A válaszfüggvény. Hogyan interpoláljunk? A válaszfüggvény két faktor esetén. Plackett-Burman kísérlettev. Válaszfüggvény egy faktor esetén

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A válaszfüggvény. Hogyan interpoláljunk? A válaszfüggvény két faktor esetén. Plackett-Burman kísérlettev. Válaszfüggvény egy faktor esetén"

Átírás

1 Ipari statisztika, 9. hét Feloldóképesség (resolution) III: a fıhatások egymással nem keverednek (nem aliasai egymásnak), de kétfaktoros kölcsönhatásokkal már igen IV: a fıhatások egymással és a kétfaktoros kölcsönhatásokkal nem keverednek, de háromfaktoros kölcsönhatásokkal már igen. A kétfaktoros kölcsönhatások egymással keverednek. V: a fıhatások egymással, két-és háromfaktoros kölcsönhatásokkal nem keverednek. A kétfaktoros kölcsönhatások csak háromfaktorosakkal keverednek. Plackett-Burman kísérlettev A Plackett-Burman kísérlettev III felbontású részleges faktoriális kísérletterv a fıhatások elemzésére. Például 4 fıhatás elemzésére: Kísérlet Blokk A B C D A válaszfüggvény A csúcsokban kapott válaszokat a fıhatások és a kölcsönhatások függvényének tekintjük, és ezt a függvényt interpoláljuk a négyzet vagy (hiper)kocka belsejébe. Az így kapott függvény a válaszfüggvény. A válaszfüggvény lehetıséget ad a hatások becslésére a köztes (belsı pontnak megfelelı) kísérletbeállítások esetén is. Így akár egy esetleges célérték is közel pontosan elérhetı. Nemlineáris hatás jelenléte esetén a közelítés hibája nagy lehet! Válaszfüggvény egy faktor esetén hatás alacsony szint válasz közép szint magas szint átlag fıhatás faktor Hogyan interpoláljunk? Egyetlen faktor esetén könnyő a dolgunk, az átlagból és a fıhatásból a kódolással a válasz: átlag + fıhatás * kód A képlet az egyenes megfelelı pontját meghatározza egy köztes helyen is. Ez lesz az interpolációval kapott válaszfüggvény. Kettı vagy több faktor esetén a kölcsönhatások bonyolítják a dolgot, nem egy egyszerő lineáris függvényt kapunk. A válaszfüggvény két faktor esetén Az átlag, M, nyilván nem elegendı, hiszen nem adja a mért választ. Nézzük most az elsı faktor hatásának átlagos értékét, ennek az összes kísérlet átlagától való eltérését tekintsük az elsı faktor, A, fıhatásának, FA-nak. Így a válaszfüggvény elsı közelítése: azaz átlag + 1.fıhatás*1.kód 1.kód M + FA*AF Természetesen ez sem állítja be a csúcsokban a megfelelı választ, hozzá kell vennünk a 2.faktor hatását is. 1

2 Átlagos hatás Elsı faktor átlagos hatás Második faktor Elsı faktor Az elsı faktor fıhatása Teljesen hasonlóan, nézzük a második faktor hatásának átlagos értékét, és ennek az összes kísérlet átlagától való eltérését tekintsük a második faktor, B fıhatásának, FB- nek. Így a válaszfüggvény második közelítése: azaz átlag + 1.fıhatás*1.kód 1.kód + 2.fıhatás*2.kód 2.kód M + FA*A F + FB*BF Azonban még ez sem állítja be a csúcsokban a megfelelı választ. Ez nem túlzottan meglepı, mivel három változóval nem lehet négy pontban tetszılegesen adott értéket beállítani. Figyelembe kell még vennünk a két faktor kölcsönhatását is. Második faktor átlagos hatás A második faktor fıhatása Második faktor Elsı faktor 4.2 2

3 A kölcsönhatás két szintje az együtt ill. ellentétes állás pont az átlókban jelenik meg. Így vehetjük a kölcsönhatás átlagos értékét, és most ennek az összes kísérlet átlagától való eltérését tekintjük a kölcsönhatás, A*B fıhatásának, FAB-nek. Így a válaszfüggvény végsı közelítése: azaz átlag + 1.fıhatás*1.kód 1.kód + 2.fıhatás*2.kód 2.kód + + fı-kölcsönhatás kölcsönhatás*1.kód*2.kód R(A,B) = M + FA*A F + FB*B F + FAB F *A*B A válaszfüggvény, R(A,B) már nem lineáris függvény,, de mind a négy pontban elıállítja a kísérletben kapott választ. Átlagos kölcsönhatás Második faktor Elsı faktor A faktorok kölcsönhatása Válaszfüggvény három faktorra R(A,B) = M + FA*A F + FB*B F + FC*A F + +FAB *A*B +FBC+F BC*B*C + FCAF *C*A + FABCF *A*B*C Három faktor esetén a nyolc mérésbıl a nyolc együttható pont meghatározható. Általában a kölcsönhatások száma n faktor esetén n n n = 2 k k= 0 Tehát az összes 2 n kísérletbıl a 2 n kölcsönhatás együtthatója pont meghatározható Hatások vizsgálata Szórásanalízis (ANOVA) Y Regresszió X Kölcsönhatások elhanyagolása A többszörös kölcsönhatások általában elhanyagolhatóak. Errıl általában t-próba segítségével tudunk meggyızıdni, úgy, hogy teszteljük az adott kölcsönhatás együtthatójának szignifikáns különbözıségét nullától.. A felıl döntünk, hogy a kísérletben szereplı válaszok igazából egy a kölcsönhatást nem (nulla együtthatóval) tartalmazó válaszfüggvénybıl származnak véletlen hibák eredményeként megváltoztatva azt, vagy pedig az valószínősíthetı, hogy a kölcsönhatás megléte térítette el ettıl a válaszfüggvénytıl a kísérleti eredményeket.. A statisztika nyelvén ez azt jelenti, hogy az együttható várható értéke 0 vagy sem, ez pedig normális eloszlás és ismeretlen szórás esetén t-próbával dönthetı el. 3

4 Túlhatározottság Ha akad elhanyagolható kölcsönhatás, akkor ezeket elhagyva több megfigyelésünk lesz mint együtthatónk.. A rendszer túlhatározottá válik, nem lehet olyan válaszfügg- vényt illeszteni, amely a csúcsokban a megfigyelt értékeket adná. Ekkor úgy képzeljük, hogy a csúcsokban az eltérést a zaj faktorokból származó véletlen hibák okozzák. Az együtthatókat úgy határozzuk meg, hogy a maradék hiba szórása a minimális legyen. Ez a feladat a szórásanalízis témakörébe tartozik. Ismételt kísérletek Hasonlóan járunk el, ha nem egyetlen kísérletet végeztünk egy adott beállítás mellett. Az eredmény tehát a hipotetikus válaszfüggvény együtthatóinak statisztikai próbával (F-próbával próbával) történı ellenırzése és az ebbıl adódó szignifikancia szint lesz. A reziduálisok A válaszfüggvény (predikció) és az elvégzett kísérletek eredménye közötti különbség a kocka csúcsaiban: : a reziduálisok. A reziduálisok elemzése: Trendvizsgálat Outlierek Normalitásvizsgálat (vonalkód kevésre, hisztogramm sokra,, P-P P plot,, Q-Q Q plot) predikció - reziduális scatterdiagramm (szórásra!) Kétszintő kísérletek elemzése Adatellenırzés (outlierek) A válaszfüggvény meghatározása és elemzése A reziduálisok elemzése Táblázatok, grafikonok a hatásokról Az elfogadható beállítások meghatározása Igazoló kísérletek A Kvadratikus hatás Különbözı az eljárás attól függıen, hogy elıre tudjuk, hogy van kvadratikus hatás a rendszerben, vagy a kétszintő kísérlet középpontjának rossz illeszkedése vezet erre a felismerésre. A második esetben célszerő a kétszintő kísérlet kiegészítése, javítása. Ez történhet újabb beállítások és így kiegészítı kísérletek hozzávételével. Egy lehetıség az u.n. Central Composite Design, CCD. (Box - Wilson 1951) Az elsı esetben célszerőbb eleve másként tervezni a kísérletet.. A háromszintő kísérletek jönnek szóba,, a teljes terv azonban 3 vagy több faktorra már pazarló. Ekkor a Box - Behnken kísérlettterv alkalmazható. CCD További, u.n. csillagpontokat vezetünk be (ábra). A csillagpontok a tengelyeken helyezkednek el, számuk 2n, távolságuk az origótól: (2 n ) 1/4. Így 3 vagy több faktorra már nem a gömbön lesz! A középpontban további ismétlésekre van szükség. Így az összes kísérletek száma: 2 n + 2n + m + l A CCD-vel becsülhetı válaszfüggvény: R(A,B) = M + FA*A F + FB*B F + + FA2F A2*A 2 + FB2F B2*B 2 + FAB F *A*B 4

5 B CCD A Box - Behnken terv A teljes háromszintő tervezés nagyon sok kísérletet követel meg, ezért intenzív kutatás folyt a hatásos háromszintő tervek megtalálására. BB terv 3 faktorra: Egy faktort rögzítünk a középpontban Erre kétszintő részterv A három faktor három résztervet ad A középpontban ismételt kísérletekkel kiegészítve összeáll az egész. B-B. kísérletelrendezés Az általános BB terv: Két faktor kivételével mindet a középpontban rögzítjük Minden lehetséges módon kiválasztva a két faktort kétszintő részterveket készítünk A középpontban ismételt kísérletekkel kiegészítve kapjuk a teljes kísérlettervet. A becsülhetı válaszfüggvény R(A,B,C) = M + FA*A F + FB*B F + FC*C F + +FA2 A2*A 2 + FB2F B2*B 2 + FC2F C2*C 2 + +FAB *A*B + +FBC *B*C +FCA *C*A BB vs. teljes B-B. kísérletelrendezés A BB tervvel tehát nem vehetıek figyelembe nemlineáris kölcsönhatások A BB terv takarékossága a teljes tervvel szemben: Faktor Teljes terv BB terv

6 B-B. kísérletelrendezés B-B. kísérletelrendezés Taguchi filozófia A minıség nem specifikációs szinteken belül maradást jelent, hanem a célérték elérését. Minden eltérés a célértéktıl minıségveszteség más oldalról nézve költség. Gazdasági szükségszerőség, hogy a rendszer minıségét elıre tervezzük. Az egyszerő inspekció, utólagos ellenırzés, gazdaságilag nem indokolt, mert nem javítja a minıséget. Veszteségfüggvény Vezessünk be egy veszteségfüggvényt, ami méri a célértéktıl való eltérés veszteségét. Lehetne az eltérés de ez nem jó mert elıjeles Lehetne az abszolút eltérés, de a célérték közelében 1% eltérésnövekedést kevésbé szeretnénk büntetni (veszteségesnek nyilvánítani), mint mondjuk a specifikációs határ közelében, ahol ez a +1% akár a termék selejtessé válását is jelentheti, így azt ki kell dobni, tehát a veszteség jóval nagyobb Ennek a kívánalomnak a négyzetes eltérés a legegyszerőbb megfelelı függvény. Kétlépcsıs optimalizálás A négyzetes eltérésbıl adódó centrum a várható érték. Ha a várható érték épp a célérték, akkor veszteség mérıszámaként használt négyzetes hiba a szórásnégyzetet adja. Ezért, ha vannak u.n. beállító faktoraink, amelyek az ingadozásra nem hatnak, akkor két lépcsıben is optimalizálhatunk Két részre bontjuk a faktorainkat Elıször megkeressük a csak az ingadozásra ható változók azon a beállítását, amely mellett a variancia a legkisebb, majd az adjustment változókkal beállítjuk a célértéket Jel-zaj viszony A variancia gyakran függ a várható értéktıl is (Az elefántok testsúlyingadozása jóval nagyobb mint a bolháké). A variancia helyett a P=σ 2 /µ 2 arányt célszerő tekinteni, és ezt minimalizálni. Ez u.az mint az u.n. jel-zaj viszony (signal to noise ratio) maximalizálása, ami: SN= µ/σ, avagy decibel skálán: SN=-10lg(σ 2 /µ 2 ) Ennek maximalizálása a logaritmált szórás: Var(lnY) vagy lnvar(lny) minimalizálásával egyenértékő. Ismételt kísérletek esetén a MINITAB megadja ezeket a logaritmált szórásokat. Egyszerően a logaritmált szórásokra mint válaszra vonatkoztatva a kísérlettervet u.úgy értékeljük. 6

7 Taguchi féle ortogonális elrendezések A Taguchi féle ortogonális elrendezések kísérlettervek melyek általában a teljes faktoriális tervek töredékének elvégzését követelik csupán. Több közülük faktoriális vagy Plackett- Burman designként is elérhetı. Az elrendezések célja, hogy annyi faktort kezeljen amennyit csak lehet adott kísérletszám mellett. Az elrendezések oszlopai kiegyensúlyozottak és ortogonálisak. Tehát minden oszloppárban minden faktorkombináció ugyanannyiszor van megismételve, és a fıhatások egymástól függetlenül becsülhetıek. Ezek szakácskönyv -szerően meghatározott tervek, a MINITAB is adja ezeket. Jelölésük pl.l 8 (2**5) jelentése 8 kísérlet, 5 faktorral, 2 szinttel A szórás forrásai: a zajok A Taguchi féle cél Különbözı környezeti feltételek között jól mőködı a használat során kevésbé romló egyedenként kevéssé ingadozó minıségő termék gyártása. A zaj faktorok 3 csoportja külsı belsı egyedenkénti Zajok tervezett figyelembevétele A zajokat is terv szerint generáljuk, szorzatterv pl.l 8 L 4 szerint. A belsı terv a kézbentartható faktorokat tartalmazza. A külsı terv a zajfaktorokat tartalmazza A külsı terv minden egyes eleme esetén egy teljes belsı tervet futtatunk le Ellenırzı kísérletek Redukált tervek - különbözı feltételezésekkel élünk - ezek nem biztosan teljesülnek Ezért a kapott optimálisnak tőnı beállítást ellenırizni kell Kétféle ellenırzı kísérlet lehet Az elképzelt optimális beállítással a kívánt eredményt kapjuk-e Az adott beállítás mellett néhány ismételt kísérletet végzünk Kiváltképp indokolt, ha az optimum helyén nem végeztünk eddig méréseket Ha nem csak egy beállítás kombinációt ellenırzünk, hanem, hogy a válaszfelület megfelelı-e (ez szükséges lehet további mőszakigazdaságossági számításokhoz) akkor a lényegesnek talált faktorokkal újabb kísérlettervet kell elıírni. Ez lényegesen kisebb lehet az eredetinél Jó minıségő termelés Célérték meghatározása a fogyasztó igénye a termelés lehetıségei alapján A termék jellemzıi átlagban a célértéket adják A változékonyság, szóródás legyen minimális Robusztus tervezés - az ingadozás ne legyen vagy lehetıleg legkevésbé legyen érzékeny a külsı körülmények (külsı v, látens faktorok) megváltozására Lehetıség szerint minimális kísérlettel = költséggel érjük el ezeket a célokat Ellenırizzük a javasolt beállítást A Shainin tervezés A cél a leglényegesebb, a lényeges, és a valamelyest hatásos faktorok megtalálása Ennek eszközei: Sokváltozós diagramm Komponens (alkatrész) keresés Páronkénti összehasonlítás Változók keresése Teljes faktoros tervek Kétváltozós ábrázolás 7

8 Sokváltozós diagrammok Többször néhany (3-5) elemő mintát kell venni a gyártási folyamatból, mindaddig, amíg az instabilitást jelentı változások kb. 80%-át már megfigyeltük. Ezeket ábrázoljuk, hely, idı szerint ciklikusságukat vizsgáljuk. Csak olyan faktorok lehetnek érdekesek amelyek maguk is ilyen függéseket mutatnak. Komponens keresés Akkor alkalmazzuk, ha vannak jó és rossz termékpéldányok Szétszedjük és változatlanul összeszereljük a termékeket Újra szétszedjük és a legfontosabbnak tartott komponenst felcserélve a két termék között összeszereljük. Ha nincs változás, a komponens nem fontos a hiba szempontjából Ha valamelyes változás van, a komponens lényeges vagy valamelyest hatásos kategóriába tartozik Ha megcserélıdik a hibás jó viszony, megtaláltuk a hiba okát Páronkénti összehasonlítás Ha nem lehet a termékeket szétszedni és újból összerakni Véletlenszerően választunk egy jó és rossz termékpárt Megvizsgáljuk és feljegyezzük az összes észlelhetı eltérést Újabb termékpárt választunk és újra feljegyezzük az eltéréseket Mindaddig további párokat veszünk, amíg jellegzetesnek és reprodukálhatónak nem tarjuk a változásokat. Változó keresés Cél: a vizsgálandó változók közül kevesebb lényeges kiválasztása A megvalósítás módja az alkatrészkereséssel analóg A faktorok feltételezhetıen jobbik és rosszabbik beállítását alkalmazzuk, egyszerre csak egyet változtatva Az eredmény itt is a leglényegesebb, a lényeges, és a valamelyest hatásos csoportba tartozó faktorok listája Ha már ismerjük a lényegesnek bizonyult hatásokat és kölcsönhatásokat, akkor a fontosak szintjét a jobbnak bizonyult szinten stabilizáljuk a nem lényegesre viszont szélesebb tőrési tartományt engedünk meg Teljes faktoros kisérlettervek A lényegesnek talált faktorokat teljes faktoriális tervvel elemezzük Kétváltozós diagramm A választ a faktor függvényében ábrázoljuk Ha a görbe menti (reziduális) ingadozás nagy, a faktor a kevésbé lényegesek közé tartozik 8

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

4. A méréses ellenırzı kártyák szerkesztése

4. A méréses ellenırzı kártyák szerkesztése 4. A méréses ellenırzı kártyák szerkesztése A kártyákat háromféle módon alkalmazhatjuk. Az elızetes adatfelvétel során a fı feladat az eloszlás paramétereinek (µ és σ ) becslése a további ellenırzésekhez.

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

A DOE (design of experiment) mint a hat szigma folyamat eszköze

A DOE (design of experiment) mint a hat szigma folyamat eszköze A DOE (design of experiment) mint a hat szigma folyamat eszköze 2.5 Z [mils] 0.5 0-0.5 2.4.27 0.40-0.47 Y [in] - -.34-2.22 -.32 X [in] -0.42 0.48.38 2.28-2.2, feketeöves GE Consumer & Industrial A DOE

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor

Kettőnél több csoport vizsgálata. Makara B. Gábor Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10

Részletesebben

III. Képességvizsgálatok

III. Képességvizsgálatok Képességvizsgálatok 7 A folyamatképesség vizsgálata A 3 fejezetben láttuk, hogy ahhoz, hogy egy folyamat jellemzıjét a múltbeli viselkedése alapján egy jövıbeni idıpontra kiszámíthassuk (pontosabban, hogy

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Minitab 16 újdonságai május 18

Minitab 16 újdonságai május 18 Minitab 16 újdonságai 2010. május 18 Minitab 16 köszöntése! A Minitab statisztikai szoftver új verziója több mint hetven újdonságot tartalmaz beleértve az erősebb statisztikai képességet, egy új menüt

Részletesebben

Statisztika I. 10. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 10. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 10. előadás Előadó: Dr. Ertsey Imre Varianciaanalízis A különböző tényezők okozta szórás illetőleg szórásnégyzet összetevőire bontásán alapszik Segítségével egyszerre több mintát hasonlíthatunk

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Eloszlás-független módszerek 13. elıadás ( lecke)

Eloszlás-független módszerek 13. elıadás ( lecke) Eloszlás-független módszerek 13. elıadás (25-26. lecke) Rangszámokon alapuló korrelációs együttható A t-próbák és a VA eloszlásmentes megfelelıi 25. lecke A Spearman-féle rangkorrelációs együttható A Kendall-féle

Részletesebben

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis 1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb

Részletesebben

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H

Részletesebben

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Bevezetés a hipotézisvizsgálatokba

Bevezetés a hipotézisvizsgálatokba Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x

Részletesebben

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

A kísérletek ismétlése. Randomizálás = Véletlenítés. A tervezés kezdeti lépései. A faktoriális tervezés. Kísérlettervezés

A kísérletek ismétlése. Randomizálás = Véletlenítés. A tervezés kezdeti lépései. A faktoriális tervezés. Kísérlettervezés Matematikai statisztika elıadás. éves elemzı szakosoknak 11. elıadás Kísérlettervezés A legfontosabb off-line módszer a mőködés hatékonyabbá tételére. Cél: az otimális beállítások megtalálása. Szemontok

Részletesebben

A problémamegoldás lépései

A problémamegoldás lépései A problémamegoldás lépései A cél kitűzése, a csoportmunka megkezdése egy vagy többféle mennyiség mérése, műszaki-gazdasági (például minőségi) problémák, megoldás célszerűen csoport- (team-) munkában, külső

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

ANOVA összefoglaló. Min múlik?

ANOVA összefoglaló. Min múlik? ANOVA összefoglaló Min múlik? Kereszt vagy beágyazott? Rögzített vagy véletlen? BIOMETRIA_ANOVA5 1 I. Kereszt vagy beágyazott Két faktor viszonyát mondja meg. Ha több, mint két faktor van, akkor bármely

Részletesebben

Regressziós vizsgálatok

Regressziós vizsgálatok Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

Least Squares becslés

Least Squares becslés Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

[Biomatematika 2] Orvosi biometria. Visegrády Balázs

[Biomatematika 2] Orvosi biometria. Visegrády Balázs [Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés

Részletesebben

5. elıadás március 22. Portfólió-optimalizálás

5. elıadás március 22. Portfólió-optimalizálás 5. elıadás 203. március 22. Portfólió-optimalizálás Alapfeladat Cél: minél nagyobb várható hozam elérése De: közben a kockázat legyen minél kisebb Kompromisszum: elvárt hozamot érje el a várható érték

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

8. A mérıeszközök képességvizsgálata 1

8. A mérıeszközök képességvizsgálata 1 8. A mérıeszközök képességvizsgálata 1 A vizsgálat célja annak megállapítása, hogy a használt mérıeszköz elég kis hibával használható-e ahhoz, hogy vele a folyamatról információt szerezzünk. Az AIAG (Automotive

Részletesebben

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,

Részletesebben

ÚJDONSÁGOK A MINITAB STATISZTIKAI SZOFTVER ÚJ KIADÁSÁNÁL (MINITAB 18)

ÚJDONSÁGOK A MINITAB STATISZTIKAI SZOFTVER ÚJ KIADÁSÁNÁL (MINITAB 18) ÚJDONSÁGOK A MINITAB STATISZTIKAI SZOFTVER ÚJ KIADÁSÁNÁL (MINITAB 18) Előadó: Lakat Károly, L.K. Quality Bt. 2017 szeptember 27 EOQ MNB Szakbizottsági ülés Minitab 18 újdonságai Session ablak megújítása

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

10-6. ábra. Az áttérési szabályok rendszere (Papp L., Róth P., Németh L., 1992)

10-6. ábra. Az áttérési szabályok rendszere (Papp L., Róth P., Németh L., 1992) Hasonlítsuk össze az I., II. és III. fokozat, ill. az S1-S4 különleges fokozatok jelleggörbéit, melyeket a 10-4. és 10-5. ábra mutat. S1-tôl S4 ill. az I.-tôl a III. felé haladva a nagy selejtarányú tétel

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

DIFFERENCIAEGYENLETEK

DIFFERENCIAEGYENLETEK DIFFERENCIAEGYENLETEK Példa: elsőrendű állandó e.h. lineáris differenciaegyenlet Ennek megoldása: Kezdeti feltétellel: Kezdeti feltétel nélkül ha 1 és a végtelen összeg (abszolút) konvergens: / 1 Minden

Részletesebben

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos: A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,

Részletesebben

Nemparaméteres próbák

Nemparaméteres próbák Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu

Részletesebben

11. elıadás ( lecke) 21. lecke. Korreláció és Regresszió (folytatás) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények

11. elıadás ( lecke) 21. lecke. Korreláció és Regresszió (folytatás) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények Korreláció és Regresszió (folytatás) 11. elıadás (21-22. lecke) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények 21. lecke Linearitás ellenırzésének egyéb lehetıségei Konfidencia

Részletesebben

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió

Részletesebben

1. Gauss-eloszlás, természetes szórás

1. Gauss-eloszlás, természetes szórás 1. Gauss-eloszlás, természetes szórás A Gauss-eloszlásnak megfelelő függvény: amely egy σ szélességű, µ középpontú, 1-re normált (azaz a teljes görbe alatti terület 1) görbét ír le. A természetben a centrális

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

Elektronikai alapgyakorlatok

Elektronikai alapgyakorlatok Elektronikai alapgyakorlatok Mőszerismertetés Bevezetés a szinuszos váltakozó feszültség témakörébe Alkalmazott mőszerek Stabilizált ikertápegység Digitális multiméter Kétsugaras oszcilloszkóp Hanggenerátor

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

Többszempontos variancia analízis. Statisztika I., 6. alkalom

Többszempontos variancia analízis. Statisztika I., 6. alkalom Többszempontos variancia analízis Statisztika I., 6. alkalom Kétszempontos variancia analízis Ha két független változónk van, mely a csoportosítás alapját képezi, akkor kétszempontos variancia analízisrıl

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Méretlánc (méretháló) átrendezés elmélete

Méretlánc (méretháló) átrendezés elmélete Méretlánc (méretháló) átrendezés elmélete Tőrés, bázis fogalma és velük kapcsolatos szabályok: Tőrés: A beszerelendı, vagy megmunkálandó alkatrésznek a névleges és a valós mérete közötti megengedhetı legnagyobb

Részletesebben

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak 1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok

Részletesebben

Magspektroszkópiai gyakorlatok

Magspektroszkópiai gyakorlatok Magspektroszkópiai gyakorlatok jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Deák Ferenc Mérés dátuma: 010. április 8. Leadás dátuma: 010. április 13. I. γ-spekroszkópiai mérések A γ-spekroszkópiai

Részletesebben

Variancia-analízis (VA)

Variancia-analízis (VA) Variancia-analízis (VA) 5. elıadás (9-10. lecke) VA lényege, alkalmazásának feltételei, adat-transzformációk 9. lecke Variancia-analízis lényege Szórások egyezésének ellenırzése A Variancia-Analízis (VA)

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Statisztikai függvények

Statisztikai függvények EXCEL FÜGGVÉNYEK 9/1 Statisztikai függvények ÁTLAG(tartomány) A tartomány terület numerikus értéket tartalmazó cellák értékének átlagát számítja ki. Ha a megadott tartományban nincs numerikus értéket tartalmazó

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Az SPC (statisztikai folyamatszabályozás) ingadozásai

Az SPC (statisztikai folyamatszabályozás) ingadozásai A TERMELÉSI FOLYAMAT MINÕSÉGKÉRDÉSEI, VIZSGÁLATOK 2.3 Az SPC (statisztikai folyamatszabályozás) ingadozásai Tárgyszavak: statisztikai folyamatszabályozás; Shewhart-féle szabályozókártya; többváltozós szabályozás.

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Objektív beszédminısítés

Objektív beszédminısítés Objektív beszédminısítés Fegyó Tibor fegyo@tmit.bme.hu Beszédinformációs rendszerek -- Objektív beszédminõsítés 1 Bevezetı kérdések Mi a [beszéd] minıség [a beszédkommunikációban]? Mi befolyásolja a minıséget?

Részletesebben

Hamming-kód. Definíció. Az 1-hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F 2 fölötti vektorokkal foglalkozunk.

Hamming-kód. Definíció. Az 1-hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F 2 fölötti vektorokkal foglalkozunk. Definíció. Hamming-kód Az -hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F fölötti vektorokkal foglalkozunk. Hamming-kód készítése: r egész szám (ellenırzı jegyek száma) n r a kódszavak hossza

Részletesebben

Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás,

Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás, Matematikai statisztika. elıadás, 9.5.. Továbblépés Ha nem fogadható el a reziduálisok korrelálatlansága: Lehetnek fel nem tárt periódusok De más kapcsolat is fennmaradhat az egymáshoz közeli megfigyelések

Részletesebben