KVANTUMJELENSÉGEK ÚJ FIZIKA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "KVANTUMJELENSÉGEK ÚJ FIZIKA"

Átírás

1 KVANTUMJELENSÉGEK ÚJ FIZIKA 196 Erwin Scrödinger HULLÁMMECHANIKA 197 Werner Heisenberg MÁTRIXMECHANIKA A két különböző fizikai megközelítésről később Paul Dirac bebizonyította, ogy EGYENÉRTÉKŰEK. Erwin Rudolf Josef Alexander Scrödinger ( ) fizikai Nobel-díj 1933 Werner Karl Heisenberg ( ) fizikai Nobel-díj 193 Paul Adrien Maurice Dirac ( ) fizikai Nobel-díj 1933 HULLÁMEGYENLETEK A KLASSZIKUS FIZIKÁBAN

2 HULLÁMEGYENLETEK A KLASSZIKUS FIZIKÁBAN Stratégia: majdnem reménytelen dolog a tér minden pontjában a ullámra ató erőkkel Newton II. törvénye szerint elszámolni. Ezért egy idő- és térkoordinátáktól is függő ullámfüggvényre () vonatkozó, parciális differenciálegyenlettel írjuk le a mozgást. x, t x, t v t Egy dimenziós ullám v: terjedési sebesség HULLÁMEGYENLETEK A KLASSZIKUS FIZIKÁBAN Egy idő- és térkoordinátáktól is függő ullámfüggvényre () vonatkozó, parciális differenciálegyenlettel írjuk le a mozgást. r, t r, t t v r v t x y z általános alak Három dimenziós ullám

3 HULLÁMFÜGGVÉNY A KVANTUMMECHANIKÁBAN r t klasszikus mecanika: egy részecske pályája, a elykoordináták az idő függvényében rt, ullámmecanika: egy részecske mozgását jellemző ullám amplitúdója a ely és az idő függvényében A SZUPERPOZÍCIÓ ELVE interferenciajelenségek a klasszikus mecanikában: a két vagy több kölcsönató ullám amplitúdói összeadódnak egységes fizikai tapasztalat: részecskék mozgását jellemző ullámfüggvények interferenciájakor a külön-külön vett ullámfüggvények amplitúdói összeadódnak r, t és r, t r, t r, t 1 eredő 1 1

4 A SZUPERPOZÍCIÓ ELVE részecskedetektorok: a ullámfüggvény intenzitására (= amplitúdó négyzetére) érzékenyek és nem az amplitúdóra eredő 1 1 r, t r, t r, t r, t r, t r, t intenzitásösszeg interferenciatag oda A SZUPERPOZÍCIÓ ELVE ÉS AZ ANYAGMEGMARADÁS ullám-visszaverődés: interferencia egy részecske saját visszavert ullámával Pl. az elektron egy dimenzióban (x) terjedő síkullámként elképzelve kx t sin kx t sin sin vissza eredő oda vissza kx t sin kx t t kx sin cos

5 A SZUPERPOZÍCIÓ ELVE ÉS AZ ANYAGMEGMARADÁS ullám-visszaverődés: t kx eredő sin cos Minden olyan időpontban, aol t = /, a ullámfüggvény a tér minden pontjában nulla (teljes önkioltás) Anyagmegmaradás??? (Hol van az elektron?) Megoldás: a ullámfüggvény értékeinek nem valós számoknak, anem komplex számoknak kell lenniük HULLÁMFÜGGVÉNY KOMPLEX SZÁMOKKAL komplex szám: z a ib i 1 valós rész komplex szám négyzete: képzetes rész z a ib a b abi komplex szám komplex konjugált: z* a ib zz* a ib a ib a b valós szám

6 HULLÁMFÜGGVÉNY KOMPLEX SZÁMOKKAL komplex számsík: zz* a b z zz * cos i sin z zz *e i Az egyszerű jelölés leetősége miatt a komplex számokat már korán asználni kezdték elektromágneses ullámok leírásában. A SZUPERPOZÍCIÓ ELVE KOMPLEX SZÁMOKKAL r, t r, t eredő 1 1 Mind komplex számok. Az intenzitás így nem az amplitúdó négyzete, anem az amplitúdó saját komplex konjugáltjával alkotott szorzata: * * r, t * r, t * r, t * r, t r t r t r t r t eredő eredő *, *, * *,,

7 A SZUPERPOZÍCIÓ ELVE KOMPLEX SZÁMOKKAL ullám-visszaverődés: e e oda ikx it ikx it vissza ikx it ikx it eredő oda vissza e e e it cos kx Stacionárius pályák a Bor-modellben: e i t r alakú állóullámok, amelyekben az elektromos töltéssűrűség eloszlása állandó, így nincs sugárzás HULLÁMCSOMAG, CSOPORTSEBESSÉG ullámterjedés és részecskemozgás: Különböző ullámosszú ullámok szuperpozíciójából ullámcsomag alakul ki, ez a részecske mozgásának analógiája. Véletlen szuperpozíciók a legtöbb elyen kioltják egymás, ullámcsomag csak azokon a elyeken alakulat ki, aol a részullámok fázisai egybeesnek. A jó szuperpozíciós elyek viszont más időpontokban másol vannak, vagyis a ullámcsomag elmozdul. Ennek a mozgásnak a sebessége a csoportsebesség.

8 HULLÁMCSOMAG, CSOPORTSEBESSÉG Egydimenziós (x) példa: Legyen a ullámossz és k = / ( körullámszám ) sin kx t Az azonos fázisú elyek v fázis = / k sebességgel terjednek Alkossuk meg sok különböző k-jú ullám szuperpozícióját, ezek körfrekvenciája függ a k-tól az (k) függvény szerint eredő k sin kx k t dk integrálás az összegzés elyett, mert k folytonosan változat. HULLÁMCSOMAG, CSOPORTSEBESSÉG eredő k sin kx k t dk Az integrál olyan (x, t) párokra leet nullától jelentősen különböző, aol a színuszjel mögötti kifejezés alig (gyakorlatilag nem) függ k-tól. Teát: k kx k t 0 k x t k 0 Az ilyen, nullától különböző elyek v csop csoportsebességgel mozognak: x k v csop t k

9 HULLÁMCSOMAG, CSOPORTSEBESSÉG k vcsop k Nagyon egyszerű kiterjesztés árom dimenzióra: v csop k k De Broglie ullámossz emlékeztető: Körullámszám: p π πp k 3D-ben: π k p p E π m Energia: v HULLÁMCSOMAG, CSOPORTSEBESSÉG csop k k E p π m π k p v csop π p E E m π p p p p m Teát a csoportsebesség a klasszikus sebesség közvetlen ullámmecanikai analógja:

10 MOZGÁS ERŐTÉRBEN A ullámmecanikában a mozgások változatossága sokkal nagyobb, mint a klasszikus mecanikában. A leírásoz az egyedi erőjárulékokkal való bonyolult elszámolás elyett sokkal célszerűbb potenciálfüggvényekkel dolgozni (ld. Hamilton-mecanika a klasszikus fizikában). Aol adott E energia mellett változik a potenciál, ott változik a jellemző ullámossz is. Az eddigiek alapján továbbra is célszerű körullámszámmal dolgozni a ullámossz elyett (nyílt ullámcsomag): π k r m E V r MOZGÁS ERŐTÉRBEN π k r m E V r Ha egy lokalizált ullámcsomag a potenciális energia csökkenése irányába mozdul el, akkor növekszik a ullámossza, csökken a ullámossza, növekszik az impulzusa. A potenciális energia változása matematikailag a potenciális energia térkoordináták szerinti deriváltjával (gradiensével) írató le, ez éppen az erő.

11 MOZGÁS ERŐTÉRBEN Zárt pálya mentén szétfolyó, önmagába záródó ullámra: a ullámossza függ térkoordinátáktól: a dr kis szakaszra ráférő ullámosszányad: dr r Az önmagába záródás geometriai feltétele: dr r p r dr n n p d r n n: egész szám p d r n MOZGÁS ERŐTÉRBEN p d r n n: egész szám Egyenletes körmogásnál az impulzus nagysága nem függ a elykoordinátától, az integrálás pedig egy kör kerülete mentén történik: p d r p d r pπr n Bor-Sommerfeld-kvantumfeltétel a Bor-modell impulzusmomentum-kvantáltsági posztulátuma: m e vr = n/

12 MOZGÁS ERŐTÉRBEN p d r n n: egész szám Bor-Sommerfeld-kvantumfeltétel Arnold Joannes Wilelm Sommerfeld ( ) tanítványai 3 fizikai és kémiai Nobel-díjat kaptak HATÁROZATLANSÁGI RELÁCIÓ(K) Egy ullámcsomag mozgása sok mindenben nem asonlít egy klasszikus tömegpont (részecske) mozgására. Egy ullámcsomag térben kiterjedt, teát nincs egyetlen atározott elye: legyen a kiterjedés eredő k sin kx k t dk A ullámcsomagot különböző körullámszámú komponensekből leet kikeverni, ezért az impulzusnak is van kiterjedése : p = k /

13 HATÁROZATLANSÁGI RELÁCIÓ(K) π k min 1 π k min p 1 π k max max max p Heisenberg-féle atározatlansági reláció 4π Más fizikai mennyiségek párjaira is létezik, pl.: te 4π ALAPÁLLAPOT Egy elektron és egy proton sokkal kisebb elyen is elférne, mint a idrogénatom szokásos mérete... Miért annyira nagyok az atomok? A idrogénatom zsugorítása ugyan az elektron potenciális energiájának csökkenésével járna, de a atározatlansági reláció miatt cserébe megnőne a kinetikus energiája. Alapállapot: a legstabilabb állapot, aol a potenciális és kinetikus energia összege a legkisebb A méretez tartozó impulzus-bizonytalanság négyzete nagyjából az impulzus nullától való eltérésének az átlaga: p 16π durva közelítések E 3mπ kin

14 E 3mπ ALAPÁLLAPOT kin A kinetikus és a potenciális energia összege (Hamiltonfüggvénye) próba: armonikus oszcillátor m V x x H( ) V 3mπ H m 16mπ a rezgés körfrekvenciája 3 a minimumelyen: H 0 0 ALAPÁLLAPOT m min 3 16mπ min min az oszcillátor mérete 4πm m Emin H( min) min 3mπ 1 m 4πm 4π 3mπ 4π m azonos az oszcillátor nullponti energiájára vonatkozó későbbi képlettel min

15 ALAPÁLLAPOT H( ) V 3mπ. próba: idrogénatom e V 4 0 e mπ 0 min 3 0 min min 4emπ Bor-féle atomsugár a πem 0 0 e BORN-FÉLE STATISZTIKUS ÉRTELMEZÉS ÉS NORMÁLÁS Hol van a részecske: 1. a detektorok a intenzitást észlelik, nem az amplitúdót. csak valószínűségi válasz adató Annak a valószínűsége, ogy a részecske egy adott ely körül kicsiny d 3 r térfogatú térelemben van (Born-szabály): (, ) * (, )d 3 r t r t r Valaol lennie kell a térben a részecskének, teát a teljes térben 1 valószínűséggel meg kell találnunk: teljes 3 ( r, t) * ( r, t)d r 1 Normálás

16 BORN-FÉLE STATISZTIKUS ÉRTELMEZÉS ÉS NORMÁLÁS Max Born ( ) fizikai Nobel-díj, 1954 BORN-FÉLE STATISZTIKUS ÉRTELMEZÉS ÉS NORMÁLÁS Annak a valószínűsége, ogy a részecske egy adott ely körül kicsiny d 3 r térfogatú térelemben van: (, ) * (, )d 3 r t r t r i i ii e ( r, t) e * ( r, t) e ( r, t)e * ( r, t) ( r, t) * ( r, t) Egy ullámfüggvény fizikai tartalmát nem változtatja meg, a mértéktranszformációnak vetjük alá, vagyis szorozzuk egy e i taggal mértékinvariancia

SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET

SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET A Scrödinger-egyenlet a kvantummecanika mozgásegyenlet, Newton II. törvényével analóg. Nem vezetető le korábbi elvekből, de intuitívan bevezetető. Egy atározott energiával és impulzussal

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( ) a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Tartalom. Typotex Kiadó

Tartalom. Typotex Kiadó Tartalom Előszó 13 1. A kvantumelmélet kezdetei 15 1.1. A Planck-féle sugárzási törvény és a szigetelő kristályok hőkapacitása 15 1.2. A fényelektromos jelenség: Lénárd és Einstein 19 1.3. Az atomos gázok

Részletesebben

Kvantummechanikai alapok I.

Kvantummechanikai alapok I. Kvantummechanikai alapok I. Dr. Berta Miklós bertam@sze.hu 2017. szeptember 21. 1 / 41 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) 2 / 41 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) Ψ(r, t)-csak a hely

Részletesebben

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....

Részletesebben

Az anyag hullámtermészete: de Broglie-hipotézis, hullámcsomag, fázis- és csoportsebesség, elektron-interferencia

Az anyag hullámtermészete: de Broglie-hipotézis, hullámcsomag, fázis- és csoportsebesség, elektron-interferencia Az anyag ullámtermészete: de Broglie-ipotézis, ullámcsomag, fázis- és csoportsebesség, elektron-interferencia Az anyag ullámtermészete (de Broglie (93)) Láttuk, ogy foton lendülete és energiája a: p =

Részletesebben

A mechanikai alaptörvények ismerete

A mechanikai alaptörvények ismerete A mechanikai alaptörvények ismerete Az oldalszám hivatkozások a Hudson-Nelson Útban a modern fizikához c. könyv megfelelő szakaszaira vonatkoznak. A Feladatgyűjtemény a Mérnöki fizika tárgy honlapjára

Részletesebben

KVANTUMMECHANIKA. a11.b-nek

KVANTUMMECHANIKA. a11.b-nek KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya

Részletesebben

Részecskék hullámtermészete

Részecskék hullámtermészete Részecskék ullámtermészete Bevezetés A sugárzás és az anyag egyaránt mutat részecskejellegű és ullámjellegű tulajdonságokat. Atommodellek A Tomson modell J.J. Tomson 1898 A negatív töltésű elektronok pozitív

Részletesebben

indeterminizmus a fizikában

indeterminizmus a fizikában indeterminizmus a fizikában Epikuroszt még nem vették komolyan a brit empirizmus (pl. Hume) még nem volt elég határozott a pozitivizmus hatása jelentős a kinetikus gázelmélet Maxwell a gázmolekulák véletlen

Részletesebben

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r, Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,

Részletesebben

Mechanika, dinamika. p = m = F t vagy. m t

Mechanika, dinamika. p = m = F t vagy. m t Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.

Részletesebben

MSC ELMÉLETI FIZIKA SZIGORLAT TÉTELEK. A-01. Tétel A KLASSZIKUS FIZIKA ÉS A NEMRELATIVISZTIKUS KVANTUMMECHANIKA ALAPEGYENLETEI.

MSC ELMÉLETI FIZIKA SZIGORLAT TÉTELEK. A-01. Tétel A KLASSZIKUS FIZIKA ÉS A NEMRELATIVISZTIKUS KVANTUMMECHANIKA ALAPEGYENLETEI. MSC ELMÉLETI FIZIKA SZIGORLAT TÉTELEK A-01. Tétel A KLASSZIKUS FIZIKA ÉS A NEMRELATIVISZTIKUS KVANTUMMECHANIKA ALAPEGYENLETEI. A klasszikus mechanika elvei. A Newton axiómák. A Lagrange és a Hamilton formalizmus

Részletesebben

Molekulák világa 1. kémiai szeminárium

Molekulák világa 1. kémiai szeminárium GoBack Molekulák világa 1. kémiai szeminárium Szilágyi András 2008. október 6. Molekulák világa 1. kémiai szeminárium Molekuláris bionika szak I. év 1 Kvantummechanika Klasszikus fizika eszközei tömegpont

Részletesebben

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra

Részletesebben

Kifejtendő kérdések június 13. Gyakorló feladatok

Kifejtendő kérdések június 13. Gyakorló feladatok Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)

Részletesebben

ω mennyiségek nem túl gyorsan változnak

ω mennyiségek nem túl gyorsan változnak Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Thomson-modell (puding-modell)

Thomson-modell (puding-modell) Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja

Részletesebben

Néhány mozgás kvantummechanikai tárgyalása

Néhány mozgás kvantummechanikai tárgyalása Néhány ozgás kvantuechanikai tárgyalása Mozzanatok: A Schrödinger-egyenlet felírása ĤΨ EΨ Hailton-operátor egállapítása a kinetikus energiaoperátor felírása, vagy 3 dienziós ozgásra, Descartes-féle koordinátarendszerben

Részletesebben

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések . REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós

Részletesebben

A spin. November 28, 2006

A spin. November 28, 2006 A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,

Részletesebben

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati

Részletesebben

Az anyagok kettős (részecske és hullám) természete

Az anyagok kettős (részecske és hullám) természete Az anyagok kettős (részecske és hullám) természete de Broglie hipotézise (1924-25): Bármilyen fénysebességgel mozgó részecskére: mc = p E = mc 2 = hn p = hn/c = h/ = h/p - de Broglie-féle hullámhossz Nem

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Zitterbewegung. általános elmélete. Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék

Zitterbewegung. általános elmélete. Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék A Zitterbewegung általános elmélete Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék 1. Mi a Zitterbewegung? A Zitterbewegung általános elmélete 2. Kvantumdinamika Heisenberg-képben

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

3. A kvantummechanikai szemlélet kialakulása

3. A kvantummechanikai szemlélet kialakulása 3. A kvantummechanikai szemlélet kialakulása A korábbi fejezetben tárgyalt atomelmélet megteremtette a modern kémiai alapjait, azonban rengeteg kérdés mégis megválaszolatlan maradt, különösen a miért nincs

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

XX. századi forradalom a fizikában

XX. századi forradalom a fizikában XX. századi forradalom a fizikában magfizika részecskefizika 1925 1913 1900 1896 radioaktivitás lumineszcencia kvantummechanika Bohr-modell! színk nkép hőmérsékleti sugárz rzás!?? 1873 elektrodinamika

Részletesebben

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687) STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

Részletesebben

Egy mozgástani feladat

Egy mozgástani feladat 1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

Az elektron hullámtermészete. Készítette Kiss László

Az elektron hullámtermészete. Készítette Kiss László Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?

Részletesebben

3. Fékezett ingamozgás

3. Fékezett ingamozgás 3. Fékezett ingamozgás A valóságban mindig jelen van valamilyen csillapítás. A gázban vagy folyadékban való mozgásnál, kis sebesség esetén a csillapítás arányos a sebességgel. Ha az vagy az ''+k sin =0,

Részletesebben

ELEMI RÉSZECSKÉK ATOMMODELLEK

ELEMI RÉSZECSKÉK ATOMMODELLEK ELEMI RÉSZECSKÉK ATOMMODELLEK Az atomok felépítése Készítette: Horváthné Vlasics Zsuzsanna Mi van az atomok belsejében? DÉMOKRITOSZ (Kr.e. 460-370) az anyag nem folytonos parányi, tovább nem bontható,

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék 3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal

Részletesebben

Szilárd testek sugárzása

Szilárd testek sugárzása A fény keletkezése Szilárd testek sugárzása A szilárd test melegítés hatására fényt bocsát ki A sugárzás forrása a közelítőleg termikus egyensúlyban lévő kibocsátó test atomi részecskéinek véletlenszerű

Részletesebben

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16. Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege

Részletesebben

» Holt-Pipkin: Hg-ból származó fotonok (Harvard, 1973)» Clauser: Hg-ból származó fotonok (Berkeley, 1976), 412 órás mérés» Aspect-Dalibard-Roger:

» Holt-Pipkin: Hg-ból származó fotonok (Harvard, 1973)» Clauser: Hg-ból származó fotonok (Berkeley, 1976), 412 órás mérés» Aspect-Dalibard-Roger: » Holt-Pipkin: Hg-ból származó fotonok (Harvard, 1973)» Clauser: Hg-ból származó fotonok (Berkeley, 1976), 412 órás mérés» Aspect-Dalibard-Roger: Ca-atomból származó fotonok akuszto-optikai kapcsolókkal

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

Stern Gerlach kísérlet. Készítette: Kiss Éva

Stern Gerlach kísérlet. Készítette: Kiss Éva Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár

Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár Atommodellek Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Ernest Rutherford Rausch Péter kémia-környezettan tanár Modellalkotás A modell a valóság nagyított

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

2015/16/1 Kvantummechanika B 2.ZH

2015/16/1 Kvantummechanika B 2.ZH 2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

1. Az üregsugárzás törvényei

1. Az üregsugárzás törvényei 1. Az üregsugárzás törvényei 1.1. A Wien féle eltolódási törvény és a Stefan-Boltzmann törvény Egy zárt, belül üres fémdoboz kis nyílása az úgynevezett abszolút fekete test. A nyílás elektromágneses sugárzást

Részletesebben

a magspin és a mágneses momentum, a kizárási elv (1924) a korrespondencia-elv alkalmazása a diszperziós formulára (1925)

a magspin és a mágneses momentum, a kizárási elv (1924) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) a magspin és a mágneses momentum, a kizárási elv (1924) Wolfgang Pauli (1900-1958) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) Hendrik Anthony Kramers (1894-1952) a mátrixmechanika

Részletesebben

Az optika a kvantummechanika előszobája

Az optika a kvantummechanika előszobája Cserti József ELTE, TTK Komplex Rendszerek Fizikája Tanszék Az optika a kvantummechanika előszobája Atomcsill, 2012. november 8., ELTE, Budapest Optika a középiskolában Geometriai optika alapja: --- Vákuumban

Részletesebben

Kémiai reakciók mechanizmusa számítógépes szimulációval

Kémiai reakciók mechanizmusa számítógépes szimulációval Kémiai reakciók mechanizmusa számítógépes szimulációval Stirling András stirling@chemres.hu Elméleti Kémiai Osztály Budapest Stirling A. (MTA Kémiai Kutatóközpont) Reakciómechanizmus szimulációból 2007.

Részletesebben

Kalkulus. Komplex számok

Kalkulus. Komplex számok Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

A kémiai kötés eredete; viriál tétel 1

A kémiai kötés eredete; viriál tétel 1 A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra

Részletesebben

KÉTPREPARÁTUMOS MÓDSZERREL

KÉTPREPARÁTUMOS MÓDSZERREL GM-CSŐ KRKTERSZTKÁJÁNK VZSGÁLT, HOLTDEJÉNEK MEGHTÁROZÁS KÉTPREPRÁTUMOS MÓDSZERREL GM-cső a legelterjedtebben asznált gázionizációs detektor az -, - és - sugárzás mérésére. gáz-ionizációs detektoroknak

Részletesebben

A Schrödinger-egyenlet és egyszerű alkalmazásai

A Schrödinger-egyenlet és egyszerű alkalmazásai Jelen dokumentumra a Creative Commons Nevezd meg! Ne add el! Ne változtasd meg! 3. licenc feltételei érvényesek: a művet a felhasználó másolhatja, többszörözheti, továbbadhatja, amennyiben feltünteti a

Részletesebben

Fizika 2 - Gyakorló feladatok

Fizika 2 - Gyakorló feladatok 2015. június 19. ε o =8.85 10-12 AsV -1 m -1 μ o =4π10-7 VsA -1 m -1 e=1,6 10-19 C m e =9,11 10-31 kg m p =1,67 10-27 kg h=6,63 10-34 Js 1. Egy R sugarú gömbben -ρ állandó töltéssűrűség van. a. Határozza

Részletesebben

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu

Részletesebben

Hőmérsékleti sugárzás és színképelemzés

Hőmérsékleti sugárzás és színképelemzés Hőmérsékleti sugárzás és színképelemzés az anomáliák szerepe a tudományban Wollaston, Ritter et al. fekete vonalak a színképben (1802) Joseph Fraunhofer (1787-1826) a sötét vonalak hullámhossza (1814-1815)

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

Kézirat a Bevezetés a modern fizika fejezeteibe c. tárgyhoz írta: Márkus Ferenc (BME Fizika Tanszék) (utolsó módosítás: november 9.) 4.

Kézirat a Bevezetés a modern fizika fejezeteibe c. tárgyhoz írta: Márkus Ferenc (BME Fizika Tanszék) (utolsó módosítás: november 9.) 4. Kézirat a Bevezetés a modern fizika fejezeteibe c. tárgyhoz írta: Márkus Ferenc (BME Fizika Tanszék) (utolsó módosítás: 2013. november 9.) 4. szakasz Kísérleti előzmények: Az atomok színképe Kvantummechanika

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

Differenciálegyenletek numerikus integrálása április 9.

Differenciálegyenletek numerikus integrálása április 9. Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek

Részletesebben

Erős terek leírása a Wigner-formalizmussal

Erős terek leírása a Wigner-formalizmussal Erős terek leírása a Wigner-formalizmussal Berényi Dániel 1, Varró Sándor 1, Vladimir Skokov 2, Lévai Péter 1 1, MTA Wigner FK, Budapest 2, RIKEN/BNL, Upton, USA Wigner 115 2017. November 15. Budapest

Részletesebben

DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST

DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST Előszó a Fizika című tankönyvsorozathoz Előszó a Fizika I. (Klasszikus

Részletesebben

Klasszikus és kvantum fizika

Klasszikus és kvantum fizika Klasszikus és kvantum fizika valamint a Wigner függvény T.S. Biró MTA Fizikai Kutatóközpont, Budapest 2017. november 13. T.S.Biró Wigner 115, Budapest, 2017. Nov. 15. Biró Klassz kvantum 1 / 22 Abstract

Részletesebben

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61 Elektronok, atomok 2-1 Elektromágneses sugárzás 2-2 Atomi Spektrum 2-3 Kvantumelmélet 2-4 A Bohr Atom 2-5 Az új Kvantummechanika 2-6 Hullámmechanika 2-7 Kvantumszámok Dia 1/61 Tartalom 2-8 Elektronsűrűség

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti

Részletesebben

1 A kvantummechanika posztulátumai

1 A kvantummechanika posztulátumai A kvantummechanika posztulátumai October 29, 2006 A kvantummechanika posztulátumai Célunk felépíteni a kvantummechanikát posztulátumok segítségével úgy ahogy az elemi hullámmechanika során eljártunk. Arra

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Kvantumos jelenségek lézertérben

Kvantumos jelenségek lézertérben Kvantumos jelenségek lézertérben Atomfizika Benedict Mihály SZTE Elméleti Fizikai Tanszék Az előadást támogatta a TÁMOP-4.2.1/B-09/1/KONV-2010-0005 sz. Kutatóegyetemi Kiválósági Központ létrehozása a Szegedi

Részletesebben

Speciális relativitás

Speciális relativitás Bevezetés a modern fizika fejezeteibe 3. (b) Speciális relativitás Relativisztikus dinamika Utolsó módosítás: 2013 október 15. 1 A relativisztikus tömeg (1) A bevezetett Lorentz-transzformáció biztosítja

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben