Fotoszintézis. 2. A kloroplasztisz felépítése 1. A fotoszintézis lényege és jelentısége
|
|
- Teréz Lakatosné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Fotoszintézis 2. A kloroplasztisz felépítése 1. A fotoszintézis lényege és jelentısége Szerves anyagok képzıdése energia felhasználásával Az élıvilág szerves anyag és oxigénszükségletét biztosítja H2 D + A 6H2O + 6CO2 H2A + D C6H12O6 + 6O H2D: elektron- vagy hidrogéndonor A: elektron- vagy hidrogénakceptor 1. ábra: A kloroplasztisz felépítése sztróma 2. belsı membrán 3. külsı membrán 4. perisztrómium 5. gránumtilakoid 6. sztrómatilakoid külsı membrán belsı membrán szénhidrát 2. ábra: A fotoszintézis két szakaszának összekapcsolódása szakasz sötét szakasz 3. ábra: A fotoszintézis két szakaszának összekapcsolódása Fényelnyelés mértéke (%) A kloroplasztisz felépítése: - Sztróma: vízoldékony enzimek: fotoszintézis sötét szakasza - Tilakoidok: - fotofoszforiláló enzimek: ATP képzıdés - elektronszállító lánc tagjai - pigmentmolekulák: fotokémiai rendszerek alkotói (PS1 és PS2) - sztrómatilakoid: PS1: klorofill-a, klorofill-b, karotin - gránumtilakoid: PS2: klorofill-b, klorofill-a, xantofil Hullámhossz (nm) Hullámhossz (nm) 5. ábra: A pigmentmolekulák elnyelési spektrumai 4. ábra: A pigmentrendszerek felépítése 1
2 A fotokémiai rendszer részei: Pigmentmolekulák: elnyelés, szállítás, koncentrálás Fotokémiai reakciócentrum: energia átalakítása kémiai energiává Elektronszállító lánc, melynek utolsó tagja a NADP+ 6. ábra: A klorofill-a és a klorofill-b elnyelés pigmentmolekulák antenna komplex 7. ábra: A karotin reakciócentrum elektronakceptor 8. ábra: A fotokémiai rendszer részei A szakasz A szakaszban lejátszódó folyamatok: Fényelnyelés (abszorpció), továbbítás a reakciócentrumhoz, átalakítás kémiai energiává Vízbontás: 2 elektron és 2 proton kihasadása oxigén keletkezése közben (fotolízis) Elektrontranszport az elektronszállító láncon keresztül: végsı elektronakceptor a NADP+, amely NADPH-vá redukálódik Az elektrontranszport során ADP-bıl ATP képzıdik (fotofoszforilálás) 9. ábra: A fotoszintézis szakasza Fotofoszforilálás: ATP képzıdés, Ciklikus fotofoszforilálás ATP képzıdés, NADPH képzıdés nélkül antenna komlpex ATP szintetáz komplex PS 2 PS 1 tilakoid tér tilakoid membrán sztróma 10. ábra: Fotofoszforiláló rendszer 11. ábra: A fotoszintézis szakasza 2
3 A fotoszintézis sötét szakasza A széndioxid fixációja és redukciója szénhidráttá ATP és NADPH segítségével 1. A sötét szakasz fázisai: A széndioxid megkötése (fixáció) A széndioxid redukciója A széndioxid akceptor regenerációja 2. A széndioxid megkötésének útjai C 3 -as fotoszintetikus út (Calvin Benson ciklus): az elsıdleges termék a három szénatomos glicerinsav-foszfát C 4 -es fotoszintetikus út (Hatch Slack - Kortschak ciklus): az elsıdleges termék a négy szénatomos oxálecetsav CAM-út, Crassulaceae sav anyagcseréjő fotoszintézis: a C 3 -as és a C 4 -es út is megtalálható benne, elsıdleges termék az almasav 12. ábra: A glicerinsav-3-foszfát, az oxálecetsav és az almasav C3-as fotoszintetikus út A CO 2 megkötıdik a ribulóz-1,5-biszfoszfáton a rubisco (ribulóz-1,5-biszfoszfát karboxiláz oxigenáz) segítségével A CO 2 redukálódik a reakcióban keletkezett NADPH és ATP segítségével A ribulóz-1,5-biszfoszfát az ATP segítségével regenerálódik 13. ábra: A ribulóz-1,5-biszfoszfát 14. ábra: A fotoszintézis sötétszakasza A fotorespiráció / légzés Lényege: O 2 felvétel és CO 2 leadás jelenlétében Színhelye: kloroplasztisz, peroxiszóma, mitokondrium C 3 -as növényekre jellemzı: a rubisco kettıs aktivitású magas CO 2 szint: karboxiláz aktivitás fotoszintézis magas O 2 szint: oxigenáz aktivitás fotorespiráció Jelentısége: csökken a megkötött CO 2 CO 2 veszteség fotodestrukciótól való védelem: a felesleges redukáló erı megkötése Magas intenzitás intenzív szakasz sok ATP és NADPH a CO 2 redukció túlterhelt a NADPH az O 2 -t redukálja toxikus szuperoxid keletkezik A fotorespiráció során felszabaduló CO 2 visszatáplálódik a redukciós ciklusba ADP és NADP keletkezik o ábra: A légzés folyamata 3
4 C4-es fotoszintetikus út A CO2 primer fixációja és a CO2 redukciója térben elkülönül C4-es növények: kétféle klorenchima: nyalábhüvely sejtek: nincs gránumtilakoid (nincs PS2) mezofillumsejtek: van gránumtilakoid perioxiszóma mitokondrium színtest 17. ábra: Kétféle asszimiláló szövet: a nyalábhüvely és a mezofillum 16. ábra: A légzés folyamata CAM-út, Crassulaceae sav anyagcseréjő fotoszintézis C4-es fotoszintetikus út A CO2 primer fixációja és a CO2 redukciója idıben elkülönül A mezofillumsejtekben a CO2 megkötıdik a foszfoenolpiruváton a foszfo-enolpiruvát karboxiláz enzim segítségével oxálecetsav almasav az almasav a nyalábhüvely sejtekbe kerül belıle CO2 szabadul fel a CO2 megkötıdik a Calvin-ciklusban Éjszaka a CO2 megkötıdik a foszfo-enolpiruváton a foszfoenolpiruvát karboxiláz enzim segítségével oxálecetsav almasav az almasav a vakuólumban raktározódik, és nappal szénhidráttá alakul A nyalábhüvely sejtekben nincs PS2 nincs vízbontás nincs O2 felszabadulás a rubisco hatékonyan mőködik a fotorespiráció nem valószínő a fotoszintézis hatékony szők sztómarés mellett is kevesebb vízleadás a C4-es növények magas intenzitású, magas hımérséklető, kedvezıtlen vízellátású élıhelyekhez alkalmazkodtak (pl.: főfélék) A sztómák nappal zárva, éjjel nyitva vannak a CO2-t éjszaka veszik fel szénhidrátképzés nagyfokú vízvesztés nélkül szukkulens, forró, száraz élıhelyen élı növényekre jellemzı Diffúziós folyamatok A gázcsere diffúzióval történik: függ a koncentrációtól és a diffúziós ellenállástól Gázcsere: CO2 felvétel + O2 leadás: fotoszintézis O2 felvétel + CO2 leadás: légzés Napi ritmus: nappal: mindkét folyamat végbemegy, de a fotoszintézis intenzívebb éjszaka: csak légzés van éjszaka: nyitott sztómák A fotoszintézis intenzitása: A növény egységnyi felülete (dm2) vagy egységnyi tömege (g) által megkötött CO2 mennyisége (mg) egységnyi idı alatt (h-1) Asszimilációs szám: a klorofill egységnyi tömegére esı CO2 megkötés. nappal: zárt sztómák 18. ábra CAM-út, Crassulaceae sav anyagcseréjő fotoszintézis 4
5 19. ábra: A növények produktivitását meghatározó tényezık kapcsolatrendszere 5
A citoszolikus NADH mitokondriumba jutása
A citoszolikus NADH mitokondriumba jutása Energiaforrásaink Fototróf: fotoszintetizáló élőlények, szerves vegyületeket állítanak elő napenergia segítségével (a fényenergiát kémiai energiává alakítják át)
80 éves a Debreceni Egyetem Növénytani Tanszék Ünnepi ülés és Botanikai minikonferencia november
80 éves a Debreceni Egyetem Növénytani Tanszék Ünnepi ülés és Botanikai minikonferencia 2009. november 13-14. NÖVÉNYÉLETTAN I 2009/10. tanév 1. félév Vízforgalom 1. A víz fizikai és kémiai tulajdonságai.
Az eukarióta sejt energiaátalakító organellumai
A mitokondrium és a kloroplasztisz hasonlósága Az eukarióta sejt energiaátalakító organellumai mitokondrium kloroplasztisz eukarióta sejtek energiaátalakító és konzerváló organellumai Működésükben alapvető
A felvétel és a leadás közötti átalakító folyamatok összességét intermedier - köztes anyagcserének nevezzük.
1 Az anyagcsere Szerk.: Vizkievicz András Általános bevezető Az élő sejtekben zajló biokémiai folyamatok összességét anyagcserének nevezzük. Az élő sejtek nyílt anyagi rendszerek, azaz környezetükkel állandó
bevezetés a fotoszintézis rejtelmeibe
bevezetés a fotoszintézis rejtelmeibe Összeállította: Dr. Rudnóy Szabolcs rsz@ttk.elte.hu Előadta: Dr. Solti Ádám Az előadások kivonata elérhető a Növényélettani és Molekuláris Növénybiológiai Tanszék
Szerkesztette: Vizkievicz András
A mitokondrium Szerkesztette: Vizkievicz András Eukarióta sejtekben a lebontó folyamatok biológiai oxidáció - nagy része külön sejtszervecskékben, a mitokondriumokban zajlik. A mitokondriumokban folyik
Növényélettani Gyakorlatok A légzés vizsgálata
Növényélettani Gyakorlatok A légzés vizsgálata /Bevezető/ Fotoszintézis Fény-szakasz: O 2, NADPH, ATP Sötétszakasz: Cellulóz keményítő C 5 2 C 3 (-COOH) 2 C 3 (-CHO) CO 2 Nukleotid/nukleinsav anyagcsere
Produkcióökológiai alapok
Produkcióökológiai alapok Anyag- és energiaáramlás a növényi szervezetben A fotoszintézis és (kloroplasztisz) a légzés kapcsolata a növényi sejtben (mitokondrium) FOTOSZINTETIKUS PIGMENTEK a tilakoid-membránok
Fotoszintézis. fotoszintetikus pigmentek Fényszakasz - gránum/sztrómalamella. Sötétszakasz - sztróma
Fotoszintézis fotoszintetikus pigmentek Fényszakasz - gránum/sztrómalamella Sötétszakasz - sztróma A növényeket érı hatások a pigmentösszetétel változását okozhatják I. Mintavétel (inhomogén minta) II.
A sejtes szervezıdés elemei (sejtalkotók / sejtorganellumok)
A sejtes szervezıdés elemei (sejtalkotók / sejtorganellumok) 1 Sejtorganellumok vizsgálata: fénymikroszkóp elektronmikroszkóp pl. scanning EMS A szupramolekuláris struktúrák további szervezıdése sejtorganellumok
A bioenergetika a biokémiai folyamatok során lezajló energiaváltozásokkal foglalkozik.
Modul cím: MEDICINÁLIS ALAPISMERETEK BIOKÉMIA BIOENERGETIKA I. 1. kulcsszó cím: Energia A termodinamika első főtétele kimondja, hogy a különböző energiafajták átalakulhatnak egymásba ez az energia megmaradásának
A biokémiai folyamatokat enzimek (biokatalizátorok) viszik véghez. Minden enzim. tartalmaz fehérjét. Két csoportjukat különböztetjük meg az enzimeknek
1 A biokémiai folyamatokat enzimek (biokatalizátorok) viszik véghez. Minden enzim tartalmaz fehérjét. Két csoportjukat különböztetjük meg az enzimeknek a./ Csak fehérjébıl állók b./ Fehérjébıl (apoenzim)
Citrátkör, terminális oxidáció, oxidatív foszforiláció
Citrátkör, terminális oxidáció, oxidatív foszforiláció A citrátkör jelentősége tápanyagok oxidációjának közös szakasza anyag- és energiaforgalom központja sejtek anyagcseréjében elosztórendszerként működik:
A felvétel és a leadás közötti átalakító folyamatok összességét intermedier - köztes anyagcserének nevezzük.
1 Az anyagcsere Szerk.: Vizkievicz András Általános bevezető Az élő sejtekben zajló biokémiai folyamatok összességét anyagcserének nevezzük. Az élő sejtek nyílt anyagi rendszerek, azaz környezetükkel állandó
A piruvát-dehidrogenáz komplex. Csala Miklós
A piruvát-dehidrogenáz komplex Csala Miklós szénhidrátok fehérjék lipidek glikolízis glukóz aminosavak zsírsavak acil-koa szintetáz e - piruvát acil-koa légz. lánc H + H + H + O 2 ATP szint. piruvát H
A növények fényreakciói. A növények fényreakciói. Fotoszintézis
Az elektromágneses sugárzás A növények fényreakciói A fotonok energiája (E )adott hullámhosszon: E = h ν = hc/λ ahol h a Planck féle állandó Minél hosszabb a hullámhossz annál kisebb az E. A látható tartomány
Fotoszintézis. Az elektromágneses sugárzás. A fény kettıs természete: hullám és részecske (foton) A látható tartomány
A fény kettıs természete: hullám és részecske (foton) Fotoszintézis Sebesség = hullámhossz X frekvencia C = λν Egy foton energiája: E = hν h= Planck állandó (6,626 x 10-34 Js) Az elektromágneses sugárzás
Mire költi a szervezet energiáját?
Glükóz lebontás Lebontó folyamatok A szénhidrátok és zsírok lebontása során széndioxid és víz keletkezése közben energia keletkezik (a széndioxidot kilélegezzük, a vizet pedig szervezetünkben felhasználjuk).
sztróma gránum sztrómatilakoid belsõ membrán kulsõ membrán
10 - Fotoszintézis Bevezetés Anövényi anyagcsere egyik legjellemz bb vonása, hogy a növények képesek afényenergiát szerves anyagok el állítására felhasználni. Azon folyamatok összességét, melyek során
A fotoszintézis molekuláris biofizikája (Vass Imre, 2000) 39
A fotoszintézis molekuláris biofizikája (Vass Imre, 2000) 39 6. A citokróm b 6 f komplex A két fotokémiai rendszer közötti elektrontranszportot a citokróm b 6 f komplex közvetíti. Funkciója a kétszeresen
A glükóz reszintézise.
A glükóz reszintézise. A glükóz reszintézise. A reszintézis nem egyszerű megfordítása a glikolízisnek. A glikolízis 3 irrevezibilis lépése más úton játszódik le. Ennek oka egyrészt energetikai, másrészt
A fotoszintézis molekuláris biofizikája (Vass Imre, 2000) 43. $ R[LJpQWHUPHO IRWRV]LQWHWLNX ]HUYH]HWHNEH p IRWRNpPLD UHQGV]H
A fotoszintézis molekuláris biofizikája (Vass Imre, 2000) 43 $ OV IRWRNpPLD UHQGV]HU $ R[LJpQWHUPHO IRWRV]LQWHWLNX ]HUYH]HWHNEH p IRWRNpPLD UHQGV]H P&N GLN 0LQ iww PiVRGL IRWRNpPLD UHQGV]H XQNFLyM Yt IpQ\LQGXNi
AZ ALAPSZÖVETEK CSOPORTOSÍTÁSA
ALAPSZÖVETEK AZ ALAPSZÖVETEK CSOPORTOSÍTÁSA A FOTOSZINTETIZÁLÓ ALAPSZÖVET, klorenchima EGYENLETEK: + NÖVÉNY + FÉNY = + NÖVÉNY = + FÉNY = http://www1.cira.colostate.edu/mideast/images/ndvi_loop.gif A KLOROFILLOK
NÖVÉNYÉLETTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010
NÖVÉNYÉLETTAN Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A fotoszintézis szénreakciói Környezeti tényezők hatása a fotoszintézisre Előadás áttekintése 1. A fotoszintézis
Energiatermelés a sejtekben, katabolizmus. Az energiaközvetítő molekula: ATP
Energiatermelés a sejtekben, katabolizmus Az energiaközvetítő molekula: ATP Elektrontranszfer, a fontosabb elektronszállító molekulák NAD: nikotinamid adenin-dinukleotid FAD: flavin adenin-dinukleotid
A sejt molekuláris biológiája és genetikája; 2. A biológiai membrán. Kemoszintézis, fotoszintézis, légzés.
1 2. A BIOLÓGIAI MEMBRÁN, KEMO- ÉS FOTOSZINTÉZIS, SEJTLÉGZÉS A sejthártya szerkezete. A sejthártya funkciói. Anyagáramlás a sejthártyán keresztül. A sejtek anyag- és energiaellátása, az energiatermelés
A termodinamika. elszigetelt rendszerek zárt rendszerek nyílt rendszerek
A termodinamika A metabolizmus keretében zajló anyag- és energiaáramlás a termodinamika törvényeit követi. A termodinamika a fizika energiaátalakulásokkal foglalkozó tudományterülete. Termodinamikai rendszerek:
Környezeti klimatológia I. Növényzettel borított felszínek éghajlata
Környezeti klimatológia I. Növényzettel borított felszínek éghajlata Kántor Noémi PhD hallgató SZTE Éghajlattani és Tájföldrajzi Tanszék kantor.noemi@geo.u-szeged.hu Egyszerű, kopár felszínek 1 Növényzettel
ZSÍRSAVAK OXIDÁCIÓJA. FRANZ KNOOP német biokémikus írta le először a mechanizmusát. R C ~S KoA. a, R-COOH + ATP + KoA R C ~S KoA + AMP + PP i
máj, vese, szív, vázizom ZSÍRSAVAK XIDÁCIÓJA FRANZ KNP német biokémikus írta le először a mechanizmusát 1 lépés: a zsírsavak aktivációja ( a sejt citoplazmájában, rövid zsírsavak < C12 nem aktiválódnak)
VEGETATÍV SZERVEK SZÖVETTANA LOMBLEVELEK SZÖVETI FELÉPÍTÉSE
VEGETATÍV SZERVEK SZÖVETTANA LOMBLEVELEK SZÖVETI FELÉPÍTÉSE A LEVÉLLEMEZ SZÖVETI 1. EPIDERMISZ FELÉPÍTÉSE 2. MEZOFILLUM (levélközép) (a szár elsődleges kérgének és központi hengerének felel meg) Áll: a.
Szénhidrátok monoszacharidok formájában szívódnak fel a vékonybélből.
Vércukorszint szabályozása: Szénhidrátok monoszacharidok formájában szívódnak fel a vékonybélből. Szövetekben monoszacharid átalakítás enzimjei: Szénhidrát anyagcserében máj központi szerepű. Szénhidrát
A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai
A BIOLÓGIA ALAPJAI A tananyag felépítése: Környezetmérnök és műszaki menedzser hallgatók számára Előadó: 2 + 0 + 0 óra, félévközi számonkérés 3 ZH: október 3, november 5, december 5 dr. Pécs Miklós egyetemi
Glikolízis. emberi szervezet napi glukózigénye: kb. 160 g
Glikolízis Minden emberi sejt képes glikolízisre. A glukóz a metabolizmus központi tápanyaga, minden sejt képes hasznosítani. glykys = édes, lysis = hasítás emberi szervezet napi glukózigénye: kb. 160
A KOLESZTERIN SZERKEZETE. (koleszterin v. koleszterol)
19 11 12 13 C 21 22 20 18 D 17 16 23 24 25 26 27 HO 2 3 1 A 4 5 10 9 B 6 8 7 14 15 A KOLESZTERIN SZERKEZETE (koleszterin v. koleszterol) - a koleszterin vízben rosszul oldódik - szabad formában vagy koleszterin-észterként
A felépítő és lebontó folyamatok. Biológiai alapismeretek
A felépítő és lebontó folyamatok Biológiai alapismeretek Anyagforgalom: Lebontó Felépítő Lebontó folyamatok csoportosítása: Biológiai oxidáció Erjedés Lebontó folyamatok összehasonlítása Szénhidrátok
A légzési lánc és az oxidatív foszforiláció
A légzési lánc és az oxidatív foszforiláció Csala Miklós Semmelweis Egyetem Orvosi Vegytani, Molekuláris Biológiai és Patobiokémiai Intézet intermembrán tér Fe-S FMN NADH mátrix I. komplex: NADH-KoQ reduktáz
Fényes élet: fényből élet életből fény
Maróti Péter egyetemi tanár, Szegedi Tudományegyetem Orvosi Fizikai Intézet Fényes élet: fényből élet életből fény fotoszintézis Széchenyi István Gimnázium és Általános Iskola Szolnok, 2014. február 12.
A kloroplasztok és a fotoszintézis
A kloroplasztok és a fotoszintézis A mikroorganizmusok többsége és állati sejtek szerves vegyületeket használnak a növekedéséhez. A szerves vegyületeket hasznosító sejteket heterotrófoknak nevezzük, és
Az energiatermelõ folyamatok evolúciója
Az energiatermelõ folyamatok evolúciója A sejtek struktúrája, funkciója és evolúciója nagyrészt energia igényükkel magyarázható. Alábbiakban azt tárgyaljuk, hogy biológiai evolúció során milyen sorrendben
A BAKTÉRIUMOK TÁPLÁLKOZÁSA
A BAKTÉRIUMOK TÁPLÁLKOZÁSA Az energiaforrás természete 1. Fototróf energia a fotokémiai reakciókból, energiforrás a fény 2. Kemotróf energia a fénytől független kémiai reakciókból, energiaforrás a környezetből
Metabolizmus. 1. előadás. Bevezető
1. előadás Metabolizmus Bevezető Biológia: az élet tudománya, élőlények eredetének, testfelépítésének, működésének és a környezettel való kapcsolatának megismerésével foglalkozik. Mi az élet, mi az élő?
A tantárgy besorolása: kötelező A tantárgy elméleti vagy gyakorlati jellegének mértéke, képzési karaktere 50/50 (kredit%)
Tantárgy neve: Termesztett növények élettana (MTMNT7001) Kreditértéke: 3 A tantárgy besorolása: kötelező A tantárgy elméleti vagy gyakorlati jellegének mértéke, képzési karaktere 50/50 (kredit%) A tanóra
A MITOKONDRIUMOK SZEREPE A SEJT MŰKÖDÉSÉBEN. Somogyi János -- Vér Ágota Első rész
A MITOKONDRIUMOK SZEREPE A SEJT MŰKÖDÉSÉBEN Somogyi János -- Vér Ágota Első rész Már több mint 200 éve ismert, hogy szöveteink és sejtjeink zöme oxigént fogyaszt. Hosszú ideig azt hitték azonban, hogy
Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai
Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)
Kolozsvár, 2004 január A szerzõ
Elõszó A napfény és a zöld növények annyira hozzátartoznak mindennapi életünkhöz, hogy természetes jelenlétükre gyakran oda sem figyelünk. Márpedig a széleskörû változatosságában kibontakozó földi életet
Gyógyszerrezisztenciát okozó fehérjék vizsgálata
Gyógyszerrezisztenciát okozó fehérjék vizsgálata AKI kíváncsi kémikus kutatótábor 2017.06.25-07.01. Témavezetők : Telbisz Ágnes, Horváth Tamás Kutatók : Dobolyi Zsófia, Bereczki Kristóf, Horváth Ákos Gyógyszerrezisztencia
Stressz és a reaktív oxigénformák
Stressz és a reaktív oxigénformák Oxigénformák A földi élet egyik paradoxonja: Az oxigén, amely az aerob életfolyamatokhoz szükséges, és a az energia termelés és légzés alapvetı feltétele, sok betegség
A kémiai energia átalakítása a sejtekben
A kémiai energia átalakítása a sejtekben A sejtek olyan mikroszkópikus képződmények amelyek működése egy vegyi gyárhoz hasonlítható. Tehát a sejtek mikroszkópikus vegyi gyárak. Mi mindenben hasonlítanak
09. A citromsav ciklus
09. A citromsav ciklus 1 Alternatív nevek: Citromsav ciklus Citrát kör Trikarbonsav ciklus Szent-Györgyi Albert Krebs ciklus Szent-Györgyi Krebs ciklus Hans Adolf Krebs 2 Áttekintés 1 + 8 lépés 0: piruvát
Tari Irma Kredit 2 Heti óraszám 2 típus AJÁNLOTT IRODALOM
A tárgy neve A növények felépítése és működése Meghirdető tanszék(csoport) SZTE, TTK, Biológus Felelős oktató: Tari Irma Kredit 2 Heti óraszám 2 típus Előadás Számonkérés Kollokvium Teljesíthetőség feltétele
BIOLÓGIA ALAPJAI. Anyagcsere folyamatok 2. (Felépítő folyamatok)
BIOLÓGIA ALAPJAI Anyagcsere folyamatok 2. (Felépítő folyamatok) A molekuláris biológiai alapjai DNS replikáció RNS transzkripció Fehérje szintézis (transzláció) (Az ábrák többsége Dr. Lénárd Gábor Biológia
Fényérzékeny molekulák, fényenergia hasznosítás
Fényérzékeny molekulák, fényenergia hasznosítás orváth Attila Veszprémi Egyetem, Mérnöki Kar Általános és Szervetlen Kémia Intézeti Tanszék 2010. július 1-5. Az elıadás vázlata Bevezetı gondolatok Természetes
Bevezetés a biokémiába fogorvostan hallgatóknak
Bevezetés a biokémiába fogorvostan hallgatóknak Munkafüzet 14. hét METABOLIZMUS III. LIPIDEK, ZSÍRSAVAK β-oxidációja Szerkesztette: Jakus Péter Név: Csoport: Dátum: Labor dolgozat kérdések 1.) ATP mennyiségének
A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.
Nukleinsavak Szerkesztette: Vizkievicz András A nukleinsavakat először a sejtek magjából sikerült tiszta állapotban kivonni. Innen a név: nucleus = mag (lat.), a sav a kémhatásukra utal. Azonban nukleinsavak
Glikolízis. Csala Miklós
Glikolízis Csala Miklós Szubsztrát szintű (SZF) és oxidatív foszforiláció (OF) katabolizmus Redukált tápanyag-molekulák Szállító ADP + P i ATP ADP + P i ATP SZF SZF Szállító-H 2 Szállító ATP Szállító-H
II. Grafikonok elemzése (17 pont)
I. Az ember táplálkozása (10 pont) Többszörös választás 1) Melyek őrlőfogak a maradó fogazatunkban (az állkapcsok középvonalától kifelé számozva)? 1) az 5. fog 2) a 3. fog 3) a 8. fog 4) a 2. fog 2) Melyik
Produkcióökológiai alapok
Produkcióökológiai alapok Ökoszisztémák élőlények (biotikus) környezetük (abiotikus sugárzó energia, levegő, víz, talaj; biotikus-pl táplálékláncok) Ökoszisztémákban (bioszférában) állandó anyag- és energiaáramlás
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
A tantárgy besorolása: kötelező A tantárgy elméleti vagy gyakorlati jellegének mértéke, képzési karaktere.67/33 (kredit%)
Tantárgy neve: Növényélettan (MTB7014) Kreditértéke: 3 A tantárgy besorolása: kötelező A tantárgy elméleti vagy gyakorlati jellegének mértéke, képzési karaktere.67/33 (kredit%) A tanóra típusa és óraszáma:
Anyag és energia az ökoszitémában -produkcióbiológia
Prudukcióbiológia Anyag és energia az ökoszitémában -produkcióbiológia Vadbiológia és ökológia #09 h Tárgya # A bioszférában lejátszódó biológia termelés folyamatai # Az élô szervezetek anyag- és energiaforgalma
Ez megközelítőleg minden trofikus szinten érvényes, mivel a fogyasztók általában a felvett energia legfeljebb 5 20 %-át képesek szervezetükbe
ÉLŐ RENDSZEREK ENERGIAFORGALMA Az egyes táplálkozási (trofikus) szinteket elérő energiamennyiség nemcsak a termelők által megkötött energiától függ, hanem a fogyasztók energiaátalakítási hatékonyságától
, mitokondriumban (peroxiszóma) citoplazmában
-helye: máj, zsírszövet, vese, agy, tüdő, stb. - nem a β-oxidáció megfordítása!!! β-oxidáció Zsírsav-szintézis -------------------------------------------------------------------------------------------
Agroökológiai rendszerek biogeokémiai ciklusai és üvegházgáz-kibocsátása
Agroökológiai rendszerek biogeokémiai ciklusai és üvegházgáz-kibocsátása Biogeokémiai ciklusok általános jellemzői: kompartmentek vagy raktárak tartózkodási idő áramok (fluxusok) a kompartmentek között
Speciális fluoreszcencia spektroszkópiai módszerek
Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon
Stanley Miller kísérlet rajza:
Stanley Miller kísérlet rajza: Komposztálás: A különféle szilárd halmazállapotú szerves anyagoknak az aerob mikrobiális lebontása, amely folyamtban termofil mikroorganizmusok is részt vesznek. Optimális
Bevezetés a növénytanba Növényélettani fejezetek 5.
Bevezetés a növénytanba Növényélettani fejezetek 5. Dr. Parádi István Növényélettani és Molekuláris Növénybiológiai Tanszék (para@ludens.elte.hu) www.novenyelettan.elte.hu Növényi stresszélettan 1. A stressz
CELLULÓZTARTALMÚ HULLADÉKOK ÉS SZENNYVÍZISZAP KÖZÖS ROTHASZTÁSA
CELLULÓZTARTALMÚ HULLADÉKOK ÉS SZENNYVÍZISZAP KÖZÖS ROTHASZTÁSA Fővárosi Csatornázási Művek Zrt. Szalay Gergely technológus mérnök Észak-pesti Szennyvíztisztító Telep Kapacitás: 200 000 m 3 /nap Vízgyűjtő
Zsírsav szintézis. Az acetil-coa aktivációja: Acetil-CoA + CO + ATP = Malonil-CoA + ADP + P. 2 i
Zsírsav szintézis Az acetil-coa aktivációja: Acetil-CoA + CO + ATP = Malonil-CoA + ADP + P 2 i A zsírsav szintáz reakciói Acetil-CoA + 7 Malonil-CoA + 14 NADPH + 14 H = Palmitát + 8 CoA-SH + 7 CO 2 + 7
Biokémiai és Molekuláris Biológiai Intézet. Mitokondrium. Fésüs László, Sarang Zsolt
Biokémiai és Molekuláris Biológiai Intézet Mitokondrium Fésüs László, Sarang Zsolt Energiát (ATP) termelő sejtorganellum. Az ATP termelés oxigén fogyasztással (légzési lánc) és széndioxid termeléssel (molekulák
A klímaváltozás hatása a mezőgazdaságra
A klímaváltozás hatása a mezőgazdaságra Anda Angéla, professzor Pannon Egyetem, Meteorológia és Vízgazdálkodás Tanszék Keszthely (A fotókat készítette: Soós Gábor) Fekvés 3 éghajlat (kontinentális, óceáni,
SZÖVETTANI SZERKEZET. Az epidermisz
A LEVÉL II. 3 fő szövetrendszer: SZÖVETTANI SZERKEZET -Bőrszövetrendszer: színi és fonáki epidermisz -Alapszövetrendszer: mezofillum -Szállító szövetrendszer: érhálózat Sejtjei szorosan záródnak Az epidermisz
A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.
Nukleinsavak Szerkesztette: Vizkievicz András A nukleinsavakat először a sejtek magjából sikerült tiszta állapotban kivonni. Innen a név: nucleus = mag (lat.), a sav a kémhatásukra utal. Azonban nukleinsavak
BIOLÓGIA VERSENY 10. osztály 2016. február 20.
BIOLÓGIA VERSENY 10. osztály 2016. február 20. Kód Elérhető pontszám: 100 Elért pontszám: I. Definíció (2x1 = 2 pont): a) Mikroszkopikus méretű szilárd részecskék aktív bekebelezése b) Molekula, a sejt
Az edzés és energiaforgalom. Rácz Katalin
Az edzés és energiaforgalom Rácz Katalin katalinracz@gmail.com Homeosztázis Az élő szervezet belső állandóságra törekszik. Homeosztázis: az élő szervezet a változó külső és belső körülményekhez való alkalmazkodó
SZOLGÁLATI TITOK! KORLÁTOZOTT TERJESZTÉSŰ!
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
A NÖVÉNYI SEJT FELÉPÍTÉSE
A NÖVÉNYI SEJT FELÉPÍTÉSE A növényi sejt alapvetően két részre tagolható: 1. sejttest v. protoplaszt: citoplazma, sejtmag, színtestek, mitokondriumok 2. sejtfal PROTOPLASZT az életfolyamatok színtere benne
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Általános és szervetlen kémia 3. hét Kémiai kötések. Kötések kialakítása - oktett elmélet. Lewis-képlet és Lewis szerkezet
Általános és szervetlen kémia 3. hét Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek
A szénhidrátok lebomlása
A disszimiláció Szerk.: Vizkievicz András A disszimiláció, vagy lebontás az autotróf, ill. a heterotróf élőlényekben lényegében azonos módon zajlik. A disszimilációs - katabolikus - folyamatok mindig valamilyen
A fotoszintézis során növények, algák és egyes baktériumok a Napból
A fotoszintézis molekuláris biofizikája (Vass Imre, 2000) 1 1. Bevezetés A fotoszintézis során növények, algák és egyes baktériumok a Napból V]iUPD] IpQ\HQHUJL IHOKDV]QiOiViYD V]HUYH YHJ\ OHWHNH iootwdqd
SZÉNHIDRÁTOK. Biológiai szempontból legjelentősebb a hat szénatomos szőlőcukor (glükóz) és gyümölcscukor(fruktóz),
SZÉNHIDRÁTOK A szénhidrátok döntő többségének felépítésében három elem, a C, a H és az O atomjai vesznek részt. Az egyszerű szénhidrátok (monoszacharidok) részecskéi egyetlen cukormolekulából állnak. Az
A levegő Szerkesztette: Vizkievicz András
A levegő Szerkesztette: Vizkievicz András A levegő a Földet körülvevő gázok keveréke. Tiszta állapotban színtelen, szagtalan. Erősen lehűtve cseppfolyósítható. A cseppfolyós levegő világoskék folyadék,
Bevezetés a talajtanba VIII. Talajkolloidok
Bevezetés a talajtanba VIII. Talajkolloidok Kolloid rendszerek (kolloid mérető részecskékbıl felépült anyagok): Olyan két- vagy többfázisú rendszer, amelyben valamely anyag mérete a tér valamely irányában
A METABOLIZMUS ENERGETIKÁJA
A METABOLIZMUS ENERGETIKÁJA Futó Kinga 2014.10.01. Metabolizmus Metabolizmus = reakciók együttese, melyek a sejtekben lejátszódnak. Energia nyerés szempontjából vannak fototrófok ill. kemotrófok. szervesanyag
A METABOLIZMUS ENERGETIKÁJA
A METABOLIZMUS ENERGETIKÁJA Futó Kinga 2013.10.02. Metabolizmus Metabolizmus = reakciók együttese, melyek a sejtekben lejátszódnak. Energia nyerés szempontjából vannak fototrófok ill. kemotrófok. szervesanyag
A BIOLÓGIAI JELENSÉGEK FIZIKAI HÁTTERE Zimányi László
A BIOLÓGIAI JELENSÉGEK FIZIKAI HÁTTERE Zimányi László Összefoglalás A négy alapvető fizikai kölcsönhatás közül az elektromágneses kölcsönhatásnak van fontos szerepe a biológiában. Atomi és molekuláris
Elektrokémia Kiegészítés a praktikumhoz Elektrokémiai cella, Kapocsfeszültség, Elektródpotenciál, Elektromotoros erı.
Elektrokémia 2012. Kiegészítés a praktikumhoz Elektrokémiai cella, Kapocsfeszültség, Elektródpotenciál, Elektromotoros erı Láng Gyızı Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem
1 2 3 4 5 6 7 A B 8 9 10 11 [Nm] 370 [kw] [PS] 110 150 350 330 310 100 136 90 122 290 270 80 109 250 70 95 230 210 60 82 190 50 68 170 150 40 54 130 110 90 140 PS 125 PS 100 PS 30 20 41 27 70 1000 1500
2 3 4 5 6 7 8 9 A B A B 11 12 13 [Nm] 370 350 330 310 290 270 250 230 210 190 [kw] [PS] 110 150 100 136 90 122 80 109 70 95 60 82 50 68 170 150 40 54 130 110 90 140 PS 85 PS 110 PS 70 1000 1500 2000 2500
TERMÉSZETTUDOMÁNY JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Természettudomány középszint 1012 ÉRETTSÉGI VIZSGA 2010. október 26. TERMÉSZETTUDOMÁNY KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM I. Enzimek, katalizátorok
A villamosenergia-piac szabályozása, a piacnyitás tapasztalatai
A villamosenergia-piac szabályozása, a piacnyitás tapasztalatai CHANGE projekt Magyar Kereskedelmi és Iparkamara 2009. március 19. Dr. Grabner Péter osztályvezetı Villamos Energia Engedélyezési és Felügyeleti
1 2 3 4 5 6 7 112 8 9 10 11 12 13 [Nm] 400 375 350 325 300 275 250 225 200 175 150 125 114 kw 92 kw 74 kw [155 PS] [125 PS] [100 PS] kw [PS] 140 [190] 130 [176] 120 [163] 110 [149] 100 [136] 90 [122] 80
BIOGÉN ELEMEK MÁSODLAGOS BIOGÉN ELEMEK (> 0,005 %)
BIOGÉN ELEMEK ELSŐDLEGES BIOGÉN ELEMEK(kb. 95%) ÁLLANDÓ BIOGÉN ELEMEK MAKROELEMEK MÁSODLAGOS BIOGÉN ELEMEK (> 0,005 %) C, H, O, N P, S, Cl, Na, K, Ca, Mg MIKROELEMEK (NYOMELEMEK) (< 0,005%) I, Fe, Cu,
1 2 3 4 5 A B 6 7 8 9 [Nm] 370 350 330 310 290 270 250 [kw] [PS] 110 150 100 136 90 122 80 109 70 95 230 210 60 82 190 170 150 50 40 68 54 130 110 90 140 PS 100 PS 125 PS 30 20 41 27 70 1000 1500 2000
1 2 3 4 5 7 9 A B 10 11 12 13 14 15 16 17 18 19 [Nm] 370 350 330 310 290 270 250 230 210 190 170 150 130 110 90 140 PS 100 PS 125 PS 70 1000 1500 2000 2500 3000 3500 4000 RPM [kw] [PS] 110 150 100 136
A Berzsenyi Dániel Gimnázium 11.b osztály Biológia óra
ÉLETPÁLYAÉPÍTÉS A Berzsenyi Dániel Gimnázium 11.b osztály Biológia óra 2009-2010 MŰVELTSÉGTERÜLETI KAPCSOLÓDÁSOK Témakörök Kapcsolódó műveltségterület Óraszám Biokémiai folyamatok Ember a természetben
Fenntarthatóság és hulladékgazdálkodás
Fenntarthatóság és hulladékgazdálkodás Néhány tény A különbözı rendszerek egymás negentórpiájával, szabad energiájával táplálkoznak A szabad-energia a rendezettség mértékének fenntartásához kell Az ember
MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI A SZÉNHIDRÁTOK 1. kulcsszó cím: SZÉNHIDRÁTOK
Modul cím: MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI A SZÉNHIDRÁTOK 1. kulcsszó cím: SZÉNHIDRÁTOK A szénhidrátok általános képlete (CH 2 O) n. A szénhidrátokat két nagy csoportra oszthatjuk:
A nitrogén körforgalma. A környezetvédelem alapjai május 3.
A nitrogén körforgalma A környezetvédelem alapjai 2017. május 3. A biológiai nitrogén körforgalom A nitrogén minden élő szervezet számára nélkülözhetetlen, ún. biogén elem Részt vesz a nukleinsavak, a
A fotoszintézis molekuláris biofizikája (Vass Imre, 2000) 64
A fotoszintézis molekuláris biofizikája (Vass Imre, 2000) 64 10. Bakteriális fotoszintézis 10.1 A cianobaktériumok sejtmag nélküli prokarióta szervezetek, amelyek képesek a vizet hasznosítani és oxigént