2013 ŐSZ. 1. Ismertesse a mérési skálák tulajdonságait és a közöttük lévő összefüggéseket.

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2013 ŐSZ. 1. Ismertesse a mérési skálák tulajdonságait és a közöttük lévő összefüggéseket."

Átírás

1 GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK AZ 1. ZH-HOZ 2013 ŐSZ (Jelen kérdések az első zh összes elméleti témakörét összegzik, melyeket egymásra épülő sorrendben, illetve tematika szerinti bontásban rendeztem - Sőreg Ádám) Kérdések összegzése részletes kidolgozás lejjebb 1. Ismertesse a mérési skálák tulajdonságait és a közöttük lévő összefüggéseket. 2. Sokaság fogalma, lehetséges jellemzők. Mintavétel, mintavételi hiba. 3. Mutassa be az ismérvek közötti kapcsolatok fajtáit. 4. Milyen középértékmutatókat ismerünk? Röviden foglalja össze főbb jellemzőiket! 5. Szóródási- és aszimmetria mutatók. 6. Heterogén sokaság jellemzése (szórások, eltérés-négyzetösszegek) 7. Hogyan hasonlítunk össze összetett viszonyszámokat? (standardizálás) 8. Mi a Laspreyes és Paasche-féle volumenindexek közötti különbség oka? 9. Ismertesse a termelői (ipari, mezőgazdasági, építőipari) árindexek jellemzőit! 10. Mutassa be a fogyasztói árindex jelentőségét és számításának módját! 11. Reálbér, reáljövedelem fogalma. 12. Területi indexek, vásárlóerő paritás. Leíró statisztika (5 kérdés) 1. Ismertesse a mérési skálák tulajdonságait és a közöttük lévő összefüggéseket. Nominális (névleges) skála: célja az adatsokaság egy-egy egyedének megjelölése valamilyen azonosítóval, pl. vizsgált személy neve, Neptun-kódja, neme, stb. Matematikai művelet nem végezhető ilyen adatokkal. Ordinális (sorrendi) skála: a sokaság elemeit egy tetszőleges ismérv szerint rangsorolással csoportosítjuk. Például tanulmányi eredmények, kérdőíves elégedettségi pontszám, stb. Relációanalízis (<, >, =) végezhető.

2 Intervallumskála: méréseket végzünk, amely egy előzetesen kijelölt nullponthoz viszonyít. Pozitív és negatív értékek is lehetségesek, pl. Celsius-fokban mért hőmérséklet. Műveletek: relációanalízis, összeadás, kivonás. Arányskála: az arányskálán vett megfigyeléseknek valódi nullpontja van, ebből adódóan a sokaság elemeit ekkor csak pozitív valós számokkal jellemezhetjük. Ilyen skálán mérünk rengeteg változót: pl. árak, havi jövedelmek, testsúly, testmagasság, stb. Minden művelet, így szorzás/osztás is végezhető. 2. Sokaság fogalma, lehetséges jellemzők. Mintavétel, mintavételi hiba. A vizsgálat tárgyát képező egyedek összességét, halmazát statisztikai sokaságnak nevezzük. Egy sokaság állhat véges vagy végtelen számú egyedből, lehet álló vagy mozgó aszerint, hogy összetétele egy adott időpontra, vagy pedig időintervallumra vonatkozik. (Álló sokaság például a BME hallgatói létszáma szeptember 24-én, míg mozgó sokaság lenne a hallgatói létszám a teljes 2013-as évre nézve.) Egy nagy, vagy végtelen elemszámú sokaság egészének megismerésére nincs lehetőségünk, így ennek tulajdonságait mintavétellel közelítjük. A mintavételi hiba a minta és a sokaság egészének jellemzői közötti eltérésből adódik, mértéke a mintaelemszám növelésével exponenciálisan csökkenthető. 3. Mutassa be az ismérvek közötti kapcsolatok fajtáit. Asszociációs kapcsolat: ebben az esetben mindkét ismérv nominális (névleges mérési szintű). Ilyen például a egy-egy munkakör megnevezése és az ott foglalkoztatott nők aránya közötti összefüggés. Rangkorrelációs kapcsolat: két olyan ismérv közötti kapcsolat, melyek ordinális (sorrendi) skálán mérhetőek. Például: van-e a kapcsolat a mikroökonómiából (1-5) és makroökonómiából (1-5) elért eredmények között... Vegyes kapcsolat: egy mennyiségi (intervallum- vagy arányskála) és egy nem mennyiségi (nominális vagy ordinális skálán vett) ismérv közötti kapcsolat. Például frissdiplomás közgazdászok havi jövedelme és neme közötti összefüggés. Korrelációs kapcsolat: két mennyiségi ismérv között tapasztalható összefüggés, mind a kettő intervallum- vagy pedig arányskálán mért. Pl. ha a véralkohol szint nő, a reakcióidő is növekszik...

3 4. Milyen középértékmutatókat ismerünk? Röviden foglalja össze főbb jellemzőiket! Medián: amennyiben adatainkat nagyság szerinti sorrendbe rendezzük, akkor a medián páratlan elemszámú minta esetében a középső értékként, páros elemszámnál pedig a két középső érték átlagaként adódik. Medián mindig létezik, egyszerűen meghatározható és érzéketlen a szélsőértékekre. Módusz: a vizsgált mintában leggyakrabban előforduló érték. Habár szintén nem érzékeny a szélsőségekre, meghatározása különösen folytonos adatok esetében korántsem mindig egyértelmű. Egy minta akár többmóduszú is lehet. Számtani átlag: a mintába került összes adat figyelembe vételével számított középérték. Meghatározható egyedi úton vagy osztályközös becsléssel is. Előnye, hogy a minta valamennyi elemét figyelembe veszi, hátránya, hogy a szélsőséges értékek erősen torzíthatják. Egyéb átlagfajták: harmonikus átlag, mértani átlag, négyzetes átlag. Összefüggés átlagfajták között: harmonikus me rtani számtani ne gyzetes 5. Szóródási- és aszimmetria mutatók. Legegyszerűbb ilyen mutató a terjedelem, amely a vizsgált minta legmagasabb és legalacsonyabb értékű elemeinek különbsége. Az átlagos abszolút eltérés a minta egyedei és a számtani átlag közötti eltérések abszolútértékeit átlagolja (számtani átlaggal). Szórás: a legfontosabb szóródási mutató, egyenlő az átlagtól vett eltérések négyzetes átlagával. Fontos mutató ennek négyzete is, melyet varianciának nevezünk. A matematikai statisztika különbséget tesz elméleti és tapasztalati szórás között. Arányskálán vett adatok esetében meghatározható a relatív szórás is, amely a szórás és a számtani átlag hányadosa. Az eloszlás ferdesége kifejezhető a Pearson-féle mutatóval, a csúcsosságot pedig a kvantilisek alapján számított K értékkel mérjük.

4 Standardizálás (2 kérdés) 6. Heterogén sokaság jellemzése (szórások, eltérés-négyzetösszegek) A vizsgált ismérv szempontjából több, egymástól jelentősen eltérő részre bontható sokaságokat heterogén sokaságoknak nevezük. A részekre bontást egy csoportképző ismérv segítségével végezzük el. Mennyiségi ismérvnek tekinthető az a szám, amely a kialakított részsokaságokba tartozó egyedek számosságát fejezi ki. Az eretileg vizsgált ismérve vonatkozóan részsokaságonként részátlagokat és részszórásokat, a teljes sokaságra pedig főátlagot és teljes szórást számíthatunk. Heterogén sokaságnál szórásnégyzet-felbontás segítségével elemezhetjük, hogy a vizsgált ismérv alakulását milyen mértékben magyaráza a csoportbeli hovatartozás. Például: a BME-n végzettek keresetében lévő különbségeket magyarázza-e, hogy melyik karon végeztek. A vizsgálat elvégzésekor kiszámítjuk a külső és belső szórást, ezek négyzete a külső (SSK) és belső (SSB) variancia. A részsokaságok képzése annál hasznosabbnak tekinthető, minél magasabb a külső szórásnégyzet és a teljes szórás négyzetének (SSK/SST) hányadosa. 7. Hogyan hasonlítunk össze összetett viszonyszámokat? (standardizálás) Amennyiben két részekre bontott sokaságra vonatkozó, összetett viszonyszámot hasonlítunk össze, akkor területi vagy kategóriák közötti összehasonlítás esetében különbségfelbontást, míg időben eltérő adathalmazok körében hányadosfelbontást alkalmazunk. Mindkét esetben az összehasonlításra kerülő két sokaság összetétele közül az egyiket standard -nek kell tekintenünk. Ennek alapján egy ún. fiktív intenzitási viszonyszámot számolunk. A fiktív intenzitási viszonyszám segítségével a két részekre bontott sokaság közötti eltérést részviszonyszám-különbözőség hatásra és összetételhatásra osztjuk szét. Indexszámítás (5 kérdés) 8. Mi a Laspreyes és Paasche-féle volumenindexek közötti különbség oka? Az összetett volumenindexek egy-egy piacon forgalomba kerülő sok-sok árufajta együttes mennyiségében bekövetkező változásokat szemléletik. A vizsgált két időszak

5 közül az elsőt bázisidőszaknak, míg a másodikat tárgyidőszaknak tekintjük. Minden egyes árufajta esetében ismerjük a két időszakra eső egységárat (pl. Ft/kg) és mennyiséget. Összetett volumenindex kétféle módon számítható: a Laspreyes-féle index bázisidőszaki, míg a Paasche-féle tárgyidőszaki súlyozású. Ez azt jelenti, hogy előbbi a bázisidőszaki egységárakat változatlannak tekintve számol, míg utóbbi a tárgyidőszaki árakkal teszi ugyanezt. Mivel a két időszak között bekövetkező időben nem csak az árufajtánkénti mennyiségek, hanem az egységárak is változtak, ezért akár a bázisévre, akár a tárgyévre jellemző egységárral való súlyozás torzításokat okoz, ebből adódóan a két összetett indextípus értéke az esetek döntő többségében nem lehet egyenlő. 9. Ismertesse a termelői (ipari, mezőgazdasági, építőipari) árindexek jellemzőit! A termelői árindexek feladata annak megfigyelése, hogy a gazdasági szereplők által előállított termékek és szolgáltatások ára két időszak között, például évről-évre hogyan változik. Ezek az indexek aggregált indexszámítás segítségével, mintavétellel, a gyakorlatban több száz fontosnak tekintett termék árváltozásának átlagolásával készülnek. Az ipari termelői árindex azt fejezi ki, hogy az iparba sorolt vállalatok termékeinek átlagos ára az előző, vagy egy tetszőleges korábbi évhez képest hány százalékkal emelkedett. A mezőgazdasági termelői árindex az agrártermékek átlagos felvásárlási áraiban bekövetkező változásokat összegzi. Az építőipari termelői árindex az építéssel, kivitelezéssel foglalkozó cégek kínálati áraiban megfigyelt változásokat jeleníti meg. 10. Mutassa be a fogyasztói árindex jelentőségét és számításának módját! A fogyasztói árindex a gazdaságpolitikai és makrogazdasági mutatók között az egyik legfontosabb. Az egyes országok statisztikai hivatalai folyamatosan számítják annak érdekében, hogy a fogyasztói javak (ezek a végső felhasználásra szánt termékek) árában bekövetkező változások nyomon követhetőek legyenek.

6 Kiszámítása aggregált indexszámítás útján, mintavétellel, egy ideálisnak vélt fogyasztói kosárba tartozó több száz termék és szolgáltatás árának megfigyelésével történik. Felhasználásával nyomon követhetjük az infláció alakulását, hiszen megmutatja, hogy a leggyakrabban fogyasztott javak pénzben kifejezett ára hogyan változott a vizsgált időszakokban. 11. Reálbér, reáljövedelem fogalma. A reálbér egy összetett mutató, amely az átlagos munkabérek vásárlóerejében bekövetkező változásokat jeleníti meg. Ennek alakulása két tényezőtől függ: egyrészt a havi átlagos nettó munkabér pénzbeli összegének időbeli változásától, másrészről pedig a fogyasztói árak változásától (melyet a fogyasztói árindexszel mérünk). Ha például a fogyasztói árak évente öt százalékkal növekednek, de a munkabérek ugyanebben az évben csak 3%-kal lettek magasabbak, akkor a reálbér csökken, hiszen az áremelkedés következtében kevéssel több pénzért a magasabb árak miatt kevesebbet lehet vásárolni. A reáljövedelem indexét az egy főre jutó munkajövedelem indexének és a fogyasztói árindexnek hányadosaként számítják. Ez a mutató figyelembe veszi azt is, hogy az idő előrehaladtával a lakosság körében változhat az aktív keresők és az eltartottak egymáshoz viszonyított aránya. Így például az egy főre jutó reáljövedelem akkor is javul, ha a munkavállalók száma növekszik, de a nettó reálbér változatlan. 12. Területi indexek, vásárlóerő paritás. Területi indexek esetében az időtényező szerepét a területi különbségek veszik át. Területi indexekről beszélünk, amennyiben egyes változókat, például az egy főre eső Bruttó Hazai Termék (GDP) dollárban vett értékét százalékokban kifejezve hasonítjuk össze a vizsgált országok körében. Területi index képződik például akkor, ha megállapítjuk, hogy Magyarország egy főre eső GDP-je Ausztria egy főre eső GDP-jének mindössze 45 százalékát teszi ki. Nemzetközi indexek közül az egyik legösszetettebb mutató a vásárlóerő-paritás (angol rövidítése: PPP). Ennek számítása során azt vizsgáljuk meg, hogy egy-egy termékből egységnyi mennyiség megvásárlása egyik, illetve másik ország valutájában kifejezve mennyibe kerül. Ha ezt a vizsgálatot egyszerre több száz termékre elvégezzük, megállapítható két ország fizetőeszköze közötti értékarány, amit vásárlóerő-paritásnak nevezünk. Utóbbi általában nem egyezik meg a devizapiacon kialakuló árfolyamokkal.

Statisztikai alapfogalmak

Statisztikai alapfogalmak Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

Bevezető Mi a statisztika? Mérés Csoportosítás

Bevezető Mi a statisztika? Mérés Csoportosítás Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető

Részletesebben

Statisztika I. 7. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 7. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 7. előadás Előadó: Dr. Ertsey Imre STATISZTIKAI INDEXEK STATISZTIKAI INDEXEK Index: latin eredetű szó, egyszerűen mutatót jelent A statisztikai indexszám: - komplexebb tartalmú, - többet

Részletesebben

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú

Részletesebben

STATISZTIKA I. 3. rész. T.Nagy Judit

STATISZTIKA I. 3. rész. T.Nagy Judit STATSZTKA. 3. rész T.Nagy Judit tnagy.judit@hjf.hu Standardizálás és standardizáláson alauló indexszámítás nhomogén (heterogén) sokaságokra vonatkozó átlagok; intenzitási viszonyszámok (átlagbérek, átlagos

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.uni-obuda.hu)

Részletesebben

1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő

1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő Figyelem! A példasor nem tartalmazza valamennyi típuspéldát. A dolgozatban az órán leadott feladatok közül bármely típusú előfordulhat. A példasor már a második dolgozat anyagát gyakorló feladatokat is

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Sta t ti t s i zt z i t k i a 3. előadás

Sta t ti t s i zt z i t k i a 3. előadás Statisztika 3. előadás Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan A statisztika, mint gyakorlati tevékenység a tömegesen előforduló jelenségek egyedeire vonatkozó információk

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 5. előadás Érték-, ár-, és volumenindexek http://uni-obuda.hu/users/koczyl/gazdasagstatisztika.htm Kóczy Á. László KGK-VMI Az indexszám fogalma Gazdasági elemzésben fontos

Részletesebben

STATISZTIKA. Gyakorló feladatok az első zh-ra

STATISZTIKA. Gyakorló feladatok az első zh-ra STATISZTIKA Gyakorló feladatok az első zh-ra A változás átlagos üteme év Kenyér Ft/ kg bázisindex % 2002 151 100,0 2003 156 103,3 2004 178 117,9 2005 173 114,6 2006 179 118,5 2007 215 142,4 I = n 1 l i

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás. Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett

Részletesebben

Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja

Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja Megoldások 1. feladat A sokaság: 2007. szeptember 12-én a Miskolci Egyetem GT-204-es tankör statisztika óráján lévő tagjai az A 1 épület III. em. 53-as teremben 8-10-ig. Közös ismérv Megkülönböztető ismérv

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

55 345 01 0010 55 01 Európai Uniós üzleti

55 345 01 0010 55 01 Európai Uniós üzleti A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Módszertani Intézeti Tanszéki Osztály

Módszertani Intézeti Tanszéki Osztály BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012. Név:... Kód:...... Eredmény:..... STATISZTIKA I. VIZSGA; NG KM ÉS KG TQM SZAKOKON MINTAVIZSGA Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Statisztika 1.

TANTÁRGYI ÚTMUTATÓ. Statisztika 1. I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Statisztika 1. TÁVOKTATÁS Tanév 2014/2015 II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Statisztika 1. Tanszék: Módszertani Tantárgyfelelős neve: Sándorné Dr. Kriszt

Részletesebben

Sta t ti t s i zt z i t k i a 1. előadás

Sta t ti t s i zt z i t k i a 1. előadás Statisztika 1 előadás Témakörök Statisztikai alapfogalmak Statisztikai sorok Mennyiségi sorok csoportosítása Statisztikai táblák Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan

Részletesebben

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Hogyan mérjük a gazdaság összteljesítményét?

Hogyan mérjük a gazdaság összteljesítményét? 8/C lecke Hogyan mérjük a gazdaság összteljesítményét? A makrogazdasági teljesítmény mutatószámai, a bruttó hazai termék. GDPmegközelítések és GDP-azonosságok. Termelési érték és gazdasági növekedés. Nemzetközi

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

EGÉSZSÉG-GAZDASÁGTAN

EGÉSZSÉG-GAZDASÁGTAN EGÉSZSÉG-GAZDASÁGTAN EGÉSZSÉG-GAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak i alapfogalmak statisztikai sokaság: a megfigyelés tárgyát képező egyedek összessége 2 csoportja van: álló sokaság: mindig vmiféle állapotot, állományt fejez ki, adatai egy adott időpontban értelmezhetők

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot

Részletesebben

Statisztika összefoglalás

Statisztika összefoglalás Statisztika összefoglalás 1 / 18. oldal 1. Alapfogalmak Statisztika: a tömegesen előforduló jelenségek vizsgálatával foglalkozik, ezekre vonatkozóan adatokat gyűjt, feldolgoz, elemez és közzé tesz. o a

Részletesebben

A gazdasági növekedés mérése

A gazdasági növekedés mérése A gazdasági növekedés mérése Érték-, volumen- és árindexek 25.) Az alábbi táblázat két egymást követő év termelési mennyiségeit és egységárait mutatja egy olyan gazdaságban, ahol csupán három terméket

Részletesebben

módszertana Miben más és mivel foglalkozik a Mit tanultunk mikroökonómiából? és mivel foglalkozik a makroökonómia? Miért

módszertana Miben más és mivel foglalkozik a Mit tanultunk mikroökonómiából? és mivel foglalkozik a makroökonómia? Miért A makroökonómia tárgya és módszertana Mit tanultunk mikroökonómiából? Miben más és mivel foglalkozik a makroökonómia? Miért van külön makroökonómia? A makroökonómia módszertana. Miért fontos a makroökonómia

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Áruforgalom tervezése. 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok

Áruforgalom tervezése. 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok Áruforgalom tervezése 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok Alapvető gazdasági számítások 1. Egy vállalkozás tevékenysége nagyon összetett. Szükség van arra, hogy ismerjük

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Határozza meg és jellemezze az ár-, érték- és volumenváltozást %-ban és forintban!

Határozza meg és jellemezze az ár-, érték- és volumenváltozást %-ban és forintban! 1. Egy fúvós hangszereket forgalmazó cégről a következő adatok ismertek: Termékcsoportok Forgalom 2003-ban A volumen változása Fafúvós 50 +50 Rézfúvós 30 +30 Egyéb +10 Összesen: Továbbá ismert, hogy a

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

NEMZETKÖZI KÖZGAZDASÁGTAN Árfolyam - Gyakorlás

NEMZETKÖZI KÖZGAZDASÁGTAN Árfolyam - Gyakorlás NEMZETKÖZI KÖZGAZDASÁGTAN Árfolyam - Gyakorlás Kiss Olivér Budapesti Corvinus Egyetem Makroökonómia Tanszék Van tankönyv, amit már a szeminárium előtt érdemes elolvasni! Érdemes előadásra járni, mivel

Részletesebben

Nem Fő (f) % (g) -160 100 161-180 150 181-200 50 Z 300. Férfi 180 60% Nő 120 40% Z 300 100%

Nem Fő (f) % (g) -160 100 161-180 150 181-200 50 Z 300. Férfi 180 60% Nő 120 40% Z 300 100% IX. 08. előadás Statisztikai sokaság: amire a megfigyelés irányul. Statisztikai ismérv: vizsgálati szempont, tulajdonság. Van közös (körülhatárolja a sokaságot) és megkülönböztető: területi {pl: születési

Részletesebben

6. A kereskedelmi készletek elszámoltatása, az értékesítés elszámoltatása 46. Összefoglaló feladatok 48.

6. A kereskedelmi készletek elszámoltatása, az értékesítés elszámoltatása 46. Összefoglaló feladatok 48. Tartalomjegyzék 1. Alapvető gazdasági számítások 4. 1.1. A gazdasági számítások jelentősége egy vállalkozás életében 4. 1.2. A gazdasági számításokkal szemben támasztott követelmények 4. 1.3. Milyen feladatokat

Részletesebben

Vargha András Károli Gáspár Református Egyetem Budapest

Vargha András Károli Gáspár Református Egyetem Budapest Vargha András Károli Gáspár Református Egyetem Budapest Kötelező irodalom a kurzushoz Vargha András: Matematikai statisztika pszichológiai, nyelvészeti és biológiai alkalmazásokkal (2. kiadás). Pólya Kiadó,

Részletesebben

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze

Részletesebben

A gazdasági növekedés mérése

A gazdasági növekedés mérése 3. lecke A gazdasági növekedés mérése Nominális és reál GDP, érték-, volumen- és árindex. Gazdasági növekedés és üzleti ciklusok. Hogyan mérjük a gazdasági növekedést? dinamikus elemzés: hány százalékkal

Részletesebben

Középtávú előrejelzés a makrogazdaság és az államháztartás folyamatairól

Középtávú előrejelzés a makrogazdaság és az államháztartás folyamatairól Középtávú előrejelzés a makrogazdaság és az államháztartás folyamatairól Budapest Corvinus Egyetem Gazdaság- és Társadalomstatisztikai Elemző és Kutató Központ Budapest, 2016. október 20. Célkitűzések

Részletesebben

Statisztika. Dr Gősi Zsuzsanna. Egyetemi adjunktus. Sportmenedzsment Tanszék

Statisztika. Dr Gősi Zsuzsanna. Egyetemi adjunktus. Sportmenedzsment Tanszék Statisztika Dr Gősi Zsuzsanna Egyetemi adjunktus Sportmenedzsment Tanszék Kötelező irodalom - Számonkérés Pintér József Ács Pongrác Bevezetés a sportstatisztikába Dialóg Campus Kiadó 2007 Honlap: www.dialog-kiado.hu

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

Területi statisztikai elemzések

Területi statisztikai elemzések Területi statisztikai elemzések KOTOSZ Balázs, SZTE, kotosz@eco.u-szeged.hu Módszertani dilemmák a statisztikában 2016. november 18. Budapest Apropó Miért különleges a területi adatok elemzése? A számításokhoz

Részletesebben

a beruházások hatása Makroökonómia Gazdasági folyamatok időbeli alakulás. Az infláció, a kibocsátási rés és a munkanélküliség

a beruházások hatása Makroökonómia Gazdasági folyamatok időbeli alakulás. Az infláció, a kibocsátási rés és a munkanélküliség Makroökonómia Gazdasági folyamatok időbeli alakulás. Az infláció, a kibocsátási rés és a munkanélküliség 8. előadás 2010. 04.15. Az elemzés kiterjesztése több időszakra az eddigi keynesi modell és a neoklasszikus

Részletesebben

Szabó-bakoseszter. Makroökonómia. GDPárindex,fogyasztóiárindex,infláció, kamat,foglalkoztatotság,munkanélküliség, munkaknélküliségiráta

Szabó-bakoseszter. Makroökonómia. GDPárindex,fogyasztóiárindex,infláció, kamat,foglalkoztatotság,munkanélküliség, munkaknélküliségiráta Szabó-bakoseszter Makroökonómia GDPárindex,fogyasztóiárindex,infláció, kamat,foglalkoztatotság,munkanélküliség, munkaknélküliségiráta Számítási és geometriai feladatok 1. feladat Az alábbi táblázat egy

Részletesebben

matematikai statisztika

matematikai statisztika Az újságokban, plakátokon, reklámkiadványokban sokszor találkozunk ilyen grafikonokkal, ezért szükséges, hogy megértsük, és jól tudjuk értelmezni őket. A második grafikon ismerős lehet, hiszen a függvények

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Statisztika 1. Tantárgyi útmutató

Statisztika 1. Tantárgyi útmutató Módszertani Intézeti Tanszék Nappali tagozat Statisztika 1. Tantárgyi útmutató 2015/16 tanév II. félév 1/6 Tantárgy megnevezése: Statisztika 1. Tantárgy kódja: STAT1KAMEMM Tanterv szerinti óraszám: 2+2

Részletesebben

AZ ÖSSZEHASONLÍTÁST TORZÍTÓ TÉNYEZŐK ÉS KISZŰRÉSÜK

AZ ÖSSZEHASONLÍTÁST TORZÍTÓ TÉNYEZŐK ÉS KISZŰRÉSÜK BUDAPESTI GAZDASÁGI FŐISKOLA PÉNZÜGYI ÉS SZÁMVITELI KAR KONTROLLING-ELLENŐRZÉS INTÉZETI TANSZÉK ÖSSZEÁLLÍTOTTA: BLUMNÉ BÁN ERIKA ADJUNKTUS ELEMZÉS-ELLENŐRZÉS MÓDSZERTANA ÉS RENDSZERE 2. ELŐADÁS MUNKAVEZÉRLŐ

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Adminisztratív kérdések. A makroökonómiáról általánosan. Fontos fogalmak 01: GDP. Az előadás-vázlatok és segédanyagok megtalálhatók a moodle-ön!

Adminisztratív kérdések. A makroökonómiáról általánosan. Fontos fogalmak 01: GDP. Az előadás-vázlatok és segédanyagok megtalálhatók a moodle-ön! 1 Adminisztratív kérdések. A makroökonómiáról általánosan. Fontos fogalmak 01: GDP. Az előadás-vázlatok és segédanyagok megtalálhatók a moodle-ön! 2 Van Tematika! Az előadás A szeminárium is 3 Van 60 pont

Részletesebben

GAZDASÁGI STATISZTIKA

GAZDASÁGI STATISZTIKA GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

A lánc viszonyszám: A lánc viszonyszám számítási képlete:

A lánc viszonyszám: A lánc viszonyszám számítási képlete: A lánc viszonyszám: Az idősor minden egyes tagját a közvetlenül megelőzővel osztjuk, vagyis az idősor első évének, vagy időszakának láncviszonyszáma nem számítható. A lánc viszonyszám számítási képlete:

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Statisztika példatár

Statisztika példatár Statisztika példatár v0.02 A példatár folyamatosan b vül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a letölthet példatárak közt. Országh Tamás Budapest, 2006 Mottó: Ki kéne vágni minden

Részletesebben

1. el adás. Tények, fogalmak: GDP. Kuncz Izabella. Makroökonómia. Makroökonómia Tanszék Budapesti Corvinus Egyetem

1. el adás. Tények, fogalmak: GDP. Kuncz Izabella. Makroökonómia. Makroökonómia Tanszék Budapesti Corvinus Egyetem Tények, fogalmak: GDP Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Elérhet ség Mivel foglalkozik a makroökonómia? izabella.kuncz@gmail.com 221.1 szoba Fogadóóra: szerda 13.4015.10 Tankönyv

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

TÁJÉKOZTATÓ végén lassult a lakásárak negyedéves dinamikája

TÁJÉKOZTATÓ végén lassult a lakásárak negyedéves dinamikája TÁJÉKOZTATÓ 2016 végén lassult a lakásárak negyedéves dinamikája Budapest, 2017. május 5. 2016 negyedik negyedévében nominális alapon egy százalékkal emelkedett az aggregált MNB lakásárindex, amely jelentősen

Részletesebben

Tervezett béremelés a versenyszektorban 2016-ban A októberi vállalati konjunktúra felvétel alapján február 3.

Tervezett béremelés a versenyszektorban 2016-ban A októberi vállalati konjunktúra felvétel alapján február 3. Tervezett béremelés a versenyszektorban 2016-ban A 2015. októberi vállalati konjunktúra felvétel alapján 2016. február 3. 1 / 8 Az MKIK Gazdaság- és Vállalkozáskutató Intézet olyan nonprofit kutatóműhely,

Részletesebben

Magyarország 1,2360 1,4622 1,6713 1,8384 2,0186 2,2043

Magyarország 1,2360 1,4622 1,6713 1,8384 2,0186 2,2043 370 Statisztika, valószínûség-számítás 1480. a) Nagy országok: Finnország, Olaszország, Nagy-Britannia, Franciaország, Spanyolország, Svédország, Lengyelország, Görögország, Kis országok: Ciprus, Málta,

Részletesebben

Indexszámítás során megválaszolandó kérdések. Hogyan változott a termelés értéke, az értékesítés árbevétele, az értékesítési forgalom?

Indexszámítás során megválaszolandó kérdések. Hogyan változott a termelés értéke, az értékesítés árbevétele, az értékesítési forgalom? Index-számítás Indexszámítás során megálaszolandó kérdések Hogyan áltozott a termelés értéke, az értékesítés árbeétele, az értékesítés forgalom? Hogyan áltozott a termelés, értékesítés mennysége? Hogyan

Részletesebben

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016 Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Hódiné Szél Margit SZTE MGK 1 A XXI. században az informatika rohamos terjedése miatt elengedhetetlen, hogy

Részletesebben

Statisztika I. 1. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 1. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre A STATISZTIKA FOGALMA 1. Gyakorlati számbavételi tevékenység tömegjelenségek számbavétele, elemzése összefüggések feltárása következtetések levonása Célja:

Részletesebben

A GDP adatok legutóbbi revíziói egy (termelő ) felhasználó nézőpontjából Hozzászólás az Adatrevíziók a gazdaságstatisztikában c.

A GDP adatok legutóbbi revíziói egy (termelő ) felhasználó nézőpontjából Hozzászólás az Adatrevíziók a gazdaságstatisztikában c. A GDP adatok legutóbbi revíziói egy (termelő ) felhasználó nézőpontjából Hozzászólás az Adatrevíziók a gazdaságstatisztikában c. MST rendezvényhez Oblath Gábor MTA KTI Témakörök A legutóbbi revíziók mértéke

Részletesebben

Vezetői számvitel / Controlling XIII. előadás. Eltéréselemzés I.

Vezetői számvitel / Controlling XIII. előadás. Eltéréselemzés I. Vezetői számvitel / Controlling XIII. előadás Eltéréselemzés I. Kiindulópont Információk a tulajdonosok számára a vállalkozás vezetői számára Cél folyamatosan ismerni a vállalkozás tevékenységét a gazdálkodás

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

A TERÜLETI EGYENLŐTLENSÉGEK MÉRÉSÉNEK MÓDSZEREI, A GDP KRITIKÁJA

A TERÜLETI EGYENLŐTLENSÉGEK MÉRÉSÉNEK MÓDSZEREI, A GDP KRITIKÁJA A TERÜLETI EGYENLŐTLENSÉGEK MÉRÉSÉNEK MÓDSZEREI, A GDP KRITIKÁJA A területi egyenlőtlenségi vizsgálatok jelentősége A népesség és a gazdaság térben egyenlőtlenül helyezkedik el, okai: Eltérő természetföldrajzi

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az

Részletesebben

2009 szeptemberében megvizsgálták a magyarországi jogi személyiségű építőipari kft-ket. Töltse ki a táblázat hiányzó részeit!

2009 szeptemberében megvizsgálták a magyarországi jogi személyiségű építőipari kft-ket. Töltse ki a táblázat hiányzó részeit! 2. feladat 2009 szeptemberében megvizsgálták a magyarországi jogi személyiségű építőipari kft-ket. Töltse ki a táblázat hiányzó részeit! Megnevezés Közös Ismérv Megkülönböztető jogi személyiségű területi

Részletesebben

ÉVKÖZI MINTA AZ EGÉSZSÉGÜGYI BÉR- ÉS LÉTSZÁMSTATISZTIKÁBÓL. (2004. II. negyedév) Budapest, 2004. október

ÉVKÖZI MINTA AZ EGÉSZSÉGÜGYI BÉR- ÉS LÉTSZÁMSTATISZTIKÁBÓL. (2004. II. negyedév) Budapest, 2004. október ÉVKÖZI MINTA AZ EGÉSZSÉGÜGYI BÉR- ÉS LÉTSZÁMSTATISZTIKÁBÓL (2004. II. negyedév) Budapest, 2004. október Évközi minta az egészségügyi bér- és létszámstatisztikából Vezet i összefoglaló Módszertan Táblázatok:

Részletesebben

Készletgazdálkodás. TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor

Készletgazdálkodás. TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor Készletgazdálkodás TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor KÉSZLET A készlet az üzletben lévı áruk értékének összessége. A vállalkozás

Részletesebben