyanis ez a származék a legígéretesebb szelektív MDA receptor antagonisták esszenciális építőeleme, továbbá a 3e származék katalitikus redukcióját még nem írták le az irodalomban (5. ábra). F F kat. 3e 31e 5. ábra A kísérleteket a katalitikus hidrogénezés kinetikus tartományában végeztük, ahol a keverő fordulatszámától már nem függ a reakció sebessége. Az oldószernek, a hőmérsékletnek, a katalitikusan aktív fémnek és a katalizátor mennyiségének a 3e származék gyűrűtelítésének sebességére és a konverzióra gyakorolt hatását vizsgáltuk meg Az oldószer hatása össze. A különböző oldószerekben végzett redukciók eredményeit a 4. táblázatban foglaltuk 4. táblázat. A különböző oldószerek hatása a 3e vegyület hidrogénezésében o. ldószer Reakcióidő (ó) Konverzió (%) v 0 (ml g Pd -1 min -1 ) 1 Ecetsav 1, Etanol/1 eqv. S 4 0, Etanol 5, Etilacetát 5, Kloroform 5, Víz 5,0 9 0 Körülmények: 1,87 g (0,01 mol) szubsztrátum, 1,0 g 10 %-os Pd/C katalizátor, 60 o C, 1 bar, 100 ml oldószer. 3

25 A savmentes közegű redukciók során (3-6) a legkisebb kezdeti reakciósebességet (v 0 ) etilacetát oldószerben (16 ml g -1 Pd min -1 - ), míg a legnagyobbat etanolban (100 ml g Pd 1 min -1 ) értük el. A kloroformban, illetve vízben végzett hidrogénezések, hasonlóan az etilacetátos kísérlethez, nagyon lassúak voltak. Savmentes közegben a keletkező piperidinvegyület katalizátormégező hatásának tulajdoníthatóan a reakciósebesség folyamatosan csökkent a reakció előrehaladása során, és még hosszabb reakcióidővel sem lehetett elérni a 100 %-os konverziót; a hidrogénfogyás kisebb konverziónál (3-94 %) leállt (6. ábra). 100 konverzió [%] Ecetsav Etanol/kénsav Kloroform Etilacetát Víz Etanol ,5 1 1,5,5 3 3,5 4 4,5 5 5,5 6 idő [ó] 6. ábra. A 3e vegyület hidrogénezése különböző oldószerekben A keletkező benzilpiperidin-származék bázikus nitrogénjének nemkötő elektronpárja miatt bekövetkező katalizátormérgeződést a nitrogén atom protonálásával (pl. sav hozzáadásával) lehet kiküszöbölni. A 4-(4-fluorbenzil)piridin gyűrűtelítése savas közegben gyorsan, teljes mértékben lejátszódott (0,8-1 óra), leggyorsabban kénsavas etanolban ment végbe A katalitikusan aktív fémek hatása Aktívszén-hordozós palládium vagy platina katalizátorokkal egyaránt jó eredményeket kaptunk, míg az adott reakciókörülmények között a ruténium gyakorlatilag nem volt alkalmas 4

26 a piridingyűrű telítésére: három óra elteltével mindössze a kiinduló anyag 6 %-a redukálódott (5. táblázat). Palládium, ródium vagy platina katalizátorral a hidrogénezés gyors volt, és két órán belül elérte a teljes konverziót. Jól látszik, hogy a Montecatini által gyártott 10 %-os Pd/C katalizátor aktívabb volt, mint a Selcat típusú (v 0 =150, illetve 106 ml g -1 fém min -1 ). Ez a különbség a Selcat katalizátor nagyobb diszperzitásával magyarázható, ugyanis ez kisebb méretű Pd-krisztallitokat jelent, amelyek a savas közegre érzékenyebbek (pl. nagyobb mértékű a palládium kioldódása). 5. táblázat. A katalitikusan aktív fémeknek a konverzióra és a kezdeti reakciósebességre gyakorolt hatása a 3e vegyület hidrogénezésében o. Katalizátor típusa Reakcióidő (ó) Konverzió (%) v 0 (ml g fém -1 min -1 ) 1 10% Pd/C (Montecatini) 1, % Ru/C 3, % Rh/C 1,0 1,3 4 5% Pt/C 1,0 1, % Pd/C (Selcat) 1,0 1, a Körülmények: 1,87 g (0,01 mol) szubsztrátum, 1,0 g katalizátor, 60 o C, 1 bar, 100 ml ecetsav A legnagyobb kezdeti reakciósebességet az aktívszén-hordozós ródium katalizátorral (5 %-os) kaptuk. Ez összhangban van az irodalmi adatokkal, miszerint a ródium a legaktívabb katalizátor heterociklusok redukciójában. 56 Mivel a palládium ára a legalacsonyabb a hatékonynak bizonyult nemesfémek között, ezért technológiai szempontból ez a katalizátor a legelőnyösebb. 5

27 A katalizátor mennyiségének a hatása A különböző katalizátor/szubsztrátum arányban alkalmazott 10 %-os Pd/C (Montecatini) katalizátornak a konverzióra gyakorolt hatása a 7. ábrán látható konverzió [%] ,53 0,4 0,3 0,19 0, ,5 1 1,5,5 3 3,5 4 4,5 5 5,5 6 idő [ó] 7. ábra. A 3e származék hidrogénezése Pd/C jelenlétében, különböző katalizátor/szubsztrátum arányok mellett. 6. táblázat. A katalizátor/szubsztrátum aránynak a konverzióra és a kezdeti reakciósebességre gyakorolt hatása 3e hidrogénezésében o Kat. menny.(g) Kat./szubsztrátum arány (g g -1 ) A teljes konverzió eléréséhez szükséges idő (ó) v 0 (ml g Pd -1 min -1 ) 1 1,0 0,53 1, ,75 0,4 1, ,56 0,3 1, ,35 0,19, ,19 0,1 5,0 149 Körülmények: 1,87 g (0,01 mol) szubsztrátum, 60 C, 1 bar, 100 ml ecetsav. A redukció 0,53 katalizátor/szubsztrátum aránnyal egy óra alatt lejátszódott. Kisebb katalizátor/szubsztrátum arány esetén (0,4, 0,3, 0,19, 0,1) a teljes konverzió eléréséhez szükséges idő megnőtt (1,4-5,0 óra). A különböző reakciók kezdeti reakciósebességei közel 6

28 azonosak voltak (v 0 = ml g Pd -1 min -1 ), ami azt jelenti, hogy a hidrogénezés sebességmeghatározó lépése a felületi kémiai reakció. A konverzió görbék linearitása azt mutatja, hogy a hidrogénezési reakció a szubsztrátumra nézve nulladrendű A hőmérséklet hatása A hőmérsékletnek a konverzióra és a kezdeti reakciósebességre gyakorolt hatását a 7. táblázat mutatja be. 7. táblázat. A hőmérséklet hatása a konverzióra és a kezdeti reakciósebességre 3e származék hidrogénezésében o. őmérséklet ( o C) A teljes konverzió eléréséhez szükséges idő (ó) , , , ,0 5 v 0 (ml g Pd -1 min -1 ) ,5 8 Körülmények: 1,87 g (0,01 mol) szubsztrátum, 1,0 g 10 % Pd/C katalizátor, 1 bar, 100 ml ecetsav. A hőmérsékletet 70 C-ról 30 C-ra csökkentve a kezdeti reakciósebesség 1/8-re csökkent (5 ml g -1 Pd min -1 ról 8 ml g -1 Pd min -1 -re). Ennek tükrében várható, hogy az aril-piridilmetanolok alacsony hőmérsékleten végrehajtott redukciója során, a piridingyűrű lassú telítése miatt, a hidroxilcsoport eltávolításának kedvező oldószerben a hidrogenolízis befejeződik anélkül, hogy számottevő mértékű gyűrűtelítés bekövetkezne. Utána a benzilpiridinek redukcióját már magasabb hőmérsékleten (60-70 C) érdemes végezni a gyors reakció érdekében. Az Arrhénius-egyenlet alapján az 1/T függvényében ábrázoltuk a kezdeti reakciósebességi értékek természetes alapú logaritmusát (8. ábra). 7

29 6 5,5 5 ln v 0 [-] 4,5 4 3,5 3,5,9 3 3,1 3, 3,3 3,4 1/T.10-3 [K -1 ] 8. ábra. Az Arrhénius-egyenes a 3e vegyület hidrogénezésében Az egyenes meredekségéből számított látszólagos aktiválási energia ( E a ) 45,3 kj mol -1 -nak adódott. A E a értéke további igazolása annak, 57 hogy a 3e vegyület hidrogénezése során a redukció sebességmeghatározó lépése maga a felületi kémiai reakció és 4-Benzilpiperidinek előállítása, II. Irodalomban ismert tény, hogy a benzilhelyzetű hidroxilcsoport hidrogenolízisének sebessége erős ásványi sav ( S 4, Cl) hozzáadásával protikus oldószerben (ecetsav, etanol, metanol) megnő. Ezért egy kétlépéses eljárást fejlesztettünk ki, amely során első lépésben alacsonyabb hőmérsékleten, ásványi sav jelenlétében, protikus oldószerben 1 molekvivalens hidrogén felvételével végbemegy az -csoport hidrogenolízise. A terméket izoláltuk, és ha szükséges volt, bázis formájában vákuumdesztillációval tisztítottuk. Ezt követően a piridingyűrű telítését ecetsavban, C-on végeztük (9. ábra). R' R'', Pd/C R'', Pd/C R'' 5-35 C C 14d, e, l, o-q, 16a-d 3d, e, l, o-q, 5a-d 31d, e, l, o-q, 33a-d 9. ábra R' R' 8

30 8. táblázat. Aril- és 4-piridilmetanolok kétlépéses hidrogénezése Grignard termék Első redukciós lépés Második redukciós lépés c körülmények a termék (termelés [%]) b termék (termelés [%]) b 14d Me/ S 4, 5 o C 3d (55) 31d (53) 14e Me/ S 4, 30 o C 3e (70) 31e (83) 14l Me/ S 4, 30 o C 3l (70) 31l (67) 14o Ac/ S 4, 30 o C 3o (89) 31o (91) 14p Ac/ S 4, 35 o C 3p (84) 31p (88) 14q Ac/ S 4, 35 o C 3q (91) 31q (95) 16a Me/ S 4, 5 o C 5a (77) 33a (57) 16b Me/ S 4, 5 o C 5b (79) 33b (66) 16c Me/ S 4, 5 o C 5c (87) 33c (8) 16d Me/ S 4, 5 o C 5d (66) 33d (80) a Me: metanol; Ac: ecetsav; légköri nyomáson végzett redukció. b Izolált, tisztított termékre vonatkozó termelés. c Körülmények: ecetsav, 10 bar, C. Abban az esetben, amikor a Grignard-termék elektronvonzó csoportokat tartalmazott (14o, p), a kénsavas metanolban végrehajtott redukció nem járt sikerrel, viszont kénsavas ecetsavban sikeresen megtörtént a benzilhelyzetű -csoport hidrogenolízise. A 3- trifluormetilfenil-piperidilmetanol (57d) hidroxilcsoportját azonban így sem sikerült eltávolítani. A két lépés szétválasztása és a közbenső tisztítás anyagveszteséggel jár, ezért a redukció egy-edényes megoldásának kidolgozása is szükségessé vált. Egy külön kísérletben a 14a származék légköri nyomású redukciója során a hidrogén fogyást az idő függvényében ábrázolva (30. ábra) két egymást követő szakaszt lehetett megfigyelni. Egy molekvivalens hidrogén felvétele (hidrogenolízis) 5-35 C-on, majd a gyűrűtelítés (3 molekvivalens hidrogén) magasabb hőmérsékleten következik be. 9

31 hidrogén fogyás [ml] hőmérséklet [ C] idő [perc] hidrogén fogyás hőmérséklet 30. ábra. A 14a származék hidrogénezése ecetsavban légköri nyomáson Ezen kísérleti adatok, valamint a kinetikai vizsgálatok eredményei alapján kidolgoztunk egy egy-edényes megoldást benzilpiperidinek előállítására. Protikus oldószerben, alacsonyabb hőmérsékleten végeztük a redukciót egy ekvivalens hidrogén felvételéig. Ezután felemeltük a hőmérsékletet C-ra a piridingyűrű telítése céljából (31. ábra). R' R' R'', Pd/C R'' 14a-d, j, m, n, 16a, d 31a-d, j, m, n, 33a, d 31. ábra Az általunk kidolgozott hőmérséklet programozott katalitikus hidrogénezés alkalmazásával számos aril-piridilmetanol redukcióját oldottuk meg egy lépésben, ily módon a 4- és -benzilpiperidinek előállítását is sikerült lépésben (Grignard-reakció, katalitikus hidrogénezés) megvalósítanunk. 30

32 9. táblázat. Aril- és 4-piridilmetanolok egy-edényes redukciója Kiindulási A hidrogénezés körülményei A hidrogénezés terméke anyag oldószer a nyomás hőmérséklet ( C) vegyület termelés (bar) 1 ekv. 3 ekv. (%) 14a Et/Cl a 8 14b Et/Cl b 8 14c Et/Cl c 86 14d Et/Cl d 71 14j Et/ S j 4 14m Ac m 67 14n Ac n 70 16a Et/Cl a 6 16d Et/Cl b 77 a Et: etanol; Ac: ecetsav. b Izolált, tisztított termékre vonatkozó termelés. b A szakirodalomban ismert, hogy a karbonilvegyületek (C= kötés) redukciója metilénszármazékká a megfelelő hidroxivegyületen keresztül megy végbe. A benzilpiperidinek előállítására kidolgozott módszerünkben a katalitikus hidrogénezés kiinduló anyagai az aril-piridilmetanolok voltak, amelyek a megfelelő metanonok redukciójával is előállíthatók. Következésképpen aril-piridilmetanonok hőmérséklet programozott hidrogénezésével ugyancsak eljuthatunk a benzilpiperidinekhez a korábbi megoldás intermedierjein, az aril-piridilmetanolokon keresztül. Az irodalomban ismert módszerrel, brómvegyületek és -, illetve 4-cianopiridinek Grignard-reakciójával nyert arilpiridilmetanonokból (5, 7) különböző benzilpiperidineket szintetizáltunk oly módon, hogy a redukció hőmérsékletét 30 C-on tartottuk két molekvivalens hidrogén felvételéig, majd a piridingyűrű telítése céljából a reakcióelegyet felmelegítettük C-ra (3. ábra). R' 6 Br + 1, 3 C Mg TF R' R', Pd/C 5a, c, d, e, 7a, c 31a, c, d, e, 7a, c 3. ábra 31

33 10. táblázat Benzilpiperidinek előállítása cianopiridin alapon Kiindulási anyag a A hidrogénezés körülményei b A hidrogénezés terméke nyomás hőmérséklet ( C) vegyület termelés c (bar) ekv. 3 ekv. (%) 5a (58 %) a 83 5c (51 %) c 67 5d (57 %) d 78 5e (5 %) e 94 7a (46 %) a 63 7c (50 %) c 71 a A Grignard-reakció termelése van feltüntetve a zárójelben. b A hidrogénezést kénsavas metanolban végeztük. b Az izolált, tisztított termékre vonatkozó termelés. Egy kiválasztott származék (5a) légköri nyomású redukciója esetén a hidrogénfogyást az idő függvényében ábrázolva három szakaszt különböztethetünk meg (33. ábra): a karbonilcsoport redukciója alkohollá, az -csoport hidrogenolízise, a piridingyűrű telítése. A görbe első szakaszának meredeksége lényegesen nagyobb, mint a másodiké, ezért megállapíthatjuk, hogy a karbonilcsoport redukciója lényegesen gyorsabb, mint a belőle képződött hidroxiszármazéké. Azonban e két lépést az adott reakciókörülmények között nem lehet szétválasztani, hisz a gyors karbonilcsoport redukcióval párhuzamosan megkezdődik a lassúbb hidrogenolízis, amit jól szemléltet a görbe két szakaszának egymáshoz viszonyított aránya. Az első szakasz 1, molekvivalens, míg a második 0,8 molekvivalens hidrogén fogyást reprezentál. A piridingyűrű telítése (3 molekv.) viszont ugyanolyan jól elválik ezektől, mint az aril-piridilmetanolok hidrogénezésekor. 3

34 hidrogén fogyás [ml] hőmérséklet [ C] idő [perc] hidrogén fogyás hőmérséklet 33. ábra. A 5a származék hidrogénezése légköri nyomáson Bebizonyítottuk, hogy az újonnan kidolgozott hőmérséklet programozott hidrogénezés kiterjeszthető aril-piridilmetanonok redukciójára is, azaz a karbinolok mellett ezek magasabb oxidációs fokú prekurzorai, a ketonok is alkalmas kiindulási anyagok lehetnek. Az aromás vegyületek metabolizmusának egyik ismert útja a gyűrű hidroxileződése. Másrészt a hidroxiszármazékok önmagukban is megfelelő farmakonok lehetnek. Az irodalomban ezeket a farmakológiailag értékes vegyületeket a megfelelő metoxiszármazékok koncentrált hidrogén-bromidos demetilezésével szintetizálják. A hidrogén-bromid korróziós, a keletkező metilbromid környezetvédelmi problémákat okoz. Az általunk kidolgozott hőmérséklet programozott katalitikus hidrogénezés ezen hidroxiszármazékok környezetbarát szintézisére is alkalmas. Brómfenolok (6t, u) - alkilezése benzil-kloriddal kálium-karbonát bázis jelenlétében benziloxibrómbenzolokat (6r, s) eredményezett, amelyeket piridin-4-aldehiddel reagáltatva kaptuk a megfelelő Grignardtermékeket (14r, s) (34. ábra). 33

35 BnCl Bn Bn Br K C 3 Br 6t, u 6r, s 14r, s 34. ábra A benzilcsoport eltávolításának közismert módja a katalitikus hidrogenolízis, amelynek során kialakul a kívánt hidroxilcsoport. A két aromás gyűrűt összekötő benzhidril típusú hidroxilcsoport eltávolítása és a piridingyűrű telítése eddig is katalitikus hidrogénezéssel történt. Így megoldható a 14r, s vegyületek közvetlen átalakítása 5 ekvivalens hidrogén felvételével egy-edényes módon a kívánt hidroxibenzilpiperidinekké. A redukció során a reakcióelegy hőmérsékletét két ekvivalens hidrogén felvétele után emeltük 30 C-ról 60 C-ra a piridingyűrű telítése céljából. Ezt a megoldást alkalmaztuk 4-(4- hidroxibenzil)piperidin (31t) előállítására. Természetesen a redukció két képésben is megoldható a korábbi kísérletek alapján 3u hidroxibenzilpiridin intermedieren keresztül, a 4- (3-hidroxibenzil)piperidint (31u) ezen az úton állítottuk elő (35. ábra). A hidroxiszármazékok további farmakológiailag értékes vegyületekké alakíthatók. Abban az esetben, amikor a bevinni kívánt csoport érzékeny a katalitikus hidrogénezésre (pl. nitrilcsoport), a piridingyűrű telítésének meg kell előznie a nitrogén atom védését követően az oxigén atomon való továbbalakítást. Katalitikus redukcióra nem érzékeny csoport (pl. meziloxi) esetén célszerű a hidroxilcsoport továbbalakítását még a heterociklus telítését megelőzően elvégezni, hisz ekkor a nitrogén atom védése nem szükséges. A továbbalakításra is alkalmas meziloxiszármazékot mindkét úton előállítottuk. A gyűrűtelítés utáni továbbalakítás esetében először a 31u nitrogén atomját kellett megvédeni, amit a peptidkémiában használatos terc-butoxikarbonil-csoport (Boc) alkalmazásával értünk el, di-terc-butildikarbonáttal (Boc-anhidrid) acilezve jó termeléssel csak -acil termékhez jutottunk. Ez a védőcsoport lúgos és semleges közegben stabilis, lehasításához savas p szükséges. Ezt használtuk ki, amikor a 61u származékot mezileztük trietilamin bázis jelenlétében. A továbbalakítás másik megoldása szerint először mezileztük a 3u vegyületet, amelyet gyűrűtelítés követett. Végül a 31v származék nitrogénatomjának védése vezetett 61v vegyülethez, amelyet a Richter Gedeon Rt. kutatólaboratóriumában használtak fel újabb szelektív MDA receptor antagonisták szintézisére. 34

36 Bn 5 ekv. 14r, s Pd/C 3u 31t, u C 3 S Cl Et 3 S C 3 Boc Et 3 3v Pd/C S C 3 Boc 61u C 3 S Cl Et 3 Boc Et 3 31v S C 3 Boc 61v 35. ábra 35

37 3..5. Deutériummal jelzett származékok előállítása Farmakológiai vizsgálatokhoz izotópjelzett vegyületek szükségesek. A bevitt izotóp lehet sugárzó ( meleg jelölés ), illetve nem sugárzó ( hideg jelölés ). Az előbbi során a jelölni kívánt atomot a radioaktív izotópjával helyettesítik. Mivel a sugárzó izotóppal való munka veszélyes, ezért ezt a fajta jelölést csak a megfelelő biztonságtechnikával felszerelt speciális radioaktív laboratóriumokban lehet megvalósítani. Korábban ezt a jelölési módot használták, mivel a célmolekula követése megoldott volt. A hideg jelölés elterjedését a követéshez szükséges analitika módszer kifejlesztése tette lehetővé. Az egyik megoldás a belső izotópjelzett standardizálás, 58,59 melynek során az analitikai mintához közvetlenül izotópjelzett standardot adnak. A felszívódás, a felhalmozódás, és a metabolit vizsgálatok során az LC-MS-MS technika alkalmazásával biztosan meg lehet állapítani, hogy az MS spektrumban megjelent megfelelő tömegszámú molekulaion, illetve fragmens a bevitt anyag, vagy annak egy metabolitja, hiszen a bevitt izotóp mennyiségével arányosan nagyobb tömegszámú csúcsnak is meg kell jelennie. A szükséges izotópjelzett vegyületeket általában a molekulák -6 atomjának nehéz, nem sugárzó izotóppal való helyettesítésével állítják elő (például a hidrogén deutériummal történő cseréjével). Ez a fajta jelölés a normál kémiai laboratóriumokban is megoldható, a munka különleges biztonsági előírások betartását nem követeli meg és a további farmakológiai vizsgálatok is megvalósíthatók hideg farmalaborban. Ezért a hideg jelölés egyre inkább elterjed, hála a megfelelő analitikai módszereknek. Mivel a benzilpiperidinek a szelektív MDA receptor antagonisták esszenciális építőelemei, ezért egységes deutériummal jelzett származékaik hatékony előállításának nagy jelentősége van. Ezen megfontolások alapján 4-(4-fluorbenzil)piperidin deutériummal jelzett származékának előállítását tűztük ki célul. Legegyszerűbb jelölési technika a megfelelő vegyület előállítása utáni izotópcsere. Sajiki és kutatócsoportja alkilbenzolok és difenilmetán benzilhelyzetű hidrogénjeinek hatékony és kemoszelektív palládium katalizált /D cseréjét írta le szobahőmérsékleten nehézvízben és hidrogén atmoszférában. 60 Greenfield és a munkatársai a Cl-1014 vegyület (. ábra) izotópjelzését próbálták megvalósítani a Pfizer cég megbízásából (eredményeiket 001-ben megjelent 36

38 konferenciakiadványban ismertették). 61 A benzilpiperidin egység izotópjelzését 4-(4- fluorfenilacetoximetil)piridin (6) deutérium gázos redukciójával palládium-csontszén katalizátor mellett tetradeuteroecetsavban kívánták megoldani (36. ábra). F F Ac d 4 -Ac, Pd/C 6 [ 7 ]31e 6 [ 7 ]Cl ábra * A termék 5 %-át a d 7 izomer, a 48 %-át más izotóptartalmú jelzett származékok keverékei (kivéve a d 0 -t) alkották. Azonban az ilyen keverékekkel végzett farmakológiai vizsgálatok eredményének értékelése problémát jelent (pl. a metabolitok részletes tanulmányozása során). Először Sajiki katalitikus módszerét alkalmaztuk a benzilhelyzetű /D csere elérése érdekében. A GC-MS vizsgálatok azt mutatták, hogy a termék 93,4 %-a a kiindulási vegyület volt, és 6,6 %-ban megtörtént a kiinduló anyag defluorozása. Ráadásul a defluorozott termék legalább 5 különbözőképpen deuterált származék keveréke volt. 1 -MR vizsgálatok szerint deutérium épült be a fluor helyére, illetve a mellette lévő szénre. Másik két származékban a deutérium a benzilhelyzetű szénre, illetve a piperidin gyűrű axiális helyzetébe épült be. F F Pd/C D szobahõm., 3 nap 31e 31e [ ]31w + 93,4 % 6,6 % 37. ábra * Mivel a kiindulási anyag nem oldódott jól vízben, ezért a kísérletet elvégeztük d 4 - metanolban is. Ekkor a kiindulási anyagban nem történt változás. Mivel a sikertelen kísérletek oka lehetett a benzilpiridin bázikus nitrogénjének katalizátormérgező hatása, ezért 1 ekvivalens DCl mellett (d 4 -metanolban) is elvégeztük a kísérletet. Azonban a benzilpiperidin * A deuterált oldószereket a szokásos megnevezésükkel jelöltem. 37

39 ebben az esetben is változatlan formában maradt meg. Ezek alapján elmondhatjuk, hogy a benzilhelyzetű hidrogének Sajiki-féle deutériumos cseréje nem használható benzilpiperidinek esetén. Kézenfekvő megoldást kínált a benzilpiperidinek előállítására szolgáló eljárásunk deutérium atomok bevitelére (munkánk Greenfield és munkatársai publikációját megelőzően történt). A 4-(4-fluorbenzil)piridin heteroaromás gyűrűjének deutérium gázzal, palládiumcsontszén katalizált telítésével 5 deutérium atomot tartalmazó származék előállítását lehetne megvalósítani. Azonban a szükséges mennyiségű deutérium felvétele után a GC-MS vizsgálatok azt mutatták, hogy nem történt deutérium beépülés, hanem 31e benzilpiperidint állítottuk elő (38. ábra). Ez alapján elmondhatjuk, hogy az általunk alkalmazott savas közegben a deutérium gáz és az oldószer hidrogénjei közti csere gyorsabb volt, mint a katalitikus redukció, az oldószer deutérium tartalma nőtt meg a reakció során. Ez összhangban van az irodalmi adatokkal, miszerint a palládium katalizátor felületén a protikus oldószer savas hidrogénjei lecserélődnek deutériummal. 6 F F 3e Me/Cl Pd/C 38. ábra Cl 31e Ezek után kézenfekvő volt, hogy ugyanezt a kísérletet deuterált oldószerben (d 4 - metanol és nehézvíz elegyében) deutériumklorid jelenlétében végezzük el. Ily módon különbözőképpen helyettesített deuterált származékok elegyét kaptuk, 7-11 deutérium atom épült be a molekulába (39. ábra). 3e F, Pd/C Me-d 4, D, Cl 39. ábra.cl F -.Cl [ 7 ]31e [ 11 ]31e F 38

40 A 1 -MR és a GC-MS (40. ábra) alapján megállapítható, hogy az aromás gyűrűben nem történt változás, de a benzilhelyzetben a /D csere teljes volt. (MS spektrum 111-es fragmense a d -4-fluorbenzil egységnek felel meg). A piridingyűrű deutériummal történő telítésén túl a piridin eredeti hidrogénjei is kicserélődtek látszólag Gauss-eloszlásnak megfelelően. 40. ábra Abból a célból, hogy kiderítsük a /D csere okát, a fenti reakció körülményei között kevertettük (katalizátor, oldószer, nyomás, hőmérséklet, idő) a 4-(4-fluorbenzil)piperidint (mivel a kísérlet során a benzilpiridin gyűrű telítése is megtörténne, ezért ennek a vegyületnek a vizsgálata nem vezetett volna a folyamat jobb megértéséhez.). A termék GC-MS és 1 - MR vizsgálata azt mutatta, hogy a piperidingyűrűben nem történt változás, és a benzilhelyzetű /D csere is csak 47 %-os volt. Ebből azt a következetést vontuk le, hogy a - heterociklusban történő izotópcseréhez a piridin π-szextettjének megbomlása szükséges. Véleményünk szerint a teljes mértékű benzilhelyzetű /D csere akkor játszódik le nagyon gyorsan (gyorsabban, mint a piridingyűrű telítése), amikor a metiléncsoportot még két aromásgyűrű szívja és izotópcserére aktiválja, vagy a piridin π-szextettjének megbomlása szükséges a teljes cseréhez. Mivel az utóbbi kísérlet azt mutatta, hogy az utólagos /D csere megvalósítható, ezért a következő kísérlet során a reakcióidőt háromszorosára (3 óra 60 C-on) megnöveltük (oldószerkeverék összetételét az eddigi,8 ml nehézvíz és 7, ml d 4 -metanolról 5 ml nehézvízre és 5 ml d 4 -metanol elegyére változattuk anyagi megfontolásból). Ily módon 80 %- os izotópcserét sikerült elérnünk. Az így nyert terméket ugyanilyen körülmények között tovább reagáltatva a végtermék deutérium-tartalma elérte a 90 %-ot. Mivel a kétszeri reakció anyagveszteséggel jár, ezért kidolgoztuk egy egylépéses megoldást is a benzilhelyzetű izotópcserére. A szubsztrátum-oldószer arányt felére csökkentettük, és a reakcióidőt a két reakcióidő összegeként határoztuk meg (6 óra) (41. ábra). 39

41 F F Pd/C D, Me-d 4, DCl 60 C, 3 bar, 6 óra 31e [ ]31e 41. ábra Ezzel az egylépéses módszerrel ugyanazt a deuteráltsági fokot sikerült elérnünk, mint a kétlépéses megoldás esetén. GC-MS adatok alapján ebben az esetben is két szennyező jelent meg. A kisebb mennyiségben keletkező szennyező a defluorozott származék, a másik melléktermék pedig a ciklohexil-4-piperidil-metán volt. A mellékreakciók elkerülése érdekében a reakció körülményein változtatni kívántunk. A hőmérséklet csökkentésével azonban az izotópcsere sebessége nagyon lecsökkent, pl. 45 C-on 48 óra kevertetés után GC-MS alapján a termék deuteráltsági foka lényegesen kisebb volt, mint 60 C-on (~70 %), valamint a hosszú reakció alatt a melléktermékek közel azonos mértékben keletkeztek. A nyomás 1 barra történő csökkentésével nem tapasztaltunk jelentős változást. Mivel alacsonyabb hőmérsékleten az izotópcsere sebessége nagyobb mértékben csökkent, mint a melléktermékek keletkezésének sebessége, ezért a meglévő eljárást megtartva, utólagos tisztítással állítottuk elő a 31e jelzett származékát ([ ]31e). A szennyezőktől többszöri etanol/éteres átkristályosítással tudtunk megszabadulni. Egységes és tiszta izotóppal jelölt származékok szükségesek a gyógyszermetabolitok PLC-MS-MS vizsgálathoz. Mivel a piridingyűrű telítése során nem tapasztaltunk a benzolgyűrűben izotópcserét, ezért az általunk benzilpiperidinek szintézisére kidolgozott eljárás alapján az aromásgyűrűben deuterált származék előállítását tűztük ki célul. A Grignard-reakció kiindulási anyagát, az 1-bróm-4-fluor-[,3,5,6-4 ]benzolt az irodalom szerint 1-bróm-4-fluorbenzolból lehet száraz DCl gázzal előállítani AlCl 3 dal katalizált /D cserével. 63 Az izotópcserét, amelyhez 1-14 óra volt szükséges, 1 -MR-rel követték. Mivel a [,3,4,5,6-5 ]fluorbenzol kereskedelemben kapható termék, ezért ennek a vegyületnek a brómozásával állítottuk elő a kívánt jelzett brómvegyületet. A reakció körülményeit inaktív vegyülettel optimáltuk (GC-MS vizsgálatok). Ennek alapján diklórmetán 40

Benzilpiperidin és benzilpirrolidin származékok általánosítható, iparilag alkalmazható szintézise

Benzilpiperidin és benzilpirrolidin származékok általánosítható, iparilag alkalmazható szintézise Budapesti Műszaki és Gazdaságtudományi Egyetem Szerves Kémiai Technológia Tanszék Benzilpiperidin és benzilpirrolidin származékok általánosítható, iparilag alkalmazható szintézise Ph.D. értekezés tézisei

Részletesebben

ZÁRÓJELENTÉS. OAc. COOMe. N Br

ZÁRÓJELENTÉS. OAc. COOMe. N Br ZÁRÓJELETÉS A kutatás előzményeként az L-treoninból kiindulva előállított metil-[(2s,3r, R)-3-( acetoxi)etil-1-(3-bróm-4-metoxifenil)-4-oxoazetidin-2-karboxilát] 1a röntgendiffrakciós vizsgálatával bizonyítottuk,

Részletesebben

1. feladat. Versenyző rajtszáma:

1. feladat. Versenyző rajtszáma: 1. feladat / 4 pont Válassza ki, hogy az 1 és 2 anyagok közül melyik az 1,3,4,6-tetra-O-acetil-α-D-glükózamin hidroklorid! Rajzolja fel a kérdésben szereplő molekula szerkezetét, és értelmezze részletesen

Részletesebben

Szerves Kémiai Problémamegoldó Verseny

Szerves Kémiai Problémamegoldó Verseny Szerves Kémiai Problémamegoldó Verseny 2015. április 24. Név: E-mail cím: Egyetem: Szak: Képzési szint: Évfolyam: Pontszám: Név: Pontszám: / 3 pont 1. feladat Egy C 4 H 10 O 3 összegképletű vegyület 0,1776

Részletesebben

szerotonin idegi mûködésben szerpet játszó vegyület

szerotonin idegi mûködésben szerpet játszó vegyület 3 2 2 3 2 3 2 3 2 2 3 3 1 amin 1 amin 2 amin 3 amin 2 3 3 2 3 1-aminobután butánamin n-butilamin 2-amino-2-metil-propán 2-metil-2-propánamin tercier-butilamin 1-metilamino-propán -metil-propánamin metil-propilamin

Részletesebben

Zárójelentés a Sonogashira reakció vizsgálata című 48657sz. OTKA Posztdoktori pályázathoz. Novák Zoltán, PhD.

Zárójelentés a Sonogashira reakció vizsgálata című 48657sz. OTKA Posztdoktori pályázathoz. Novák Zoltán, PhD. Zárójelentés a Sonogashira reakció vizsgálata című 48657sz. OTKA Posztdoktori pályázathoz Novák Zoltán, PhD. A Sonogashira reakciót széles körben alkalmazzák szerves szintézisekben acetilénszármazékok

Részletesebben

Szabó Andrea. Ph.D. értekezés tézisei. Témavezető: Dr. Petneházy Imre Konzulens: Dr. Jászay M. Zsuzsa

Szabó Andrea. Ph.D. értekezés tézisei. Témavezető: Dr. Petneházy Imre Konzulens: Dr. Jászay M. Zsuzsa Budapesti Műszaki és Gazdaságtudományi Egyetem Szerves Kémiai Technológia Tanszék α-aminofoszfinsavak és származékaik sztereoszelektív szintézise Szabó Andrea h.d. értekezés tézisei Témavezető: Dr. etneházy

Részletesebben

1. feladat (3 pont) Írjon példát olyan aminosav-párokra, amelyek részt vehetnek a következő kölcsönhatásokban

1. feladat (3 pont) Írjon példát olyan aminosav-párokra, amelyek részt vehetnek a következő kölcsönhatásokban 1. feladat (3 pont) Írjon példát olyan aminosav-párokra, amelyek részt vehetnek a következő kölcsönhatásokban a, diszulfidhíd (1 példa), b, hidrogénkötés (2 példa), c, töltés-töltés kölcsönhatás (2 példa)!

Részletesebben

Szerves Kémiai Problémamegoldó Verseny

Szerves Kémiai Problémamegoldó Verseny Szerves Kémiai Problémamegoldó Verseny 2015. április 24. Név: E-mail cím: Egyetem: Szak: Képzési szint: Évfolyam: Pontszám: Név: Pontszám: / 3 pont 1. feladat Egy C 4 H 10 O 3 összegképletű vegyület 0,1776

Részletesebben

Új oxo-hidas vas(iii)komplexeket állítottunk elő az 1,4-di-(2 -piridil)aminoftalazin (1, PAP) ligandum felhasználásával. 1; PAP

Új oxo-hidas vas(iii)komplexeket állítottunk elő az 1,4-di-(2 -piridil)aminoftalazin (1, PAP) ligandum felhasználásával. 1; PAP Új oxo-hidas vas(iii)komplexeket állítottunk elő az 1,4-di-(2 -piridil)aminoftalazin (1, PAP) ligandum felhasználásával. H 1; PAP H FeCl 2 és PAP reakciója metanolban oxigén atmoszférában Fe 2 (PAP)( -OMe)

Részletesebben

R R C X C X R R X + C H R CH CH R H + BH 2 + Eliminációs reakciók

R R C X C X R R X + C H R CH CH R H + BH 2 + Eliminációs reakciók Eliminációs reakciók Amennyiben egy szénatomhoz távozó csoport kapcsolódik és ugyanazon a szénatomon egy (az ábrákon vel jelölt) bázis által protonként leszakítható hidrogén is található, a nukleofil szubsztitúció

Részletesebben

Szerves Kémiai Problémamegoldó Verseny

Szerves Kémiai Problémamegoldó Verseny Szerves Kémiai Problémamegoldó Verseny 2014. április 25. Név: E-mail cím: Egyetem: Szak: Képzési szint: Évfolyam: Pontszám: Név: Pontszám: / 3 pont 1. feladat Adja meg a hiányzó vegyületek szerkezeti képletét!

Részletesebben

Név: Pontszám: 1. feladat (3 pont) Írjon példát olyan aminosav-párokra, amelyek részt vehetnek a következő kölcsönhatásokban

Név: Pontszám: 1. feladat (3 pont) Írjon példát olyan aminosav-párokra, amelyek részt vehetnek a következő kölcsönhatásokban 1. feladat (3 pont) Írjon példát olyan aminosav-párokra, amelyek részt vehetnek a következő kölcsönhatásokban a, diszulfidhíd (1 példa), b, hidrogénkötés (2 példa), c, töltés-töltés kölcsönhatás (2 példa)!

Részletesebben

Kémia OKTV I. kategória II. forduló A feladatok megoldása

Kémia OKTV I. kategória II. forduló A feladatok megoldása ktatási ivatal Kémia KTV I. kategória 2008-2009. II. forduló A feladatok megoldása I. FELADATSR 1. A 6. E 11. A 16. C 2. A 7. C 12. D 17. B 3. E 8. D 13. A 18. C 4. D 9. C 14. B 19. C 5. B 10. E 15. E

Részletesebben

Név: Pontszám: / 3 pont. 1. feladat Adja meg a hiányzó vegyületek szerkezeti képletét!

Név: Pontszám: / 3 pont. 1. feladat Adja meg a hiányzó vegyületek szerkezeti képletét! Név: Pontszám: / 3 pont 1. feladat Adja meg a hiányzó vegyületek szerkezeti képletét! Név: Pontszám: / 4 pont 2. feladat Az ábrán látható vegyületnek a) hány sztereoizomerje, b) hány enantiomerje van?

Részletesebben

Szénhidrogének III: Alkinok. 3. előadás

Szénhidrogének III: Alkinok. 3. előadás Szénhidrogének III: Alkinok 3. előadás Általános jellemzők Általános képlet C n H 2n 2 Kevesebb C H kötés van bennük, mint a megfelelő tagszámú alkánokban : telítetlen vegyületek Legalább egy C C kötést

Részletesebben

szabad bázis a szerves fázisban oldódik

szabad bázis a szerves fázisban oldódik 1. feladat Oldhatóság 1 2 vízben tel. Na 2 CO 3 oldatban EtOAc/víz elegyben O-védett protonált sóként oldódik a sóból felszabadult a nem oldódó O-védett szabad bázis a felszabadult O-védett szabad bázis

Részletesebben

AROMÁS SZÉNHIDROGÉNEK

AROMÁS SZÉNHIDROGÉNEK AROMÁS SZÉNIDROGÉNK lnevezés C 3 C 3 3 C C C 3 C 3 C C 2 benzol toluol xilol (o, m, p) kumol sztirol naftalin antracén fenantrén Csoportnevek C 3 C 2 fenil fenilén (o,m,p) tolil (o,m,p) benzil 1-naftil

Részletesebben

Aromás vegyületek II. 4. előadás

Aromás vegyületek II. 4. előadás Aromás vegyületek II. 4. előadás Szubsztituensek irányító hatása Egy következő elektrofil hova épül be orto, meta, para pozíció CH 3 CH 3 CH 3 CH 3 E E E orto (1,2) meta (1,3) para (1,4) Szubsztituensek

Részletesebben

Versenyző rajtszáma: 1. feladat

Versenyző rajtszáma: 1. feladat 1. feladat / 5 pont Jelölje meg az alábbi vegyület valamennyi királis szénatomját, és adja meg ezek konfigurációját a Cahn Ingold Prelog (CIP) konvenció szerint! 2. feladat / 6 pont 1887-ben egy orosz

Részletesebben

Laboratóriumi technikus laboratóriumi technikus Drog és toxikológiai

Laboratóriumi technikus laboratóriumi technikus Drog és toxikológiai A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

SZAK: KÉMIA Általános és szervetlen kémia 1. A periódusos rendszer 14. csoportja. a) Írják le a csoport nemfémes elemeinek az elektronkonfigurációit

SZAK: KÉMIA Általános és szervetlen kémia 1. A periódusos rendszer 14. csoportja. a) Írják le a csoport nemfémes elemeinek az elektronkonfigurációit SZAK: KÉMIA Általános és szervetlen kémia 1. A periódusos rendszer 14. csoportja. a) Írják le a csoport nemfémes elemeinek az elektronkonfigurációit b) Tárgyalják összehasonlító módon a csoport első elemének

Részletesebben

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont 1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat

Részletesebben

1. feladat. Versenyző rajtszáma: Mely vegyületek aromásak az alábbiak közül?

1. feladat. Versenyző rajtszáma: Mely vegyületek aromásak az alábbiak közül? 1. feladat / 5 pont Mely vegyületek aromásak az alábbiak közül? 2. feladat / 5 pont Egy C 4 H 8 O összegképletű vegyületről a következő 1 H és 13 C NMR spektrumok készültek. Állapítsa meg a vegyület szerkezetét!

Részletesebben

Fémorganikus vegyületek

Fémorganikus vegyületek Fémorganikus vegyületek A fémorganikus vegyületek fém-szén kötést tartalmaznak. Ennek polaritása a fém elektropozitivitásának mértékétől függ: az alkálifém-szén kötések erősen polárosak, jelentős százalékban

Részletesebben

Kémiai reakciók sebessége

Kémiai reakciók sebessége Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását

Részletesebben

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2. 6. változat Az 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg azt a sort, amely helyesen

Részletesebben

Helyettesített Szénhidrogének

Helyettesített Szénhidrogének elyettesített Szénhidrogének 1 alogénezett szénhidrogének 2 3 Alifás halogénvegyületek Szerkezet Kötéstávolság ( ) omolitikus disszociációs energia (kcal/mol) Alkil-F 1,38 116 Alkil-l 1,77 81 Alkil-Br

Részletesebben

1. feladat (3 pont) Az 1,2-dibrómetán főként az anti-periplanáris konformációban létezik, így A C-Br dipólok kioltják egymást, a molekula apoláris.

1. feladat (3 pont) Az 1,2-dibrómetán főként az anti-periplanáris konformációban létezik, így A C-Br dipólok kioltják egymást, a molekula apoláris. 1. feladat (3 pont) Az 1,2-dibrómetán apoláris molekula. Az etilénglikol (etán-1,2-diol) molekulának azonban mérhető dipólusmomentuma van. Mi ennek a magyarázata? Az 1,2-dibrómetán főként az anti-periplanáris

Részletesebben

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam A feladatokat írta: Kódszám: Harkai Jánosné, Szeged... Lektorálta: Kovács Lászlóné, Szolnok 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam A feladatok megoldásához csak

Részletesebben

Fémorganikus kémia 1

Fémorganikus kémia 1 Fémorganikus kémia 1 A fémorganikus kémia tárgya a szerves fémvegyületek előállítása, szerkezetvizsgálata és kémiai reakcióik tanulmányozása A fémorganikus kémia fejlődése 1760 Cadet bisz(dimetil-arzén(iii))-oxid

Részletesebben

1. Egyetértek Professzor asszony azon véleményével, hogy sok esetben az ábrák tömörítése a

1. Egyetértek Professzor asszony azon véleményével, hogy sok esetben az ábrák tömörítése a Válasz Skodáné Dr. Földes Rita, az MTA doktora, egyetemi tanár bírálatára Hálásan köszönöm Professzor asszonynak értekezésem alapos és részletekbe menő véleményezését, amellyel visszaigazolja kutatásaink

Részletesebben

Katalízis. Tungler Antal Emeritus professzor 2017

Katalízis. Tungler Antal Emeritus professzor 2017 Katalízis Tungler Antal Emeritus professzor 2017 Fontosabb időpontok: sósav oxidáció, Deacon process 1860 kéndioxid oxidáció 1875 ammónia oxidáció 1902 ammónia szintézis 1905-1912 metanol szintézis 1923

Részletesebben

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion. 4. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

A GAMMA-VALEROLAKTON ELŐÁLLÍTÁSA

A GAMMA-VALEROLAKTON ELŐÁLLÍTÁSA A GAMMA-VALEROLAKTON ELŐÁLLÍTÁSA A LEVULINSAV KATALITIKUS HIDROGÉNEZÉSÉVEL Strádi Andrea ELTE TTK Környezettudomány MSc II. Témavezető: Mika László Tamás ELTE TTK Kémiai Intézet ELTE TTK, Környezettudományi

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003.

KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATK 2003. JAVÍTÁSI ÚTMUTATÓ Az írásbeli felvételi vizsgadolgozatra összesen 100 (dolgozat) pont adható, a javítási útmutató részletezése szerint. Minden megítélt

Részletesebben

AMPA receptorra ható vegyületek és prekurzoraik szintézise

AMPA receptorra ható vegyületek és prekurzoraik szintézise Ph.D. értekezés tézisei AMPA receptorra ható vegyületek és prekurzoraik szintézise Készítette: Lukács Gyula okleveles vegyészmérnök Témavezető: Dr. Simig Gyula c. egyetemi tanár Készült az EGIS Gyógyszergyár

Részletesebben

6. Monoklór származékok száma, amelyek a propán klórozásával keletkeznek: A. kettő B. három C. négy D. öt E. egy

6. Monoklór származékok száma, amelyek a propán klórozásával keletkeznek: A. kettő B. három C. négy D. öt E. egy 1. Szerves vegyület, amely kovalens és ionos kötéseket is tartalmaz: A. terc-butil-jodid B. nátrium-palmitát C. dioleo-palmitin D. szalicilsav E. benzil-klorid 2. Szénhidrogén elegy, amely nem színteleníti

Részletesebben

Szabadalmi igénypontok

Szabadalmi igénypontok l Szabadalmi igénypontok l. A dihidroxi-nyitott sav szimvasztatin amorf szimvasztatin kalcium sója. 5 2. Az l. igénypont szerinti amorf szimvasztatin kalcium, amelyre jellemző, hogy röntgensugár por diffrakciós

Részletesebben

Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév

Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév Kémia - 9. évfolyam - I. félév 1. Atom felépítése (elemi részecskék), alaptörvények (elektronszerkezet kiépülésének szabályai). 2. A periódusos rendszer felépítése, periódusok és csoportok jellemzése.

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2004.

KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2004. KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2004. JAVÍTÁSI ÚTMUTATÓ Az írásbeli felvételi vizsgadolgozatra összesen 100 (dolgozat) pont adható, a javítási útmutató részletezése szerint. Minden megítélt

Részletesebben

7. osztály 2 Hevesy verseny, országos döntő, 2004.

7. osztály 2 Hevesy verseny, országos döntő, 2004. 7. osztály 2 Hevesy verseny, országos döntő, 2004. Kedves Versenyző! Köszöntünk a Hevesy György kémiaverseny országos döntőjének írásbeli fordulóján. A következő tíz feladat megoldására 90 perc áll rendelkezésedre.

Részletesebben

SZERVES KÉMIAI REAKCIÓEGYENLETEK

SZERVES KÉMIAI REAKCIÓEGYENLETEK SZERVES KÉMIAI REAKCIÓEGYENLETEK Budapesti Reáltanoda Fontos! Sok reakcióegyenlet több témakörhöz is hozzátartozik. Szögletes zárójel jelzi a reakciót, ami más témakörnél található meg. Alkánok, cikloalkánok

Részletesebben

Hogyan lesznek új gyógyszereink? Bevezetés a gyógyszerkutatásba

Hogyan lesznek új gyógyszereink? Bevezetés a gyógyszerkutatásba Hogyan lesznek új gyógyszereink? Bevezetés a gyógyszerkutatásba Keserű György Miklós, PhD, DSc Magyar Tudományos Akadémia Természettudományi Kutatóközpont A gyógyszerkutatás folyamata Megalapozó kutatások

Részletesebben

KÉMIA FELVÉTELI DOLGOZAT

KÉMIA FELVÉTELI DOLGOZAT KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74

Részletesebben

SZABADALMI IGÉNYPONTOK. képlettel rendelkezik:

SZABADALMI IGÉNYPONTOK. képlettel rendelkezik: SZABADALMI IGÉNYPONTOK l. Izolált atorvasztatin epoxi dihidroxi (AED), amely az alábbi képlettel rendelkezik: 13 2. Az l. igénypont szerinti AED, amely az alábbiak közül választott adatokkal jellemezhető:

Részletesebben

Sav bázis egyensúlyok vizes oldatban

Sav bázis egyensúlyok vizes oldatban Sav bázis egyensúlyok vizes oldatban Disszociációs egyensúlyi állandó HAc H + + Ac - ecetsav disszociációja [H + ] [Ac - ] K sav = [HAc] NH 4 OH NH 4 + + OH - [NH + 4 ] [OH - ] K bázis = [ NH 4 OH] Ammóniumhidroxid

Részletesebben

Tienamicin-analóg 2-izoxacefémvázas vegyületek sztereoszelektív szintézise

Tienamicin-analóg 2-izoxacefémvázas vegyületek sztereoszelektív szintézise Ph. D. ÉRTEKEZÉS TÉZISEI Tienamicin-analóg -izoxacefémvázas vegyületek sztereoszelektív szintézise Készítette: Sánta Zsuzsanna okl. vegyészmérnök Témavezető: Dr. yitrai József egyetemi tanár Készült a

Részletesebben

Véralvadásgátló hatású pentaszacharidszulfonsav származék szintézise

Véralvadásgátló hatású pentaszacharidszulfonsav származék szintézise Véralvadásgátló hatású pentaszacharidszulfonsav származék szintézise Varga Eszter IV. éves gyógyszerészhallgató DE-GYTK GYÓGYSZERÉSZI KÉMIAI TANSZÉK Témavezető: Dr. Borbás Anikó tanszékvezető, egyetemi

Részletesebben

Badari Andrea Cecília

Badari Andrea Cecília Nagy nitrogéntartalmú bio-olajokra jellemző modellvegyületek katalitikus hidrodenitrogénezése Badari Andrea Cecília MTA Természettudományi Kutatóközpont, Anyag- és Környezetkémiai Intézet, Környezetkémiai

Részletesebben

Szemináriumi feladatok (alap) I. félév

Szemináriumi feladatok (alap) I. félév Szemináriumi feladatok (alap) I. félév I. Szeminárium 1. Az alábbi szerkezet-párok közül melyek reprezentálják valamely molekula, vagy ion rezonancia-szerkezetét? Indokolja válaszát! A/ ( ) 2 ( ) 2 F/

Részletesebben

(11) Lajstromszám: E 005 959 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 005 959 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU0000099T2! (19) HU (11) Lajstromszám: E 00 99 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 04 700707 (22) A bejelentés napja: 04.

Részletesebben

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53 Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2000

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2000 Megoldás 000. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 000 JAVÍTÁSI ÚTMUTATÓ I. A NITROGÉN ÉS SZERVES VEGYÜLETEI s s p 3 molekulák között gyenge kölcsönhatás van, ezért alacsony olvadás- és

Részletesebben

Tartalmi követelmények kémia tantárgyból az érettségin K Ö Z É P S Z I N T

Tartalmi követelmények kémia tantárgyból az érettségin K Ö Z É P S Z I N T 1. Általános kémia Atomok és a belőlük származtatható ionok Molekulák és összetett ionok Halmazok A kémiai reakciók A kémiai reakciók jelölése Termokémia Reakciókinetika Kémiai egyensúly Reakciótípusok

Részletesebben

Szerves kémiai szintézismódszerek

Szerves kémiai szintézismódszerek Szerves kémiai szintézismódszerek 5. Szén-szén többszörös kötések kialakítása: alkének Kovács Lajos 1 Alkének el állítása X Y FGI C C C C C C C C = = a d C O + X C X C X = PR 3 P(O)(OR) 2 SiR 3 SO 2 R

Részletesebben

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás

Részletesebben

Helyettesített karbonsavak

Helyettesített karbonsavak elyettesített karbonsavak 1 elyettesített savak alogénezett savak idroxisavak xosavak Dikarbonsavak Aminosavak (és fehérjék, l. Természetes szerves vegyületek) 2 alogénezett savak R az R halogént tartalmaz

Részletesebben

Szemináriumi feladatok (alap) I. félév

Szemináriumi feladatok (alap) I. félév Szemináriumi feladatok (alap) I. félév I. Szeminárium 1. Az alábbi szerkezet-párok közül melyek reprezentálják valamely molekula, vagy ion rezonancia-szerkezetét? Indokolja válaszát! A/ ( ) 2 ( ) 2 F/

Részletesebben

AMINOK. Aminok rendűsége és típusai. Levezetés. Elnevezés. Alkaloidok (fiziológiailag aktív vegyületek) A. k a. primer RNH 2. szekunder R 2 NH NH 3

AMINOK. Aminok rendűsége és típusai. Levezetés. Elnevezés. Alkaloidok (fiziológiailag aktív vegyületek) A. k a. primer RNH 2. szekunder R 2 NH NH 3 Levezetés AMIK 2 primer 2 2 3 2 3 3 2 3 2 3 3 2 3 2 2 3 3 1 amin 1 amin 2 amin 3 amin 1aminobután butánamin nbutilamin Aminok rendűsége és típusai 2amino2metilpropán 2metil2propánamin tercierbutilamin

Részletesebben

ALKOHOLOK ÉS SZÁRMAZÉKAIK

ALKOHOLOK ÉS SZÁRMAZÉKAIK ALKLK ÉS SZÁRMAZÉKAIK Levezetés R R alkohol R R R éter Elnevezés Nyíltláncú, telített alkoholok általános név: alkanol alkil-alkohol 2 2 2 metanol etanol propán-1-ol metil-alkohol etil-alkohol propil-alkohol

Részletesebben

O S O. a konfiguráció nem változik O C CH 3 O

O S O. a konfiguráció nem változik O C CH 3 O () ()-butanol [α] D = a konfiguráció nem változik () 6 4 ()--butil-tozilát [α] D = 1 a konfiguráció nem változik inverzió Na () () ()--butil-acetát [α] D = 7 ()--butil-acetát [α] D = - 7 1. Feladat: Milyen

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások ktatási Hivatal rszágos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások I. FELADATSR 1. C 6. C 11. E 16. C 2. D 7. B 12. E 17. C 3. B 8. C 13. D 18. C 4. D 9.

Részletesebben

Poliszubsztituált furánok β-ketoészterekből történő ezüstkatalizált előállításának mechanizmusvizsgálata

Poliszubsztituált furánok β-ketoészterekből történő ezüstkatalizált előállításának mechanizmusvizsgálata Tudományos Diákköri Dolgozat PÓTI ÁDÁM LEVENTE Poliszubsztituált furánok β-ketoészterekből történő ezüstkatalizált előállításának mechanizmusvizsgálata Témavezető: Dr. Novák Zoltán egyetemi adjunktus Eötvös

Részletesebben

Javítókulcs (Kémia emelt szintű feladatsor)

Javítókulcs (Kémia emelt szintű feladatsor) Javítókulcs (Kémia emelt szintű feladatsor) I. feladat 1. C 2. B. fenolos hidroxilcsoport, éter, tercier amin db. ; 2 db. 4. észter 5. E 6. A tercier amino-nitrogén. 7. Pl. a trimetil-amin reakciója HCl-dal.

Részletesebben

Kinetika. Általános Kémia, kinetika Dia: 1 /53

Kinetika. Általános Kémia, kinetika Dia: 1 /53 Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika

Részletesebben

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4. 1. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

Reakció kinetika és katalízis

Reakció kinetika és katalízis Reakció kinetika és katalízis 1. előadás: Alapelvek, a kinetikai eredmények analízise Felezési idők 1/22 2/22 : A koncentráció ( ) időbeli változása, jele: mol M v, mértékegysége: dm 3. s s Legyen 5H 2

Részletesebben

R nem hidrogén, hanem pl. alkilcsoport

R nem hidrogén, hanem pl. alkilcsoport 1 Minimumkövetelmények C 4 metán C 3 - metilcsoport C 3 C 3 C 3 metil kation metilgyök metil anion C 3 -C 3 C 3 -C 2 - C 3 -C 2 C 3 -C 2 C 3 -C 2 C 2 5 - C 2 5 C 2 5 C 2 5 etán etilcsoport etil kation

Részletesebben

Mekkora az égés utáni elegy térfogatszázalékos összetétele

Mekkora az égés utáni elegy térfogatszázalékos összetétele 1) PB-gázelegy levegőre 1 vonatkoztatott sűrűsége: 1,77. Hányszoros térfogatú levegőben égessük, ha 1.1. sztöchiometrikus mennyiségben adjuk a levegőt? 1.2. 100 % levegőfelesleget alkalmazunk? Mekkora

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 JAVÍTÁSI ÚTMUTATÓ I. A HIDROGÉN, A HIDRIDEK 1s 1, EN=2,1; izotópok:,, deutérium,, trícium. Kétatomos molekula, H 2, apoláris. Szobahőmérsékleten

Részletesebben

KARBONSAV-SZÁRMAZÉKOK

KARBONSAV-SZÁRMAZÉKOK KABNSAV-SZÁMAZÉKK Karbonsavszármazékok Karbonsavak H X Karbonsavszármazékok X Halogén Savhalogenid l Alkoxi Észter ' Amino Amid N '' ' Karboxilát Anhidrid Karbonsavhalogenidek Tulajdonságok: - színtelen,

Részletesebben

Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 Kémiai kötések A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 Cl + Na Az ionos kötés 1. Cl + - + Na Klór: 1s 2 2s 2 2p 6 3s 2 3p 5 Kloridion: 1s2 2s2 2p6 3s2 3p6 Nátrium: 1s 2 2s

Részletesebben

Mikroszennyezők az ivóvízben és az Ivóvízminőség-javító Program

Mikroszennyezők az ivóvízben és az Ivóvízminőség-javító Program Mikroszennyezők az ivóvízben és az Ivóvízminőség-javító Program Dr. Czégény Ildikó, TRV (HAJDÚVÍZ) Sonia Al Heboos, BME VKKT Dr. Laky Dóra, BME VKKT Dr. Licskó István BME VKKT Mikroszennyezők Mikroszennyezőknek

Részletesebben

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont 1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

1. feladat Összesen: 8 pont. 2. feladat Összesen: 12 pont. 3. feladat Összesen: 14 pont. 4. feladat Összesen: 15 pont

1. feladat Összesen: 8 pont. 2. feladat Összesen: 12 pont. 3. feladat Összesen: 14 pont. 4. feladat Összesen: 15 pont 1. feladat Összesen: 8 pont Az autók légzsákját ütközéskor a nátrium-azid bomlásakor keletkező nitrogéngáz tölti fel. A folyamat a következő reakcióegyenlet szerint játszódik le: 2 NaN 3(s) 2 Na (s) +

Részletesebben

Az 2008/2009. tanévi ORSZÁGOS KÖZÉPISKOLAI TANULMÁNYI VERSENY első (iskolai) fordulójának. feladatmegoldásai K É M I Á B Ó L

Az 2008/2009. tanévi ORSZÁGOS KÖZÉPISKOLAI TANULMÁNYI VERSENY első (iskolai) fordulójának. feladatmegoldásai K É M I Á B Ó L ktatási Hivatal Az 2008/2009. tanévi RSZÁGS KÖZÉPISKLAI TANULMÁNYI VERSENY első (iskolai) fordulójának feladatmegoldásai K É M I Á B Ó L Az értékelés szempontjai Egy-egy feladat összes pontszáma a részpontokból

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:

Részletesebben

OXOVEGYÜLETEK. Levezetés. Elnevezés O CH 2. O R C R' keton. O R C H aldehid. funkciós csoportok O. O CH oxocsoport karbonilcsoport formilcsoport

OXOVEGYÜLETEK. Levezetés. Elnevezés O CH 2. O R C R' keton. O R C H aldehid. funkciós csoportok O. O CH oxocsoport karbonilcsoport formilcsoport XVEGYÜLETEK Levezetés 2 aldehid ' keton funkciós csoportok oxocsoport karbonilcsoport formilcsoport Elnevezés Aldehidek nyíltláncú (racionális név: alkánal) 3 2 2 butánal butiraldehid gyűrűs (cikloalkánkarbaldehid)

Részletesebben

Palládium-organikus vegyületek

Palládium-organikus vegyületek Palládium-organikus vegyületek 1894 Phillips: C 2 H 4 + PdCl 2 + H 2 O CH 3 CHO + Pd + 2 HCl 1938 Karasch: (C 6 H 5 CN) 2 PdCl 2 + RCH=CHR [(π-rhc=chr)pdcl 2 ] 2 Cl - Cl Pd 2+ Pd 2+ Cl - - Cl - H O 2 2

Részletesebben

Összefoglalók Kémia BSc 2012/2013 I. félév

Összefoglalók Kémia BSc 2012/2013 I. félév Összefoglalók Kémia BSc 2012/2013 I. félév Készült: Eötvös Loránd Tudományegyetem Kémiai Intézet Szerves Kémiai Tanszékén 2012.12.17. Összeállította Szilvágyi Gábor PhD hallgató Tartalomjegyzék Orgován

Részletesebben

Igény a pontos minőségi és mennyiségi vizsgálatokra: LC-MS/MS módszerek gyakorlati alkalmazása az élelmiszer-analitikában

Igény a pontos minőségi és mennyiségi vizsgálatokra: LC-MS/MS módszerek gyakorlati alkalmazása az élelmiszer-analitikában : LC-MS/MS módszerek gyakorlati alkalmazása az élelmiszer-analitikában Tölgyesi Ádám Hungalimentária, Budapest 2017. április 26-27. Folyadékkromatográfiás hármas kvadrupol rendszerű tandem tömegspektrometria

Részletesebben

Szerves kémiai szintézismódszerek

Szerves kémiai szintézismódszerek Szerves kémiai szintézismódszerek 3. Alifás szén-szén egyszeres kötések kialakítása báziskatalizált reakciókban Kovács Lajos 1 C-H savak Savas hidrogént tartalmazó szerves vegyületek H H 2 C α C -H H 2

Részletesebben

Heterociklusok előállítása azometin-ilidek 1,3-dipoláris cikloaddíciós és 1,7-elektrociklizációs reakcióinak felhasználásával

Heterociklusok előállítása azometin-ilidek 1,3-dipoláris cikloaddíciós és 1,7-elektrociklizációs reakcióinak felhasználásával eterociklusok előállítása azometin-ilidek 1,3-dipoláris cikloaddíciós és 1,7-elektrociklizációs reakcióinak felhasználásával.d. Tézisek Virányi Andrea Témavezető: Dr. yerges Miklós Budapesti Műszaki és

Részletesebben

Heterociklusos vegyületek

Heterociklusos vegyületek Szerves kémia A gyűrű felépítésében más atom (szénatomon kívül!), ún. HETEROATOM is részt vesz. A gyűrűt alkotó heteroatomként leggyakrabban a nitrogén, oxigén, kén szerepel, (de ismerünk arzént, szilíciumot,

Részletesebben

β-dikarbonil-vegyületek szintetikus alkalmazásai

β-dikarbonil-vegyületek szintetikus alkalmazásai β-dikarbonil-vegyületek szintetikus alkalmazásai A β-dikarbonil vegyületek tipikus szerkezeti egysége a két karbonilcsoport, melyeket egy metilén híd köt össze. Ezek a származékok két fontos tulajdonsággal

Részletesebben

Aromás: 1, 3, 5, 6, 8, 9, 10, 11, 13, (14) Az azulén (14) szemiaromás rendszert alkot, mindkét választ (aromás, nem aromás) elfogadtuk.

Aromás: 1, 3, 5, 6, 8, 9, 10, 11, 13, (14) Az azulén (14) szemiaromás rendszert alkot, mindkét választ (aromás, nem aromás) elfogadtuk. 1. feladat Aromás: 1, 3, 5, 6, 8, 9, 10, 11, 13, (14) Az azulén (14) szemiaromás rendszert alkot, mindkét választ (aromás, nem aromás) elfogadtuk. 2. feladat Etil-metil-keton (bután-2-on) Jelek hozzárendelése:

Részletesebben

SZENNYVÍZKEZELÉS NAGYHATÉKONYSÁGÚ OXIDÁCIÓS ELJÁRÁSSAL

SZENNYVÍZKEZELÉS NAGYHATÉKONYSÁGÚ OXIDÁCIÓS ELJÁRÁSSAL SZENNYVÍZKEZELÉS NAGYHATÉKONYSÁGÚ OXIDÁCIÓS ELJÁRÁSSAL Kander Dávid Környezettudomány MSc Témavezető: Dr. Barkács Katalin Konzulens: Gombos Erzsébet Tartalom Ferrát tulajdonságainak bemutatása Ferrát optimális

Részletesebben

Nitrogéntartalmú szerves vegyületek. 6. előadás

Nitrogéntartalmú szerves vegyületek. 6. előadás Nitrogéntartalmú szerves vegyületek 6. előadás Aminok Funkciós csoport: NH 2 (amino csoport) Az ammónia (NH 3 ) származékai Attól függően, hogy hány H-t cserélünk le, kapunk primer, szekundner és tercier

Részletesebben

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz! Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold

Részletesebben

H 3 C H + H 3 C C CH 3 -HX X 2

H 3 C H + H 3 C C CH 3 -HX X 2 1 Gyökös szubsztitúciók (láncreakciók gázfázisban) - 3 2 2 3 2 3-3 3 Szekunder gyök 3 2 2 2 3 2 2 3 3 2 3 3 Szekunder gyök A propánban az azonos strukturális helyzetű hidrogének és a szekunder hidrogének

Részletesebben

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható! 1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket

Részletesebben

IV. Elektrofil addíció

IV. Elektrofil addíció IV. Elektrofil addíció Szerves molekulákban a kettős kötés kimutatására ismert analitikai módszer a 2 -os vagy a KMnO 4 -os reakció. 2 2 Mi történik tehát a brómmolekula addíciója során? 2 2 ciklusos bromónium

Részletesebben

A fehérje triptofán enantiomereinek meghatározása

A fehérje triptofán enantiomereinek meghatározása A fehérje triptofán enantiomereinek meghatározása Dr. Csapó János A kutatás célja megfelelő analitikai módszer kidolgozása a triptofán-enantiomerek meghatározására, és a módszer alkalmazhatóságának vizsgálata.

Részletesebben

HALOGÉNEZETT SZÉNHIDROGÉNEK

HALOGÉNEZETT SZÉNHIDROGÉNEK ALOGÉNEZETT SZÉNIDOGÉNEK Elnevezés Nyíltláncú, telített általános név: halogénalkán alkilhalogenid l 2 l 2 2 l klórmetán klóretán 1klórpropán l metilklorid etilklorid propilklorid 2klórpropán izopropilklorid

Részletesebben

A tudós neve: Mit tudsz róla:

A tudós neve: Mit tudsz róla: 8. osztály Kedves Versenyző! A jobb felső sarokban található mezőbe a verseny lebonyolításáért felelős személy írja be a kódot a feladatlap minden oldalára a verseny végén. A feladatokat lehetőleg a feladatlapon

Részletesebben

Szent-Györgyi Albert kémiavetélkedő

Szent-Györgyi Albert kémiavetélkedő 9. osztály Kedves Versenyző! A jobb felső sarokban található mezőbe a verseny lebonyolításáért felelős személy írja be a kódot a feladatlap minden oldalára a verseny végén. A feladatokat lehetőleg a feladatlapon

Részletesebben

Ni 2+ Reakciósebesség mol. A mérés sorszáma

Ni 2+ Reakciósebesség mol. A mérés sorszáma 1. feladat Összesen 10 pont Egy kén-dioxidot és kén-trioxidot tartalmazó gázelegyben a kén és oxigén tömegaránya 1,0:1,4. A) Számítsa ki a gázelegy térfogatszázalékos összetételét! B) Számítsa ki 1,0 mol

Részletesebben

Szénsavszármazékok 1

Szénsavszármazékok 1 Szénsavszármazékok 1 2 xidációs fok: 4 savklorid savklorid észter észter észter l l l l H foszgén (metaszénsavdiklorid) alkil(aril)karbonokloridát klórhangyasav-észter dialkilkarbonát (nem létképes) savamid

Részletesebben