Reaktortartály fúvóka szerkezetintegritási vizsgálata törésmechanikai módszerekkel

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Reaktortartály fúvóka szerkezetintegritási vizsgálata törésmechanikai módszerekkel"

Átírás

1 MISKOLCI EGYETEM Gépészmérnöki és Informatikai Kar Műszaki Mechanikai Intézet DIPLOMAMUNKA Gépészmérnöki mesterszak Alkalmazott mechanika szakirány Készítette: Hodák Dávid Zoltán VUABV9 Tervezésvezető: Dr. Szirbik Sándor Mátyás egyetemi docens Konzulens: Dr. Szávai Szabolcs Bay Zoltán Alkalmazott Kutatási Közhasznú Nonprofit Kft. Miskolc-egyetemváros 2018

2 EREDETISÉGI NYILATKOZAT Alulírott..; Neptunkód:.. a Miskolci Egyetem Gépészmérnöki és Informatikai Karának végzős szakos hallgatója ezennel büntetőjogi és fegyelmi felelősségem tudatában nyilatkozom és aláírásommal igazolom, hogy című diplomatervem saját, önálló munkám; az abban hivatkozott szakirodalom felhasználása a forráskezelés szabályai szerint történt. Tudomásul veszem, hogy diplomamunka esetén plágiumnak számít: - szószerinti idézet közlése idézőjel és hivatkozás megjelölése nélkül; - tartalmi idézet hivatkozás megjelölése nélkül; - más publikált gondolatainak saját gondolatként való feltüntetése. Alulírott kijelentem, hogy a plágium fogalmát megismertem, és tudomásul veszem, hogy plágium esetén diplomamunkám visszautasításra kerül. Miskolc,...év..hó..nap.. Hallgató 1

3 Köszönetnyilvánítás Köszönetemet szeretném kifejezni az egyetemi tervezésvezetőmnek, Dr. Szirbik Sándor Mátyás egyetemi docensnek, akinek útmutatása nélkül ez a diplomamunka nem készülhetett volna el. Továbbá köszönöm a Bay Zoltán Alkalmazott Kutatási Közhasznú Nonprofit Kft. minden olyan dolgozójának, akik tanácsaikkal segítették munkámat és az ott végzett munkám során az összes, a diplomamunka előrehaladását segítő információt a rendelkezésemre bocsájtották, kiemelten Dr. Szávai Szabolcs osztályvezetőnek. Köszönöm a családom, barátnőm és a barátok támogatását, akik mindvégig mellettem álltak és mentálisan segítettek munkám előrehaladását. 2

4 Tartalomjegyzék: 1. BEVEZETÉS SZERKEZETINTEGRITÁS PROBLÉMA/ FELADAT MEGFOGALMAZÁSA TÖRÉSMECHANIKAI ALAPOK A TÖRÉSI FOLYAMATOK OSZTÁLYOZÁSA REPEDÉSMODELLEK A LINEÁRISAN-RUGALMAS TÖRÉSMECHANIKA Két-dimenziós eset Három-dimenziós eset Feszültségintenzitási tényező Energiaelmélet RUGALMAS-KÉPLÉKENY TÖRÉSMECHANIKA CTOD-elmélet J-integrál számítása J-integrál a rugalmas-képlékeny törésmechanikában REPEDÉS MÉRETÉNEK A MEGHATÁROZÁSA FESZÜLTSÉGEK MEGHATÁROZÁSA CSAPOS VÁLTOZAT A REPEDÉS TERJEDÉSE AZ XFEM MÓDSZER REPEDÉS TERJEDÉS VIZSGÁLATA J-INTEGRÁL MEGHATÁROZÁSA ABAQUS SEGÍTSÉGÉVEL ÖSSZEFOGLALÁS SUMMARY IRODALOMJEGYZÉK

5 1. Bevezetés Napjainkban a villamos energia előállításában jelentős szerepet vállalnak az atomerőművek és feltételezhető, hogy a jövőben is meghatározó eszközei lesznek ezen igények kielégítésének. Az atomenergiának számos ellenzője akad, akik bizalmatlanok az atomerőművek biztonságával, vagy a kiégett fűtőelemekkel kapcsolatban. Továbbá beruházási költsége körülbelül háromszorosa egy hasonló teljesítményű, de más fűtőelemű erőműhöz képest. Az új atomerőművek építése helyett a hangsúly átkerült a már üzemelő egységek minél magasabb szintű kihasználására. Ez a teljesítmény növelésében, valamint az üzemelési idő meghosszabbításában nyilvánul meg. Az atomerőművek élettartam gazdálkodása egy önálló területté fejlődött a mérnöki tevékenységek között. A tervezett üzemidőt a tervező határozza meg az anyagtulajdonság, a feltételezett hibák, a normál üzemállapotok és az azoktól való eltérések alapján. Általában a nem cserélhető berendezések egyikének élettartama határozza meg az élettartamot, ami általában év. A tényleges üzemidőt nem lehet pontosan előre definiálni, az üzemelés közben történő vizsgálatok során becsülhető meg, miközben a berendezések tényleges állapotát és az üzemelés paramétereit veszik figyelembe. A fizikai korlátok szerkezeti épségének biztosítása magas prioritású feladat, melyek legfontosabb elemei a csővezeték rendszerek és a nyomástartó berendezések. Ezek biztosítják, hogy a radioaktív közeg ne kerüljön a technológiai rendszeren kívülre és ne jelentsen veszélyt a külső környezetre. Kialakult egy tudományág a szerkezetintegritás és létrejött intézményrendszere szerte a világon. 4

6 2. Szerkezetintegritás A szerkezetintegritás egy túlnyomóan mérnöki ismereteket egyesítő tudományterület, melynek célja annak a mérlegelése, hogy egy adott szerkezet, létesítmény milyen feltételek mellett üzemeltethető a továbbiakban, illetve mennyi a maradék élettartama és milyen módon menedzselhető. Annak érdekében, hogy a szerkezet állapotát a lehető legnagyobb biztonsággal felmérhessük (ebből adódóan a további üzemeltethetőség feltételeit a legkisebb kockázattal megbecsüljük) elengedhetetlenek az alábbiak: a szerkezet állapotának felmérése különböző vizsgálatokkal, az üzemi körülményekre jellemző mechanikai állapot felmérése, a beépített anyagok károsodási folyamatának meghatározása az adott üzemi körülmények mellett. A mechanikai tulajdonságokat (szilárdság, szívósság, stb.)a szerkezeti elem anyagszerkezeti tényezői (belső tényezők) határozzák meg. Az úgynevezett külső tényezők (melyek az igénybevételből származnak) a kiinduló mechanikai tulajdonságok leromlásához vezethetnek, melynek következménye az élettartam-határ elérése, majd végső esetben a berendezés tönkremenetele. A folyamatot továbberősítik az anyagban található repedések, valamint az anyag folytonossági hibái is. A tönkremenetel alapvetően lehet törés, korrózió vagy geometriai instabilitás. A törés létrejöhet idő független (szívósvagy ridegtörés) vagy időfüggő (fáradásos törés) folyamat következtében. A geometriai instabilitásba tartozik a térfogatváltozás (duzzadás) és az alakváltozás (kúszás). A korrózió, a felületi rétegek kémiai átalakítását vagy akár elhordását is takarhatja. Lásd [1]. Az 1. ábra szemlélteti az atomerőműi berendezések élettartamának kimerülésében, esetleges tönkremenetelében szerepet játszó külső és belső tényezők összefoglalását. 5

7 1. ábra. A szerkezeti anyag élettartam kimerülését befolyásoló tényezők [1] A szerkezetintegritás elemezéséhez szükséges ismerni a terhelés törvényszerűségeit (hőmérséklet-, feszültség-, alakváltozás-mező időbeli változását), továbbá a szerkezeti elem anyagának terheléssel szembeni viselkedését is. Erre megfelelő eszköz számunkra a kontinuummechanika, továbbá az integritás vizsgálatára alkalmazhatóak különböző törés mechanikai módszerek is. A geometriai méret és az idő makro-skáláján kell elvégezni az integritásra vonatkozó globális előrejelzést, itt jelenhetnek meg a makroszkopikus, háromdimenziós folytonossági hiányok, mint az üregek, üregsorok, repedések. A méret és idő mikro-skáláján írhatóak le a változásokért elsődlegesen felelős fizikai folyamatok, amelyek az anyag kristályszerkezetében bekövetkező változásokban, diszlokációk és felületszerű hibák számában és azok eloszlásában nyilvánulhat meg, melyet a 2. ábra szemléltet. 6

8 Fizika nano mikro Anyagtudomány meso Szilárd-test mechanika makro Kötések Diszlokációk Mikro-hiányosságok Makro-repedések Molekuláris dinamika Mikro mechanika Károsodás mechanika Törésmechanika 2. ábra. Törési folyamat különböző szinteken [2] A berendezések szerkezetintegritás elemzése a szilárdság, valamint a töréssel szembeni ellenállásnak a vizsgálatát jelenti. Az üzemelést rendszerint úgy végzik, hogy az anyag szívós állapotból ne kerüljön rideg állapotba. Ezzel védekezni lehet az anyag azon tulajdonsága ellen, mely szerint a szívós törés létrejöttének energiaszükséglete nagyobba ridegtöréshez szükségesnél. A szerkezeti elem épségét a legnagyobb mértékben a következő tényezők befolyásolhatják: - alacsony hőmérséklet és megnövekedett feszültség egyidejű kialakulása, - neutronsugárzás miatt csökkent törési szívósság, - repedés (kedvezőtlen méretű, alakú és elhelyezkedésű) jelenléte azon tartományban, ahol az előző két feltétel is teljesül. A primerköri berendezéseknél feltételezett romlási folyamatok a következőek lehetnek: - Kisciklusú kifáradás - Termikus ridegedés/öregedés - Nagyciklusú kifáradás - Duzzadás - Sugárkárosodás - Erózió-korrózió - Általános korrózió - Lazulás - Bórsav korrózió - Hőrétegződés - Feszültség (lokális) korrózió - Lerakódás - Mikrobiológiai korrózió - Vízütés - Kopás 7

9 Az 1. jelű táblázat tartalmazza a primer köri berendezések üzemelése során feltételezhetően fellépő romlási folyamatokat. Berendezés neve Feltételezhető romlási folyamat Sugárkárosodás Reaktortartály Fáradás (kisciklusú) Feszültség korrózió Reaktortartályon belüli szerkezetek Főkeringető vezeték Térfogatkiegyenlítő tartály Gőzfejlesztő Főelzáró tolózár Főkeringető szivattyú Ridegedés Feszültség korrózió Feszültség korrózió Feszültség korrózió (varrat) Fáradás (kisciklusú) Feszültség korrózió Fáradás (kisciklusú) Feszültség korrózió Termikus ridegedés Feszültség korrózió Fáradás (kisciklusú) 1. táblázat. A primerköri főberendezések lehetséges romlási folyamatai A különböző romlási folyamatokhoz kapcsolódnak a megváltozott anyagtulajdonságok. Sugárkárosodás esetén az anyag duzzadhat, átmeneti hőmérséklete és mechanikai tulajdonságai változhatnak. A többi folyamat hatására mikrorepedések jelenhetnek meg az anyag felületén a mikroszerkezeti és mechanikai tulajdonságok változása mellett. 8

10 A lehetséges meghibásodások okainak kiküszöbölésére alkalmazható legfontosabb intézkedések az alábbiak: - a legvalószínűbb kiindulási helyek feltérképezése (hegesztési varratok, feszültség, illetve halmozódó károsodáscsúcsok), - továbbá ezeken a helyeken a repedések jelenlétének elkerülése. Meghibásodás kizárhatósága: - a meghibásodás gyanús helyeken törésmechanikai elemzés, mindemellett annak a bizonyítása, hogy az estelegesen megújuló hibák nem növelik a ridegtörés bekövetkezésének valószínűségét, - a berendezés szivárog a törés bekövetkezése előtt (Leak-Before-Break) vagy roncsolásmentes vizsgálatokat hajtanak végre bizonyos időközönként a hibamentesség igazolására, - minőségi tervezés, gyártás és vizsgálat. Következőkben a törésmechanika alapjaiba tekintek bele. Szó lesz az energia felszabadulás mértékéről és a képlékeny törés értékelésére szolgáló károsodási modellekről. 9

11 3. Probléma/ feladat megfogalmazása Töréstesztnek szeretnénk alávetni egy VVER-440-es reaktortartályon található fő tápvíz fúvókát. Természetesen a vizsgálatot egy replikán (későbbiekben mock-up) végezzük el. A 3. ábra bal oldalán láthatjuk a beépített fúvókát, a jobb oldalon pedig a vizsgálatra szánt mock-up-ot. A tesztdarab legfontosabb méreteit az 1. számú melléklet tartalmazza. 3. ábra. A beépített fúvóka és a vizsgálandó teszt darab A törésteszt előtt egy nagyobb méretű mesterséges repedést munkálunk bele az anyagba, amelynek elhelyezkedése a 4. ábrán látható. Az ábrán a 2a érték a repedéskinyílást jelöli. 4. ábra. A repedés elhelyezkedése a mock-up-ban 10

12 A vizsgálat során meghatározásra kerül, hogy a repedés milyen kritikus terhelés hatására kezd el növekedni, valamint a kritikus feszültségintenzitási tényező és J- integrál értéke is. A vizsgálatot egy, az 5. ábrán látható,instron 8850 biaxiális, univerzális, szervo-hidraulikus, anyagvizsgáló berendezésen végzik majd el. A berendezés fő paraméterei: - Maximális terhelés: 250 kn - Maximális elmozdulás:100 mm - Maximális nyomaték: 2400 Nm - Befoglaló méret: 4292x900 mm - Munkaterület: 1950x900 mm - Aktuátor helyzete: felső 5. ábra. INSTRON 8850 berendezés Feladatom a próbatest terhelési módjának, valamint a repedés kritikus méretének meghatározása, melyeknél a test anyagában a repedésterjedés biztosan bekövetkezik. Az MSC Marc nevű végeselem program segítségével határozom meg a terhelés módját. A modellt repedés nélkül építem fel, majd annak elméleti helyén meghatározom az igénybevétel hatására keletkező feszültség értékeket. A kapott eredményeket és törésmechanikai összefüggéseket alkalmazva meghatározom a kritikus repedéskinyílást. Mindezek után az ABAQUS programrendszerben vizsgálom a repedés terjedését és meghatározom a kritikus J-integrált. A mock-up kétféle anyagtulajdonságból épül fel, melyek a 15H2MFA reaktoracél és X6CrNiTi1810 rozsdamentes acél, melyek egymáshoz képesti helyzete a 6. ábrán látható. A hegesztett kötés anyaga is X6CrNiTi1810. A kötést elhanyagolom, mivel az elsődleges cél a repedés és annak terjedésének vizsgálata és számottevő feszültség értékek a repedés front körül fognak keletkezni, mivel ott vannak potenciális feszültséggyűjtő helyek. 11

13 6.ábra. A mock-up anyagi felépítése 12

14 4. Törésmechanikai alapok A törésmechanika azon tudományterület, amely a mérnöki anyagokban és szerkezetekben létrejövő törésekkel és károsodási folyamatokkal foglakozik. Feltételezhető, hogy minden alkatrész és minden anyag elkerülhetetlenül tartalmaz repedéseket vagy egyéb hibákat. Ezek részben gyártási hibáknak (öntési hibák, hűlési repedések, befejezetlen fúziók a hegesztési varratokban) vagy mechanikai, termikus vagy korrozív terheléseknek köszönhetőek. Az anyagok tényleges szilárdsága nagyságrendekkel kisebb, mint a hibamentes, ideális atomi kötéseknek elméletileg lehetséges szilárdsága. Gyakran a bemetszések vagy a váratlan anyagi szakadások elkerülhetetlenek egy elem konstrukciós követelményeiben, melyek magas lokális feszültséget okoznak. Az ilyen hibák makroszkopikus repedésekhez vezethetnek, és ez okozhatja a károsodás kezdetét. 4.1 A törési folyamatok osztályozása A törési folyamatokat többféleképpen lehet csoportosítani. Az anyag deformációs képessége alapján három féle csoportba lehet sorolni, melyet a 7. ábra szemléltet. Eszerint megkülönböztetnek lineárisan-rugalmas és képlékeny törésmechanikát [2]. Az anyag deformációs képessége Rugalmas Lineárisan-rugalmas törésmechanika Képlékeny Rugalmas-képlékeny törésmechanika Viszkorugalmas/viszko képlékeny Kúszó törésmechanika 7. ábra. Törési folyamatok az anyag deformációs képessége szerint A 8. ábra szerint az anyag tönkremeneteléből adódóan szintén három töréstípust különböztetünk meg. A szívós törést a törési hely környezetének makroszkopikus képlékeny alakváltozása jellemzi. Fémes anyagokon a felszaggatott töretfelület tompa fényű, szálas. Ridegtörés esetén makroszkopikusan alig észlelhető alakváltozás, töretfelülete kristályos, csillogó. A kúszás által okozott törés fémes anyagokban a magas hőmérsékleteken lejátszódó kúszási folyamatok végső szakasza. Gyakran pórusképződéssel kapcsolatos interkrisztallin károsodás okozza [3]. 13

15 Az anyag tönkremenetele Rideg Hasadt törés Szakadás Szívós Gödrös törés Nyírt törés Kúszó Kúszott törés Normál/nyírt törés 8. ábra. Törési folyamatok az anyag tönkremenetele szerint A mechanikai terhelések a 9. ábrának megfelelően oszthatóak fel statikus, dinamikus és (periodikusan/ciklikusan, vagy véletlenszerűen) változó terhelésekre. Statikus terhelés hatására létrejövő károsodások jellemzően teherhordó szerkezeteknél fordulnak elő. Az esési, becsapódási, ütközési folyamatok dinamikailag segített deformációkkal és inercia erőkkel társulnak. A gépészetben és a járműszerkezetekben nagyobb figyelmet kell fordítani a változó terhelésekre, melyek repedéshez és azok terjedéséhez vezethetnek már kisebb amplitúdón is. Körülbelül az összes tönkremenetel 60%-a fáradás és fáradásos repedésterjedés következtében történik. Mechanikai terhelés típusa Statikus Kényszerített Dinamikus Gyors törés Ciklikus Fáradt 9. ábra. Törési folyamatok a terhelés típusa szerint Kezdeti állapotban egy repedésnek meghatározott mérete és alakja van, amíg ez nem változik a repedést statikusnak, vagy állandónak nevezünk. Azt a pillanatot, amikor megindul a terjedése kritikus terhelés hatására a repedés kezdetének nevezzük. A mérete növekedésnek indul és állapota bizonytalan lesz. A repedésterjedés egyik fontos tulajdonsága a stabilitás. A repedés viselkedése szerint megkülönböztetünk stabil és instabil repedésterjedést, melyet a 10. ábra szemléltet. A repedés stabil terjedése energiát emészt fel és a legtöbb esetben makroszkopikus szívós törést okoz, miközben a repedés csúcsa előtt üregek képződnek, majd egyesülnek. Az instabil terjedés energia-felszabadulás kíséretében megy végbe. A 14

16 terjedés sebessége nagy és makroszkopikus ridegtörést okoz. Bekövetkezhet előzetes stabil repedésterjedés után, de anélkül is [2]. Repedés viselkedése Stabil Szubkritikus repedésterjedés Lokális károsodás Instabil Kritikus repedésterjedés Globális károsodás 4.2 Repedésmodellek 10. ábra. Törési folyamatok a repedés viselkedése szerint Makroszkopikus méretű repedést tartalmazó test stabilitásának megítéléséhez kontinuummechanikai repedésmodell szükséges. Matematikai szempontból a repedés körvonalával elhatárolt folytonossági hiányt jelent az elmozdulások számára az alakváltozást nem szenvedett testben. Ez alapján a test egy sík menti szétválása feltétezhető, amely két repedés élhez (2D), vagy repedés felülethez (3D) vezet. A repedés csúcsban (2D), vagy a repedés frontban (3D) a vonalak, vagy a felületek futnak össze. Továbbá egy ideálisan hegyes repedéscsúcs is feltételezett ρ=0 rádiusszal. Valójában a repedések csúcsa mindig véges rádiuszú görbület, azonban a repedés hosszához és a test méreteihez képest végtelenül kicsinynek tekinthető [2]. A repedési felületek egymáshoz képesti relatív elmozdulásai szerint megkülönböztetünk 3 féle független repedéskinyílási módot, melyek a 11. ábrán vannak szemléltetve: I. mód: nyitó mód, a repedés a repedésfelületre merőlegesen nyílik, ezt okozhatja húzó terhelés, a repedés szélei szimmetrikusan távolodnak el egymástól. II. mód: hosszirányú elnyíródás, a repedésfelületek a saját síkjukban mozdulnak el a repedésfrontra normális irányban, amely keresztirányú nyíró terhelésre vall. III. mód: keresztirányú elnyíródás, a repedésfelületek a saját síkjukban mozdulnak el párhuzamosan a repedésfronttal, amely összefüggésbe hozható a hosszirányú nyíró terheléssel. 15

17 I. mód II. mód III. mód 11. ábra. Repedéskinyílási módok [2] Minden repedés e három alapmód szuperpozíciójának tekinthető. Általánosságban elmondható, hogy a repedések kontinuummechanikai modellezése figyelmen kívül hagyja a tényleges repedésterjedési folyamatokat. Főleg a testben kialakuló feszültség- és elmozdulás-mező kiszámítására alkalmazott, az anyagegyenletek felhasználásával. A feszültség és az alakváltozási állapot peremfeltételeket határoz meg, amelyek megmutatják milyen törési folyamat fog lezajlani a repedés csúcsban. Az anyagtörvényeket, ezért károsodási modellekkel kell kibővíteni. 4.3 A lineárisan-rugalmas törésmechanika A lineárisan-rugalmas törésmechanikában a repedés problémákat olyan testekben vizsgáljuk, melyekben az alakváltozás a törésig lineárisan rugalmasan történik. A rendkívül rideg anyagokon kívül, szinte minden szerkezetben előfordulnak fizikai vagy geometriai nem-linearitások, különösen a bemetszéseknél vagy repedéscsúcsoknál. Számos esetben a nemlineáris hatások olyan kis területekre korlátozódnak, melyek elhanyagolhatóak a repedés vagy az alkatrész méretéhez képest. A linearitás elmélete kis elmozdulásokra és kis alakváltozásokra utal. A repedés csúcsában ébredő feszültségeloszlás rugalmasságtani elemzésből és a repedésterjedési folyamat energiaegyensúlyából egyaránt levezethetők. Két-dimenziós eset A 12. ábrának megfelelően egy kétdimenziós végtelen kiterjedésű síkban elhelyezett 2a hosszúságú repedést vizsgálunk, melyet a repedés felületre merőlegesen húzó igénybevételnek tesszük ki. Ezzel az I. módnak megfelelő repedéskinyílást idézzük elő. A repedés középpontjába egy derékszögű koordináta rendszert helyezünk. A Γ + és Γ - 16

18 jelöli a két egymással szemben lévő repedés élt, z jelöli a keresendő pontba mutató helyvektort a koordinátarendszer origójából kiindulva.az r jelöli a repedéscsúcsból a keresett pontba mutató helyvektort, a Θ szög pedig az r vektor x 1 tengellyel bezárt szögét. 12. ábra. Repedés végtelen kiterjedésű síkon (fent) és a feszültségeloszlás (lent) [2] Az ábra szerint a repedés csúcsában megnövő feszültség a következő egyenlettel írható fel, ha repedéscsúcs véges sugárral (ρ) rendelkezik: ς max = α k ς N, (1) ahol ζ max jelöli a maximális feszültséget, α k a bemetszés és a szerkezeti elem alakjától függő alaktényezőt, ζ N pedig a külső terhelésből és terhelt keresztmetszetből számítható fiktív néveleges feszültséget. Elliptikus repedésre a következőképpen írható fel az előző összefüggés: ς max = ς N a ρ 1 2, (2) 17

19 ahol a lesz a nagytengely fele, ρ pedig a repedéscsúcs sugara. A véges sugarú repedéscsúcsból az ideálisan éles repedésbe való átmenet (ρ 0) következtében ζ max, vagyis a repedés csúcsában a feszültség függvénynek szinguláris pontja van. Ezáltal az előbbi összefüggések repedésekre már nem alkalmazhatók és csak a feszültségintenzitási tényező bevezetésével sikerült a repedés csúcsában levő feszültség-, illetve alakváltozás-mezőt matematikailag a következő módon leírni az I jelű repedéskinyílási módban [2]: ς 11 ς 22 τ 12 = KI 2πr cos θ 2 1 sin θ 2 sin 3θ 2 cos θ sin θ 2 sin 3θ 2 sin θ 2 cos θ 2 cos 3θ 2 = K I 2πr f 11 I θ f 22 I θ f 12 I θ, (3) ahol K I a feszültségintenzitási tényezőt jelöli az I. módban, mely a repedés csúcsában létrejött feszültségnövekedés intenzitását jellemzi és értéke: K I = ς πa, (4) A két-dimenziós Hooke-törvényt alkalmazva a kapcsolódó nyúlási értékek kiszámíthatóak: ε 11 ε 22 γ 12 = KI 2μ 2πr cos θ 2 cos θ 2 κ 1 2 sin θ 2 sin 3θ 2 κ sin θ 2 sin 3θ 2 2 sin θ 2 sin θ 2 cos 3θ 2, (5) Az elmozdulás-mező így a következő összefüggés szerint alakul: u 1 u 2 = K I 2μ r 2π cos θ κ cos θ 2 sin θ κ cos θ, (6) 2 18

20 Három-dimenziós eset Legtöbb esetben a repedés három-dimenziós tulajdonságú. Általában egy térbeli szerkezetben előforduló repedést görbe vonalú felületek határolják a 13. ábra (a) esete szerint. Sík repedési geometriánál is előfordulhat három-dimenziós eset, amikor a feszültségi állapot a repedés mentén változik. Ez gyakran a véges vastagságú teljesen átrepedt daraboknál fordul elő, melyet a 13. ábrán(b)eset mutat. Gyakorlati jelentőségűek az olyan repedések, ahol a repedésfront a test egyik határoló felületét a 13. ábra (c) szerint metszi. 13. ábra. Térbeli repedések fajtái [2] A három repedéskinyílási módot összegezve a feszültségmező az alábbi módon írható le: ς ij r, θ, s = 1 2πr K I s f ij I θ + K II s f ij II θ + K III s f ij III θ + T ij s, (7) melyben az f ij függvények dimenzió nélküliek, kizárólag Θ paramétertől függnek és az I, II, III-as indexek a repedéskinyílási módra utalnak. A T ij pedig egy olyan összetevő, amely r 0 esetén nem eredményez szingularitást, így általában figyelmem kívül is hagyják [3]. Feszültségintenzitási tényező A lineárisan rugalmas törésmechanika törési kritériuma az, hogy síkbeli alakváltozási állapot esetén a mindaddig nyugalomban levő repedés akkor kezd instabil módon terjedni, amikor a feszültségintenzitási tényező egy kritikus értéket elér. A K-tényező 19

21 függ az test geometriájától, a repedés méretétől és helyzetétől és természetesen a terheléstől, illetve a megfogásoktól is. Általánosan, a feszültségintenzitási tényező a következő formában származtatható mindenféle repedés problémára: K I = ς n πag, (8) ahol ζ n a névleges feszültség, g pedig egy a test és a repedés geometriájának hatását figyelembe vevő tényező. A feszültségintenzitási tényező mértékegysége Nmm -3/2. A feszültségintenzitási tényező kritikus értékét pedig törési szívósságnak nevezik. Jelölése: K IC, K IIC, K IIIC. Energiaelmélet Elsőnek Griffith vizsgálta és fogalmazta meg az anyagban tárolt rugalmas energia és a terjedő repedés felületi energiája közötti összefüggést[3]. Valamely meglevő repedés növekedéséhez meghatározott energiamennyiség kell, ez származhat a terhelőerő munkájából, vagy az alakváltozást szenvedett szerkezeti elemben tárolt alakváltozási energia felszabadulásából. A repedésterjedés általános energetikai kritériuma a következő összefüggéssel fejezhető ki: G = dπ da, (9) melyben G jelöli a fajlagos energia felszabadulását, Π a reverzibilisen tárolt rugalmas energiát, az A pediga repedés területét. A G fajlagos energia felszabadulás mértékegysége Nmm -1. Kritikus értéke a G c fajlagos repedésterjesztő erő. A G-t felfoghatjuk úgy is, mint a repedés hosszegységére vonatkoztatott fajlagos repedésterjesztő erőt, mely a repedésfront mentén támad. Ezzel szemben az R repedésterjedési ellenállás fejti ki a hatását. Ideálisan rideg anyag esetén R=G c, mivel itt nincs felemésztett energia a képlékeny alakváltozás által. G Ra repedésterjedés energetikai kritériuma, miszerint a repedés növelésére fordított energiának nagyobbnak kell lennie, mint az ellenállásnak. Ez az alapja az úgynevezett R-görbe elméletének [4]. Az energia felszabadulás értéke (G) a repedéshossz (a) és a terhelés függvénye egyaránt. A terhelés a peremfeltételtől függ, amely lehet erő (F) vagy elmozdulás (q) 20

22 által vezérelt. A 14. ábrán egy R-görbe látható, ahol az a 0 hosszúságú repedés a G c0 értéknél kezd el terjedni. 14. ábra. Az R repedésterjedési ellenállás görbéje (R-görbe) A görbe lefutása függ a geometriától és az anyagtól is. A stabilitás megállapításának érdekében összehasonlítjuk az R és G értékek változását repedésterjedés során a repedéshossz függvényében: < G R = a F,q a > stabil közömbös instabil, (10) Adott terhelés esetén (F és q a szaggatott vonalakkal jelölve) stabil a repedés terjedés, ha az R gyorsabban növekszik, mint a G. Adott F értéknél az erő görbéje monoton növekvő viselkedést mutat az a növekedésével. Ezzel szemben fix elmozdulásnál a G(a) görbe csökkenő tendenciájú. A repedés instabil módon kezd el terjedni, ha a G gyorsabban kezd növekedni, mint az R. Ekkor a G-görbe meredeksége azonos, vagy nagyobb, mint az R-görbéé. 4.4 Rugalmas-képlékeny törésmechanika Ha a repedéscsúcs környezetében megfolyt (képlékenyen alakváltozott) övezet keletkezik és emiatt a képlékeny tartomány sugara már nem elenyészően kicsiny, a 21

23 repedés hosszához és szerkezeti elem méreteihez képest, akkor a lineárisan rugalmas törésmechanika elveszti érvényességét. Széleskörű műszaki alkalmazás szempontjából jelentős, hogy a törésmechanika olyan tönkremenetelek megelőzésére is alkalmas legyen, ahol a törést nagy képlékeny alakváltozás előzte meg. Ezt a rugalmasanképlékeny törésmechanika teszi lehetővé. A rugalmas-képlékeny törésmechanika két legfontosabb koncepciója a CTOD-elmélet és a J-integrál koncepciója [3]. CTOD-elmélet A CTOD-elmélet (Crack Tip Opening Displacement) azon az elven alapul, hogy szívós anyagok esetén a törési folyamatot a repedés csúcsában létrejövő kritikus képlékeny alakváltozás irányítja, a kritikus feszültségintenzitás helyett. Ezt a δ repedéskinyílással fejezzük ki, amely 15.ábrán van értelmezve. 15.ábra. A δ repedéskinyílás értelmezése A δ repedéskinyílás, az a repedéshosszúság és a ζ F feszültség között a következő összefüggés létezik [3]: δ = 8ς Fa πe πς ln cos 2ς F 1, (11) ahol az E a rugalmassági modulust jelöli, a ζ F pedig a folyáshatárt. A CTOD törési kritériuma az, ha a δ C kritikus repedéskinyílás elérése után a repedés megindul. A CTOD és a lineárisan rugalmas törésmechanika között a következő kapcsolat áll fenn: K IC = mς F Eδ C 1 2, (12) melyben m=1 síkbeli feszültségállapot esetén, az m=2 pedig síkbeli alakváltozás esetén adott. 22

24 J-integrál számítása A képlékeny törésmechanika jelentős kibővítése Cherepanov és Rice nevéhez fűződik, akik bevezették a J-integrált. Ez alkalmazható a lineárisan-rugalmas törésmechanikában, de képlékeny anyagi viselkedés esetén is megállja helyét. Később a klasszikus J-integrál különböző bővített változatait fejlesztették ki, figyelembe véve a terhelési módokat és az anyagtörvényeket is. A repedéses numerikus feszültséganalízisével kapcsolatban, a J- integrál különleges jelentéssel is bír. 36. ábra. A J, mint vonalintegrál definiálása a repedés csúcs körül A 16. ábra egy lineáris repedés problémát szemléltet állandó B vastagság mellett. Tetszőleges A tartományt választva a repedéscsúcs körül, amely egy Γ görbével határolt. A görbe az alsó repedés felülettől mutat a felső felé, ezt vesszük fel pozitív iránynak. A normális-egységvektor n kifelé mutat. A rendszer potenciális energiájának kiszámításához az egész testet figyelembe kellene venni. De belátható az, hogy az eredmény független a választott tartománytól. A feszültségek t i =ζ ij n j kívülről hatnak a Γ görbére és feltételezzük, hogy azok változatlanok maradnak a repedésnövekedés közben (da). Térfogati terhelések nincsenek. A repedés a kiindulási irány mentén da-val terjed és az A terület vele együtt eltolódik. A rögzített koordináták (X 1, X 2 ) mellett egy mozgó rendszert (x 1 =X 1 -a, x 2 =X 2 ) is értelmezünk a repedés csúcsban (16. ábra). A teljes derivált így néz ki: 23

25 d da = θ + θx 1 θ = θ θ (13) θa θa θx 1 θa θx 1 Ezáltal differenciáljuk a potenciális energiát, amely az elmozdulás mező u i függvénye a repedés hosszára vonatkoztatva: dπ u i da = d da W ext u i W int u i = d da Γ t i u i ds A UdA = θu u i A θx 1 da Γ t i θu i θx 1 + θu A da + θa Γ t i θu i θa ds (14) A θu = θu θε ij θa θε ij θa = ς ij θu i,j θa formulát alkalmazva a vonalintegrál egy felületi integrállá alakítható a Gauss-féle divergencia tétel segítségével és így az egyensúlyi egyenletek alkalmazásával ζ ij,j =0, a [ ] zárójelek közötti rész eltűnik a (14) egyenletből. A területi integrál átalakítható a Gauss tétel segítségével az ívhossz (ds)és a Γ mentén [2]. A U,j δ 1j da = Un 1 ds = Udx Γ Γ 2 (15) Ezáltal az energia felszabadulás mértéke G számítható vonalintegrállal a Γ görbe mentén, amelyet J-integrálként azonosítunk. G = dπ da = J = Γ Udx 2 t i θu i θx 1 ds (16) A J-integrál irányfüggetlensége Annak bizonyítására, hogy a J független a választott területtől (A) és az integrálási útvonaltól (Γ) a repedéscsúcs körül két görbét (Γ 1 és Γ 2 ) hasonlítok össze, amelyek a 17.ábrán láthatók. Az útvonalakat a Γ + és a Γ - szegmensek kötik össze a felső és az alsó repedés felület mentén, melynek eredménye egy zárt görbe C=Γ 2 +Γ + -Γ 1 +Γ -. A C teljesen körülveszi a terület különbséget ( A =A 2 -A 1 ) a repedéscsúcs körül. Az integrálok értéke Γ + és Γ - felett zérus, mert a repedés felületen a t i =0 érvényes és dx 2 =0. A J értékét C-n értelmezve, a vonalintegrál visszaalakítható A -n értelmezett területi integrállá és a Cauchy-tétel t i =ζ ij n j alkalmazásával a következő egyenletre juthatunk: C θu Un 1 ς ij n i θu j ds = Uδ θx 1j ς i ij n i θx j ds = C 1 24 A θ θx j Uδ 1j ς ij θu i θx 1 d A, (17)

26 17. ábra. A J-integrál útvonal függetlensége A nyúlási energia (U) a nyúlások függvénye ε ij =(u i,j +u j,i )/2. Nemlineárisan rugalmas anyag esetén ζ ij feszültséget ad. Az integranduszt a láncszabály szerint deriválva: θu θε ij θς ij θu i ς θε ij θx 1 θx j θx ij 1 θ θx 1 θu i θx j = ς ij θε ij θx 1 0 ς ij θ 1 θx 1 2 θu i θx j + θu j θx i = 0. (18) Az egyensúlyi állapotok miatt itt a második tag eltűnik, mivel a tehetetlenségi és a térfogati erőket a formula nem veszi figyelembe. Továbbá a harmadik tag az első taggal együtt szintén zérussá lesz a ζ ji =ζ ij szimmetria okán. Eredményként így a következőre jutunk: C ds = ds Γ 1 ds Γ 2 + ds Γ + +Γ = 0. (19) Mivel a repedés felületi integrálok értéke zérus, az útvonal függetlenség igazolt: JΓ 1 = ds Γ 1 = JΓ 2 = ds Γ 2. (20) 25

27 A szükséges feltételek összefoglalása:.. - Nincs térfogati terhelés b i =0 és inercia erők ρu i =0. - A repedés felületek Γ + és Γ - feszültségmentesek t i =0. - A rugalmas nyúlási energia sűrűség (U) egy potenciál függvény ϑu/ϑε ij =ζ ij. - Az U nem explicit módon függ x 1 -től, csak implicit módon az ε ij (x 1 )-n keresztül (homogén anyag). J-integrál a rugalmas-képlékeny törésmechanikában A lineáris törésmechanika érvényességi határain kívül a J-integrál már nem jelenti a repedés terjesztésére fordított energiát. Ha feltételezzük az anyag felkeményedését a következő összefüggés szerint: ahol n jelöli a felkeményedési kitevőt és B 0 anyagállandó. ε = ς E + ς B 0 n, (21) Ezt felhasználva a repedés csúcsában levő képlékeny alakváltozású tartományban a feszültség- és alakváltozási tenzorok a következő összefüggésekkel fejezhetőek ki: ς ij = ς F EJ ς F 2 I n r ε ij = ς F E EJ ς F 2 I n r 1 n +1 f ij θ, n, (22) 1 n +1 g ij θ, n, (23) ahol J jelöli a J-integrált, ζ F a folyást okozó feszültséget, E a rugalmassági modulust, r a repedéscsúcstól való távolságot, továbbá f ij és g ij a Θ szög és az n felkeményedési kitevő dimenzió nélküli függvényeit és I n pedig egy integrálállandót, melyen értéke 4-6 közé esik. A J-integrál törési kritériuma abból ered, hogy a repedéscsúcs K-dominanciájú környezetét- ahol a képlékeny tartomány kicsi- J-dominanciájú tartomány váltja fel, amely a repedés csúcsában levő törési tartományt is magában foglalja. Ebben a tartományban indul meg a repedés, ha a J-integrál a kritikus J IC értéket elérte. Az anyagjellemző J IC dimenziója kj cm -2 [3]. 26

28 5. Repedés méretének a meghatározása A repedés szükséges méretének meghatározásához, elsősorban meg kell vizsgálni a keresztmetszetében keletkező feszültségek értékét a terhelés hatására. Végül a kapott eredmények és törésmechanikai összefüggések segítségével kiszámítható a szükséges méret. A feszültségek meghatározásához az MSC Marc programrendszert használom, mely főleg nemlineáris feladtok megoldására használt végeselem szoftver. 5.1 Feszültségek meghatározása A törési tesztet úgy szeretnénk kivitelezni, hogy a mock-up-hoz, egy meghatározott hosszúságú csövet hegesztünk. Az így kapott konstrukció egyik végét befogva, a másik végét F erővel terhelve idézzük elő a károsodást. Az elképzelt elrendezést a 18. ábra szemlélteti. 18.ábra. A vizsgálandó konstrukció vázlata A felhegesztett cső rész a varrattal együtt X6CrNiTi1810 anyagból készül. Mivel a vizsgálandó keresztmetszetben a falvastagság számottevően nagyobb, mint a hegesztésnél, előbb analitikus számítások segítségével vizsgálom, hogy mekkora cső felhegesztése lenne ideális. 27

29 A használt összefüggések a következőek: M = F L (24) ahol, M - hajlítónyomaték [Nmm] F - terhelő erő [N] L - cső hossza [mm] ς = M K (25) ahol, ζ - feszültség [MPa=N/mm 2 ] K - keresztmetszeti tényező [mm 3 ] y z = F I E L z 2 z (26) ahol, y(z) - a lehajlás mértéke z-ben [mm] I - inercianyomaték [mm 4 ] E - rugalmassági modulus [MPa=N/mm 2 ] z - varrattól mért távolság [mm] Az X6CrNiTi1810 anyag folyáshatára 415 MPa, a maximális terhelés 250 kn. Az adott összefüggéseket felhasználva a 2. táblázat tartalmazza a csőhosszra, a lehajlásra, illetve a feszültségre kapott eredményeket (a szürkére színezett cellák azokat a paramétereket jelölik, amelyeket kezdetben adottnak feltételeztem). Terhelés [kn] Csőhossz [mm] Lehajlás [mm] Feszültség [MPa] , , ,41 0, , , ,9 0, táblázat. Terhelésre számolt eredmények 28

30 Arra következtetésre jutottam, hogy ha nem akarom túllépni a folyáshatárt adott terhelési szint mellett, akkor a lehajlás olyan kicsiny mértékű lesz, hogy biztosan nem következne be a törés. Viszont, ha ideális csőhosszt választok a kívánt lehajlás érdekében, a feszültség értéke lesz akkora, hogy azt az anyag már nem bírná ki. Mivel a feladat túl fog menni a rugalmas tartományon és képlékeny alakváltozás fog bekövetkezni, a szakítószilárdságra is elvégzek egy számítást 250 kn-os terhelést feltételezve. A szakítószilárdság értéke 650 MPa. Az így kapott csőhossz 170 mm lesz. Ennek a lehajlását, már az MSC Marcban vizsgáltam a képlékeny viselkedés miatt. A próbadarab geometriájának a felépítése volt az elsődleges feladat, melyre a Marc programban úgy nyílik lehetőség, hogy ezzel együtt már a végeselem háló is elkészül. Kezdetben kétdimenziós négyszögelemeket hozok létre a síkon, majd ezekből a sík adott középtengely körüli forgatásával 8 csomópontú háromdimenziós hexagonális elemek keletkeznek. A 19.ábrán már az elkészült modell látható. Kihasználva a mockup szimmetriáját elegendő volt csak a geometria felének a modellezése. 19.ábra. A konstrukció végeselem modellje Ezután definiálom az anyagok paramétereit. A problémát nemlineáris feladatként kell kezelni. A 3.táblázatban összefoglalom a nemlinearitást előidéző leggyakoribb típusokat, azok jellemzőit és, hogy milyen módon írják le őket, valamint a kontinuummechanikából ismert feszültségi- és alakváltozási tenzorok közül melyeket alkalmazzák [5]. 29

31 Típus Jellemzői Leírási technika - kis elmozdulás - kis forgás Mérnöki Fizikai - kis alakváltozás (anyagi (anyagi) - ζ=ζ(ε) nemlinearitás) [nemlineáris] - nagy elmozdulás - nagy forgás Total Lagrange Nagy - kis alakváltozás elmozdulás - ζ=ζ(ε) [lineáris vagy Updated-Lagrange nem lineáris] - nagy elmozdulás - nagy forgás Total Lagrange Nagy - nagy alakváltozás alakváltozás - ζ=ζ(ε) [lineáris vagy Updated-Lagrange nem lineáris] Feszültségek és alakváltozások Mérnöki feszültség Mérnöki alakváltozás II. Piola-Kirchhoff Green-Lagrange Cauchy Almansi-Euler II. Piola-Kirchhoff Green-Lagrange Cauchy Hencky Jelölés T A S E ζ ε S E ζ lnv 3. táblázat. Nemlinearitások csoportosítása Anyagi nemlinearitás esetében a feszültség és a fajlagos nyúlás között a kapcsolat nemlineáris, ez azt jelenti, hogy az anyag merevsége változik a terhelés hatására (a Hooke-törvény rá így már nem érvényes). Nagy alakváltozáskor a terhelés hatása mellett a merevség megváltozása se elhanyagolható, ilyenkor a merevségi mátrixot minden egyes lépés után újraszámolja a szoftver. Megjegyzendő, hogy nagy elmozdulás valamint nagy forgás nélkül nem létezik nagy alakváltozás. Továbbá az is okozhat nemlineáris viselkedést, ha a peremfeltétel a terheléstől függően megváltozik, ennek gyakori forrása a nemlineáris viselkedésű kontaktok, ebben az esetben a program lépésenként frissíti az átadott terhelés mértékét, eloszlását és irányát [6]. Mivel a munkadarab töréséhez csak nagy alakváltozáson keresztül vezet az út, ezért feltételezhető a feladat nemlineárisnak. Ezért a lineáris problémától eltérően, a rugalmassági (Young) moduluson és a Poisson-tényezőn kívül meg kell adni még az anyag fajlagos nyúlásainak értékeit a benne keletkező feszültségek függvényében, mely grafikusan a 20. ábrán van szemléltetve. A vízszintes tengelyen a fajlagos nyúláshoz, a 30

32 függőleges a feszültség értékekhez tartozik. Az anyagokra definiált számszerű értékeket a 4. jelű táblázat tartalmazza. 20.ábra. A fajlagos nyúlások a feszültségek függvényében 31

33 Tulajdonságok 15H2MFA X6CrNiTi1810 Young-modulus [MPa] Poisson-tényező [-] 0,3 0,3 Fajlagos nyúlás [-] Feszültség [MPa] Fajlagos nyúlás [-] Feszültség [MPa] , ,2 1, , ,1 6, A feszültség és fajlagos 1, ,5 1, nyúlás közötti kapcsolat 2, ,5 2, , ,3 5, , , , , , ,06 695, , , , táblázat. Az anyagok rugalmas és képlékeny anyagjellemzői Az anyagokat ezután a 21. ábrának megfelelően rendeltem hozzá a geometriához, a rózsaszín jelöli a 15H2MFA-t, a skarlát színű az X6CrNiTi1810-t. 21.ábra. A különböző anyagtulajdonságú területek a modellben 32

34 Következő lépésben definiáltam a peremfeltételeket és a terhelést. A bal oldali véglapon befalazást írtam elő, melynek hatására az elmozdulások és a forgások az adott síkban található csomópontokra zérusok. Mivel a mock-up-nak csak a fél geometriáját modelleztem le és a terhelés síkban hat (amely az YZ szimmetriasík), szimmetria feltételt alkalmaztam, amely a síkban található csomópontok X irányú elmozdulását tiltja le. A 22. ábrán mutatom be a definiált peremfeltételek helyét. 22. ábra. A definiált peremfeltételek (baloldalon a befalazás, jobboldalon a szimmetria feltétel) A terhelést a felhegesztett csőszakasz végére helyezem koncentrált erő formájában, úgy hogy keresztmetszetben található összes csomópontot összekapcsolom a sík középpontjával, ennek hatására az összes pont követi a középpont elmozdulásait. A terhelés értéke 125 kn (a vizsgáló berendezés által maximálisan kifejthető terhelés 250 kn, de a modell csak a geometria felét tartalmazza, ezért használom ennek az értéknek is csak a felét). A szimuláció lefuttatása előtt még beállítottam, hogy a nagy nyúlások létrejöttét engedélyezem, melyből az anyagi tulajdonságok mellett a feladat nemlinearitása is következik. Az eredmények közül nekem elsősorban a feszültség értékekre volt szükségem, de a nyúlási adatokból szépen látható az anyag deformálódása. A lehajlás értéke az elmozdulás-mezőből nyerhető ki. Ezekből az okokból ezeket a paramétereket számoltattam ki a szimuláció során. Az eredményeket megvizsgálva, a lehajlás értéke a végpontokban -26,14 mm adódik. Az Y irányú elmozdulásokat a 23. ábrán szemléltetem, melyen jól látszik, hogy a 33

35 lehajlás csak a felhegesztett csőrészben lép fel. Ami a nagy átmérő különbséget tekintve nem is meglepő. 23. ábra. Elmozdulások Y irányban Ahhoz, hogy a repedés szükséges méretét meghatározzuk, szükség van a hajlításból származó feszültség értékekre, ott ahol azt szeretnénk elhelyezni. A próbatestben keletkező feszültségeloszlás a 24. ábrán látható, melyből már elsőre is feltűnik, hogy a felhegesztett csőszakasznál keletkeznek a legnagyobb feszültségértékek. 24.ábra. A próbatest feszültségeloszlása a teszt során 34

36 Az eredményeket két helyen érdemes jobban megvizsgálni. A repedés leendő helyénél és a kritikus átmérőváltozásnál. A feszültség értékek a falvastagság mentén a 25. és a 26. ábrán egy diagram formájában vannak szemléltetve. A repedés helyén a falvastagság 28 mm, a felhegesztett csőnél 10 mm és értékük kívülről befelé növekszik. Előbbinél a maximális feszültség a külső szálban 404 MPa, míg a másik helyen 532 MPa. Ebből arra következtetek, hogy ezzel a konstrukcióval nem biztos, hogy elő lehetne idézni a repedés terjedését, abban az esetben, ha nem szeretnénk túl nagymértékben bemetszeni a mock-up-ot. A cél az, hogy 180 -nál semmiképp se legyen nagyobb a repedés kinyílás. Az esetünkben 190 -os repedéskinyílás lenne szükséges. Kidolgozásra kerül egy másik koncepció, amelyben egy csapot helyezünk a mock-up belső hengeres részébe és két helyen össze is hegesztjük őket. Ezzel szeretnénk a magasabb feszültségértékeket a repedés környezetében előidézni. A következő fejezet ennek vizsgálatáról szól. 25. ábra. Feszültségeloszlás a repedés helyén 35

37 5.2 Csapos változat 26.ábra. Feszültségeloszlás a felhegesztett csőszakasznál Az előzőekben tárgyalt problémák kiküszöbölésére egy új konstrukció kidolgozása vált szükségessé. Mely során egy csapot helyezünk a mock-up belső hengeres részébe. Az összeszerelés a dugó hűtésével történik ezáltal zsugorkötés jön létre. Majd lézer hegesztést alkalmazva a külső és belső csatlakozási vonalak mentén a két testet összekötjük, hogy minél jobban gátoljuk a csap esetleges kicsúszását, melynek méreteit a 27.ábra szemlélteti. 27. ábra. A csap méretei 36

38 Az előző konstrukcióban használt anyagmodellek és peremfeltételek itt is érvényesek. Új beállítások alkalmazása az alábbi terülteken szükséges: - a csap és a mock-up között zsugorkötést alkalmazunk, összeszereléskor a dugót hűtjük, majd hagyjuk szobahőmérsékletre melegedni - a két test között érintkezési feltételeket kell definiálni - a feladatot két lépésben oldjuk meg, elsőnek csak a hő-terhelés működik, majd a szobahőmérséklet elérése után a terhelés is aktiválódik Első lépésként az anyagokhoz hozzá kell rendelni a hőtágulási együtthatókat, mely 15H2MFA esetén 1, /K és X6CrNiTi1810 esetén pedig 2, /K értékű. Kezdeti feltételként -50 C-t rendelek a dugó csapos részéhez, mely utána 20 C-ra fog melegedni. A kontaktok definiáláshoz a feladatban érintkező testek típusát meg kell adni, mely lehet merevtestszerű vagy deformációra képes. Mivel szinte biztos. hogya szimulációban szereplő mindegyik test alakváltozást fog szenvedni a Meshed (Deformable) tulajdonságot kell hozzájuk rendelni. A teljes elrendezést négy részre osztom fel, melyek egymáshoz képest helyzete a 28.ábrán látható. 28.ábra. A kontakt feladat kölcsönhatásban lévő "testei" Definiálni kell a köztük fellépő kölcsönhatások jellegét. A hegesztett kötés mentén (melyet a zöld és a narancssárga test a rózsaszínnel való találkozása jelöl) olyan feltételt írok elő, mely megakadályozza az ott összekapcsolódott csomópontok egymáshoz képest történő elmozdulását, ehhez az érintkezés típusát Glued-nek kell megválasztani. A dugó és a Mock-up között Touching kontakttípust alkalmazok, mely engedi a felületek egymáson történő elmozdulását, ebben az esetben meg kell adni a vonatkozó 37

39 súrlódási együtthatót, mely választott értéke 0,3 [-]. Annak ellenére, hogy a dugó három részre van osztva, köztük nem kell külön kontakt feltételt megfogalmazni, így azt egy testként kezeli a szoftver. A 29.ábra összefoglalja, a testek között definiált kontakt feltételeket. 29. ábra. A testek között definiált kontakt feltételek Az eredmények kiértékelése: A Y irányú elmozdulásokat a 30. ábra szemlélteti, mely jól kiemeli azt, hogy a dugó szenvedi el a legnagyobb alakváltozást. A lehajlás 31. ábrán látható diagramon van számszerűsítve. 30. ábra. Y irányú elmozdulás 38

40 31. ábra. Lehajlás értékek a dugó hossza mentén A maximális lehajlás nagysága 31,5 mm, mely nagyobb, mint az előző konstrukciónál tapasztalt, de ez a megnövelt kinyúlásnak köszönhető. A legfontosabb következtetéseket a feszültségértékek vizsgálata után lehet levonni. A kialakult feszültségmezőt a 32. ábrán mutatom be. Ebben az esetben is a hajlításból származó feszültségértékeket elemzem. Két kitüntetett helyet vizsgálok meg, a kezdeti repedés elméleti helyét, valamint a mock-up és a dugó csatlakozását. A vizsgált csomópontokat a 33. ábrán jelölöm be. 32. ábra. A kialakult feszültségmező a terhelés hatására 39

41 Vizsgált csomópontok 33. ábra. A vizsgált csomópontok A feszültségértékeket a 34. ábrán a külső száltól a középvonal felé haladva szemléltetem. A repedés helyénél a külső szálban van a legmagasabb feszültség érték, melynek számszerű értéke 545 MPa. Míg a csatlakozásnál a maximális érték a csap nyakánál keletkezik, melynek 538 MPa az értéke, a külső szálban 519 MPa. Ebből arra lehet következtetni, hogy a bemetszés hatásra ott fognak keletkezni a magasabb feszültség értékek. A kapott eredményekkel meghatározom a mesterséges repedés kritikus értékét. 40

42 34. ábra. A vizsgált csomópontok feszültségértékei A kritikus repedésméret meghatározásához a törésmechanikában alkalmazott tapasztalati képleteket használom. A repedés modellje egy henger kerületén végigfutó egész falvastagságon áthaladó repedés. A repedést a 2a repedéskinyílási tényező jellemzi, amelyet a 35. ábrán szemléltetek. 35. ábra. Az alkalmazott repedésmodell [7] 41

43 Az ábrán alkalmazott további jelölések: B a falvastagság, A repedés egy pontja a belső átmérőn, B a külső átmérőn, míg az R i belső sugár helyett a középátmérőt fogom alkalmazni, mely a következő összefüggéssel határozható meg [7]: R = R i + B 2, (27) A repedéskinyílás meghatározásához, a külső és a belső szálban is kiszámolom a feszültségintenzitási tényezők értékeit, az alábbi összefüggések alkalmazásával: K in = ς b πa H 2 ρ 2 ρ, (28) K out = ς b πa H 2 ρ + 2 ρ, (29) amelyekben ζ b jelöli a külső szálban ébredő hajlító feszültséget a repedésmentes testben, a pedig a repedéskinyílás értékének a felét. A H 2 és h 2 tapasztalati értékek, melyek egy a ρ hatványaiból álló polinomokból határozandók meg: H 2 ρ = 0, ,57979ρ + 0,28201ρ 2 0,068923ρ 3 + 0, ρ 4 + 4,60517 ln R/B 2, ,1183 0,21012ρ + 0,13265ρ 2 0,034987ρ 3 + 0, ρ 4, (30) 2 ρ = 0, , ρ 0,027002ρ 2 + 0, ρ 3 0, ρ 4, (31) amelyekhez szükséges ρ számérték pedig a repedéskinyílás, a falvastagság és a középátmérő ismeretében a ρ = a RB, (32) képletből adódik. A megengedett K IC értéket felhasználva lehet kiválasztani a kritikus repedésméretet, melynek értéke 211 MPa m 1/2. Az 5. táblázatban összegeztem a számítások eredményeit. Az a értékét 0 m-től 0,095 m-ig terjedő skálán változtattam és az ezekhez tartozó K értékeket vizsgálva, lehet az a-t két érték közé besorolni. 42

44 a [m] ρ H 2 (ρ) h 2 (ρ) K in K out 0 0 7, , ,005 0, , , ,46 68,24 0,01 0, , , ,82 96,51 0,015 0, , , ,58 118,2 0,02 0, , , ,93 136,5 0,025 0, , , ,10 152,61 0,03 0, , , ,71 167,18 0,035 0, , , ,15 180,58 0,04 0, , , ,66 193,06 0,045 0, , , ,42 204,78 0,05 0, , , ,53 215,86 0,055 0, , , ,1 226,4 0,06 0, , , ,21 236,48 0,065 0, , , ,9 246,14 0,07 0, , , ,22 255,44 0,075 0, , , ,22 264,42 0,08 0, , , ,92 273,1 0,085 0, , , ,36 281,51 0,09 0, , , ,55 289,68 0,095 0, , , ,51 297,63 5.táblázat Az a meghatározása Az a értéke 45 és 50 mm között van, az ezekhez tartozó K értékek és a K IC segítségével meghatározható pontos értéke, mely 6. táblázatban látható. Kritikus repedésméret a [mm] K IC [MPa m 1/2 ] 47, táblázat A K IC -hez tartozó a érték A 2a kritikus repedésméret, így 95,6 mm lesz. A belső sugárhoz tartozó kerület 265,15 mm, ami azt jelenti, hogy ennek a 36%-ig bemetszeni a próbatestet. A repedéskinyílás fokban értelmezve

45 6. A repedés terjedése A repedés terjedését az Abaqus végeselem program segítségével vizsgáltam, mert olyan lehetőségeket is felkínál, mint a felület- vagy elemalapú kohéziós szegmens módszer és a VCCT (Virtual Crack Closure Technique). Mikor ezeket a technikákat a hagyományos végeselemmódszerrel együtt alkalmazzuk, akkor a repedés helyét előre kell definiálni. Ha azonban az XFEM (extended Finite Element Method) modul segítségét hívjuk, akkora hely definíció nem szükséges. A továbbiakban a repedésterjedést a kohéziós szegmens és az XFEM módszerrel vizsgálom, melyeket elsőnek ismertetni fogok. 6.1 Az XFEM módszer A módszer elsőként T. Belytschko és T. Black mutatta be, mint a kibővítése az egység megoszlásán alapuló hagyományos végeselem-módszernek. Az XFEM lényege, hogy a repedés környezetének végeselem felosztását speciális hálósűrítő függvény segítségével oldjuk meg, és nincs szükség a repedés terjedési irányának előzetes ismeretére. A sűrítő függvény magában foglal egy repedéscsúcs környezetében értelmezett aszimptotikus függvényt. A függvény figyelembe veszi a repedéscsúcs körüli szingularitást és egy nem-folytonos függvényt, ami a repedési felületek elmozdulásában létrejött ugrást fejezi ki. Az u elmozdulás-vektor függvény közelítését a következő összefüggés írja le [8]: n 4 α u = N i x u i + H x a i + F α x b i i=1 α=1, (33) ahol N i (x) a csomóponti alakfüggvény, u i csomóponti elmozdulás-vektor, a i a csomópont sűrített szabadságfokát tartalmazó vektor, H(x) a repedés felületen értelmezett nemfolytonos ugrás függvény, F α (x) rugalmas aszimptotikus repedéscsúcs α függvény, b i pedig a csomóponti vektorszorzat értéke lesz. A 36. ábra szemlélteti a nemfolytonos ugrásfüggvényt. 44

46 36. ábra. Normál és tangenciális koordináták tompa repedéscsúcsnál A H(x) függvényt a következő összefüggés definiálja: H x = 1, ha (x x )n 0 0, egyébként, (34) ahol x a próba Gauss pontja, x * jelöli a repedés egy az x pont környezetében található pontját, n a repedés normál egységvektora az x * pontban. Az F α (x) rugalmas aszimptotikus repedéscsúcs függvény definíciója: F α x = rsin θ 2, rcos θ 2, rsinθsin θ 2, rsinθcos θ 2,, (35) ahol (r,θ) egy poláris koordinátarendszert definiál, melynek origója a repedéscsúcsban található. A károsodás megindulásának és terjedésének modellezése úgynevezett kohéziós szegmens módszerrel történik. Ez egy általános modellezési lehetőség, mellyel rideg illetve képlékeny törést is lehet vizsgálni. Nem követeli meg azt, hogy a repedés front egybeessen a végeselem-hálóval. A repedés akkor következik be, amikor a repedés frontban lévő elemek közötti kötőerő zérus értékű. Az XFEM alkalmazása során, csak első- vagy másodrendű szilárd kontinuum feszültség és elmozdulás elemei használhatóak sűrítő funkcióval. A repedés terjedésére bilineáris sík alakváltozási és sík feszültségi, bilineáris axiszimmetrikus, lineáris tégla, lineáris tetraéder vagy másodrendű tetraéder elemek alkalmazhatóak, stacionárius repedésnél lineáris tégla vagy tetraéder és másodrendű tetraéder elemek [9]. 45

47 A következő változóknak van speciális jelentése az XFEM alkalmazása során: PHILSM: a repedés felület leírására szolgáló távolság függvény, PSILSM: a kezdeti repedésfront leírására szolgáló távolság függvény, STATUSXFEM: a sűrített elem állapota (a sűrített elem állapota 1.0, ha teljesen repedt és 0.0, ha az elem nem tartalmaz repedést, 1.0 és 0.0 között mozog az értéke, ha az elem részben repedt), ENRRTXFEM: az energia felszabadulás mértékének az összes komponense, mikor a lineárisan rugalmas törésmechanikát az XFEM módszerrel alkalmazzuk, LOADSXFEM: megoszló nyomó terhelés a repedés felületén. Az XFEM alkalmazásakor a következő korlátok érvényesek: 1) Egy sűrített elemet nem metszhet egynél több repedés, 2) A repedés nem fordulhat többet 90 -nál az analízis során egy növekményen belül, 3) Adaptív újrahálózás nem támogatott, 4) Stacionárius repedéshez csak aszimptotikus repedéscsúcs alkalmazott izotróp lineáris anyagban. 6.2 Repedés terjedés vizsgálata A repedés terjedését az Abaqus végeselem-program segítségével vizsgálom, mert az XFEM-mel történő szimuláció lehetséges vele. Elsőként felépítettem az Marc-os modellel egy szinte megegyező geometriát, mely annyiban tér el, hogy a dugó és a mock-up egy testként kezelem. Ez az egyszerűsítés leginkább a minél egyszerűbb modell és a számítási idő csökkentése céljából szükséges és az előző fejezetben ki derült, hogy a bemetszés elméleti helyén keletkezik a számottevőbb feszültség, úgy hogy a bemetszés után biztosan ott lesznek a legnagyobb értékek. A geometriát forgatással hozom létre, három dimenziós, deformálható szilárd testként. A szimmetria miatt itt is elegendő csak a fél konstrukciót megrajzolni. Az Abaqus-ban elkészített modell a 37. ábrán látható. Itt már szükséges a repedés geometriáját is megrajzolni, amely most egy héj elem és a 38. ábrán szemléltetem. A mérete az előző fejezetben kiszámolt értékkel megegyező, teljes falvastagságot átmetsző, 65 -os kiterjedéssel. Az Assembly modulban elvégzem a két test egymáshoz illesztését, ezzel határozom meg a repedés helyzetét a testen belül. 46

48 37. ábra. Abaqusban készített geometriai modell 38. ábra. A repedés geometriája A repedés terjedésének vizsgálatához az anyagtulajdonságokat az előzőekhez képest ki kell bővíteni. A Property modulban károsodási tulajdonságokat rendelek hozzájuk. Meg kell adni a károsodás kezdetét, fejlődését és stabilitását. Több lehetőség is rendelkezésre áll, megadhatunk kezdő feltételnek maximális főfeszültségi vagy maximális főnyúlási kritériumokat. Én a maximális főnyúlást választottam, a beállítást a Mechanical/Damage for Traction Separartion laws/maxpe Damage fülek alatt lehet végrehajtani. A maximális főnyúlás értéke 0,2 vagyis a repedés ilyen nyúlási értéknél terjed tovább. Ezenfelül a Suboptions fül alatt a Damage Evolution vagyis a károsodás fejlődése beállítható, amivel definiáljuk az anyag viselkedését a károsodás hatására. Az Abaqusban a károsodásra egy D skalár értéket használunk, melynek értéke 0 (nincs károsodás) és 1 (teljes tönkremenetel) között változik [10]. A roncsolódás nélküli feszültség érték egy (1-D) skalárral szorzódik, így megkapjuk a feszültséget a károsodás alatt. D=0 esetén, vagyis ha nincs tönkremenetel egy "sértetlen" megoldást, míg D=1 47

49 értéknél a feszültség 0 és egy törés keletkezik a feszültség függvényén, melyet a 39. ábra szemléltet. 39. ábra. Damage evolution [10] Választani lehet, hogy maximális elmozdulást vagy törési energiát szeretnénk kritériumnak. A törési energia a fenti háromszög területével egyezik meg. Melynek értékét én 12,5-re állítom. A harmadik beállítás a stabilitás meghatározása. Mivel a károsodás fejlődése gyakran vezet konvergencia problémákhoz, az anyagmodellben található lágyulás miatt. Lehetőség van a károsodás alatt stabilizálni a megoldást viszkózus szabályozás segítségével. A kellően kicsi idő lépéseknél a merevségi mátrix pozitív definit lesz. Egy alopcióként megadható egy viszkozitási együttható, melyet én re választok. A peremfeltételek ugyanazok, mint a Marc-os szimulációban, viszont terhelés helyett, most előírt elmozdulással hajlítom a szerkezetet, melynek értéke 40 mm. A konvergált eredmény érdekében, a megoldás vezérlőt módosítani érdemes. A Step modulban az Other/General solution controls/edit fülek alatt kiválasztom az aktuális step-et. A Time Incrementation fül alatt a Discontinuous analyis bepipálható, ami megengedi az Abaqusnak, hogy több iterációt is végezzen mielőtt továbblépne a következő lépésre. Az első More fül alatt az I A paramétert az alapértelmezett 5 értékről 20-ranöveltem, hogy az Abaqus többet próbálkozhasson mielőtt megszakítaná a szimulációt. A beállítások az adott menüpontokban a 40. ábrán láthatóak. 48

50 40. ábra. General solution controls beállításai A repedést definiálni az Interaction modulban lehet a Special/Crack/Create menüpontok alatt. XFEM típusú repedést választok, a felugró ablakban, amely a 40. ábrán látható. 41.ábra Repedés definiálása A repedés terjedés vizsgálatához engedélyezni kell annak növekedését, továbbá ki meg kell adni repedést illetve az azt tartalmazó testet. XFEM-mel lehet vizsgálni stacionárius repedést is, abban az esetben, ha nem engedélyezzük a repedés terjedését. 49

51 A Mesh modulban a Mesh/Controls menüpont alatt beállítom, hogy a háló tetraéder elemekből épüljön fel. A repedés környezetében besűrítem az elemeket. A legenerált háló a 42. ábrán látható. A Mesh/Element Type...menüben lineáris végeselemeket állítok be mégpedig másodrendű pontosság mellett, a választott elemcsalád 3D Stress. 42. ábra. A végeselem-háló Mielőtt a szimulációt lefuttatnám, a Step modulban a Step Manager segítségével engedélyezem a nem lineáris megoldást valamint növelem az increment-ek maximális számát és csökkentem kezdeti és minimális értéküket. A Field Outup Manager menüpontban fontos, hogy a PHILSM kiértékelését kérjük, mivel a repedés terjedését a segítségével lehet vizualizálni. A másik amire szükség van a STATUSXFEM, mely megadja a sűrítő függvény értékét, ha értéke 0.0 a az elem sértetlen, 1.0-nál az elem teljesen átmetszett ( nem maradt összetartó erő) és a két érték között az elem sérült, de még van benne összetartó erő. A feszültség és nyúlás értékek kiszámolását is kérem a programtól. Végül a Job modulban létrehozok egy új job-ot, melyet lefuttatva jutok az eredményekhez. A 43. ábrán a repedés terjedésének megindulása látható, a jobb oldalon képlékeny zóna kialakulása is látható, a nyúlás értékek vizualizálásával. 50

52 43. ábra. A repedés terjedésének kezdete A 44. ábrán láthatjuk a végig repedt próbát, mivel 40 mm-es lehajlást írtam elő a repedés kinyílás a 130 -ról 162 -ra. A feszültségmező kirajzolódását is szemlélteti az ábra, ahol a világos zöld területeken megközelítőleg 400 MPa-os feszültségek keletkeznek. Tehát elmondható, hogy a valós körülmények között végzett teszt is nagy eséllyel repedésterjedéssel fog járni. 44. ábra A repedt pórba 51

53 6.3 J-integrál meghatározása Abaqus segítségével A hagyományos végeselem-módszerrel számított kontúr integrál esetén definiálni kell a repedésfrontot és a virtuális repedés terjedés irányát, hogy a végeselem-háló és a repedés geometriája illeszkedjen. Általában szükség van egy sűrített kör alakú hálórészre, ami miatt a háromdimenziós ívelt felületen a kontúr integrál értékeinek meghatározása nehézkes lehet. Az XFEM a level set-up-pal enyhíti ezeket a hiányosságokat. A megfelelő szinguláris aszimptotikus mezőket és a folytonossági hibákat a speciális dúsító függvények biztosítják a további szabadságfokokkal együtt. Ezenkívül a repedésfront és a virtuális repedés terjedés irányát a távolság függvények automatikusan meghatározzák. Habár az XFEM enyhítette a háló finomság követelményét a repedésfront környezetében, mégis elegendő elemet kell létrehozni a repedésfront körül, hogy a megkapjuk az út független kontúrvonalakat. A repedésfront körüli kis rádiuszban ez elemek csoportja dúsítottá válik és részt vesznek a kontúr integrál számításában. Az alapértelmezett dúsítási sugár háromszorosa a dúsított területen található elemek jellemző hosszának. A J-integrál általában kvázi-statikus töréselemzésben használják, hogy jellemezzék a repedés növekedésével járó energia felszabadulást. Ez kapcsolatban lehet a feszültségintenzitási tényezővel, lineáris viselkedés esetén. A J-integrált a repedés terjedésével összefüggő energia felszabadulás mértékének segítségével határozzák meg. Egy virtuális repedés λ(s) terjedése érdekében a háromdimenziós törés síkjában, az energia felszabadulás mértékét adja meg: J = A λ s n H qda, (37) ahol da egy felületelem egy kis csőszerű felület mentén, mely körbeveszi a repedéscsúcsot, vagy a repedésvonalat, n a felületelemből kifelé mutató normális és q a virtuális repedés terjedésének érintő irányú vektora. A H pedig: H = W I ς θu θx. (38) Rugalmas anyagi viselkedésnél W a rugalmas nyúlási energia, rugalmas-képlékeny, vagy elaszto-viszko anyagi viselkedés esetén W a rugalmas nyúlási energiasűrűség 52

54 plusz a képlékeny disszipáció. Ezért a J-integrál csak monoton terhelésű rugalmasképlékeny anyagokhoz alkalmas [11]. Az Abaqusban teljesen ugyanaz a modell alkalmazható, mint a repedésterjedésnél, csak néhány változtatást kell benne eszközölni. Mivel stacionárius repedést lehet csak vizsgálni, az Iteraction modulban a repedésterjedés engedélyezését ki kell kapcsolni. Emellett új History Output Request létrehozása válik szükségessé, ahol Domain-nek a repedést kell beállítani, majd a kontúrok számát kell megadni, én ezt 3-ra választottam. Az első kontúl a repedés front körül 2 mm-res, a második 4 mm-es és a harmadik pedig 6 mm-es. Legvégül a típust J-integral-ra kell választani. A számítások lefutása után az idő függvényében kirajzolható az energia felszabadulás görbéje, mely feltételezhető a J-integrál értékének, ez a 45. ábrán látható. Az idő 1.0 értékénél indul meg a repedés terjedése. A kritikus értéke J mm ábra. Az energia felszabadulás mértéke az idő függvényében 53

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

A töréssel szembeni ellenállás vizsgálata

A töréssel szembeni ellenállás vizsgálata A töréssel szembeni ellenállás vizsgálata 1 Az anyag viselkedése terhelés hatására Az anyagok lehetnek: szívósak, képlékenyek és ridegek. 2 Szívós vagy képlékeny anyag Az anyag törését a csúsztatófeszültségek

Részletesebben

A.2. Acélszerkezetek határállapotai

A.2. Acélszerkezetek határállapotai A.. Acélszerkezetek határállapotai A... A teherbírási határállapotok első osztálya: a szilárdsági határállapotok A szilárdsági határállapotok (melyek között a fáradt és rideg törést e helyütt nem tárgyaljuk)

Részletesebben

Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése

Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése Tóth László, Rózsahegyi Péter Bay Zoltán Alkalmazott Kutatási Közalapítvány Logisztikai és Gyártástechnikai Intézet Bevezetés A mérnöki

Részletesebben

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK. Anyagismeret 2007/08. Károsodás. Témakörök

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK. Anyagismeret 2007/08. Károsodás. Témakörök ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK Anyagismeret 2007/08 Károsodás Dr. Lovas Jenő jlovas@ eik.bme.hu Dr. Éva András mal.eva@mail.datanet.hu Témakörök Bevezetés Tönkremeneteli módok Fáradás, méretezés

Részletesebben

tervezési szempontok (igénybevétel, feszültségeloszlás,

tervezési szempontok (igénybevétel, feszültségeloszlás, Elhasználódási és korróziós folyamatok Bagi István BME MTAT Biofunkcionalitás Az élő emberi szervezettel való kölcsönhatás biokompatibilitás (gyulladás, csontfelszívódás, metallózis) aktív biológiai környezet

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

A lineáris törésmechanika alapjai

A lineáris törésmechanika alapjai A lineáris törésmechanika alapjai Tihanyi Károly Tartalom Bevezetés... 1 Törésmechanikai elméletek... 1 Lineárisan rugalmas törésmechanika... 2 Feszültség intenzitás elmélete... 2 Energia elmélete... 5

Részletesebben

A szerkezeti anyagok tulajdonságai és azok vizsgálata

A szerkezeti anyagok tulajdonságai és azok vizsgálata A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minőség, élettartam A termék minősége

Részletesebben

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. BME Szilárdságtani és Tartószerkezeti Tanszék

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. BME Szilárdságtani és Tartószerkezeti Tanszék MAGASÉPÍTÉSI ACÉLSZERKEZETEK 5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. FERNEZELYI SÁNDOR EGYETEMI TANÁR Az acél szakító diagrammja Lineáris szakasz Arányossági határnak

Részletesebben

Anyagismeret I. A töréssel szembeni ellenállás vizsgálata. Összeállította: Csizmazia Ferencné dr.

Anyagismeret I. A töréssel szembeni ellenállás vizsgálata. Összeállította: Csizmazia Ferencné dr. Anyagismeret I. A töréssel szembeni ellenállás vizsgálata Összeállította: Csizmazia Ferencné dr. Az anyag viselkedése terhelés hatására Az anyagok lehetnek: szívósak, képlékenyek és ridegek. Szívós vagy

Részletesebben

Anyagvizsgálatok. Mechanikai vizsgálatok

Anyagvizsgálatok. Mechanikai vizsgálatok Anyagvizsgálatok Mechanikai vizsgálatok Szakítóvizsgálat EN 10002-1:2002 Célja: az anyagok egytengelyű húzó igénybevétellel szembeni ellenállásának meghatározása egy szabványosan kialakított próbatestet

Részletesebben

A talajok összenyomódásának vizsgálata

A talajok összenyomódásának vizsgálata A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás.

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. MAGASÉPÍTÉSI ACÉLSZERKEZETEK 5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. KÉSZÜLT FERNEZELYI SÁNDOR EGYETEMI TANÁR ELŐADÁSI JEGYZETEI ÉS AZ INTERNETEN ELÉRHETŐ MÁS ANYAGOK

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk

Részletesebben

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre

Részletesebben

Ejtési teszt modellezése a tervezés fázisában

Ejtési teszt modellezése a tervezés fázisában Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

A szerkezeti anyagok tulajdonságai és azok vizsgálata

A szerkezeti anyagok tulajdonságai és azok vizsgálata A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minıség, élettartam A termék minısége

Részletesebben

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Miskolci Egyetem Műszaki Anyagtudományi Kar Anyagtudományi Intézet Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Dr.Krállics György krallics@eik.bme.hu

Részletesebben

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban

Részletesebben

A töréssel szembeni ellenállás vizsgálata

A töréssel szembeni ellenállás vizsgálata A töréssel szembeni ellenállás vizsgálata 1 Az anyag viselkedése terhelés hatására Az anyagok lehetnek: szívósak, képlékenyek és ridegek. 2 Szívós vagy képlékeny anyag Az anyag törését a csúsztatófeszültségek

Részletesebben

Anyagszerkezettan és anyagvizsgálat 2015/16. Törés. Dr. Krállics György

Anyagszerkezettan és anyagvizsgálat 2015/16. Törés. Dr. Krállics György Anyagszerkezettan és anyagvizsgálat 2015/16 Törés Dr. Krállics György krallics@eik.bme.hu Az előadás során megismerjük az állapottényezők hatását; a törések alapvető fajtáit, mechanikai és fraktográfiai

Részletesebben

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 20. Az 1. ábrán vázolt síkgörbe rúd méretei és terhelése ismert.

Részletesebben

Gyakorlati példák Dr. Gönczi Dávid

Gyakorlati példák Dr. Gönczi Dávid Szilárdságtani számítások Gyakorlati példák Dr. Gönczi Dávid I. Bevezető ismeretek I.1 Definíciók I.2 Tenzoralgebrai alapismeretek I.3 Bevezetés az indexes jelölésmódba I.4 A lineáris rugalmasságtan általános

Részletesebben

Szilárd testek rugalmassága

Szilárd testek rugalmassága Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)

Részletesebben

Tevékenység: Tanulmányozza a ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál!

Tevékenység: Tanulmányozza a ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál! Tanulmányozza a.3.6. ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál! Az alakváltozás mértéke hajlításnál Hajlításnál az alakváltozást mérnöki alakváltozási

Részletesebben

Fogorvosi anyagtan fizikai alapjai 6.

Fogorvosi anyagtan fizikai alapjai 6. Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

TERMÉKSZIMULÁCIÓ I. 9. elıadás

TERMÉKSZIMULÁCIÓ I. 9. elıadás TERMÉKSZIMULÁCIÓ I. 9. elıadás Dr. Kovács Zsolt egyetemi tanár Végeselem típusok Elemtípusok a COSMOSWorks Designer-ben: Lineáris térfogatelem (tetraéder) Kvadratikus térfogatelem (tetraéder) Lineáris

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek

Részletesebben

Csvezetéki hibák értékelésének fejldése

Csvezetéki hibák értékelésének fejldése Csvezetéki hibák értékelésének fejldése Dr. Nagy Gyula VIII. Országos Törésmechanikai Szeminárium Bevezetés Az üzemelő vezetékeken nagyszámú hiba, eltérés fordul elő. A korábbi, kivitelezésnél alkalmazott

Részletesebben

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:

Részletesebben

Törés. Az előadás során megismerjük. Bevezetés

Törés. Az előadás során megismerjük. Bevezetés Anyagszerkezettan és anyagvizsgálat 015/16 Törés Dr. Krállics György krallics@eik.bme.hu Az előadás során megismerjük az állapottényezők hatását; a törések alapvető fajtáit, mechanikai és fraktográfiai

Részletesebben

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22.

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22. TERMÉKZIMULÁCIÓ Végeselem módszer Termékszimuláció tantárgy 6. elıadás 211. március 22. Elıadó: Dr. Kovács Zsolt egyetemi tanár A végeselem módszer lényege A vizsgált, tetszıleges geometriai kialakítású

Részletesebben

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I ALKALMAZOTT MECHANIKA TANSZÉK V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki Tudományi Doktori Iskola hallgatói számára

Részletesebben

Csavarorsós emelőbak tervezési feladat Gépészmérnök, Járműmérnök, Mechatronikai mérnök, Logisztikai mérnök, Mérnöktanár (osztatlan) BSC szak

Csavarorsós emelőbak tervezési feladat Gépészmérnök, Járműmérnök, Mechatronikai mérnök, Logisztikai mérnök, Mérnöktanár (osztatlan) BSC szak Csavarorsós emelőbak tervezési feladat Gépészmérnök, Járműmérnök, Mechatronikai mérnök, Logisztikai mérnök, Mérnöktanár (osztatlan) BSC szak A feladat részletezése: Név:.. Csoport:... A számításnak (órai)

Részletesebben

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Alumínium ötvözetek aszimmetrikus hengerlése

Alumínium ötvözetek aszimmetrikus hengerlése A Miskolci Egyetemen működő tudományos képzési műhelyek összehangolt minőségi fejlesztése TÁMOP-4.2.2/B-10/1-2010-0008 Tehetségeket gondozunk! Alumínium ötvözetek aszimmetrikus hengerlése 2011. November

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2013. szeptember 23. Javítva: 2013.10.09.

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

TENGELY TERHELHETŐSÉGI VIZSGÁLATA

TENGELY TERHELHETŐSÉGI VIZSGÁLATA MISKOLCI EGYETEM GÉP- ÉS TERMÉKTERVEZÉSI TANSZÉK OKTATÁSI SEGÉDLET a GÉPSZERKEZETTAN - TERVEZÉS c. tantárgyhoz TENGELY TERHELHETŐSÉGI VIZSGÁLATA Összeállította: Dr. Szente József egyetemi docens Miskolc,

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk

Részletesebben

Belsőégésű motor hengerfej geometriai érzékenység-vizsgálata Geometriai építőelemek változtatásának hatása a hengerfej szilárdsági viselkedésére

Belsőégésű motor hengerfej geometriai érzékenység-vizsgálata Geometriai építőelemek változtatásának hatása a hengerfej szilárdsági viselkedésére Belsőégésű motor hengerfej geometriai érzékenység-vizsgálata Geometriai építőelemek változtatásának hatása a hengerfej szilárdsági viselkedésére Néhány példa a C3D Műszaki Tanácsadó Kft. korábbi munkáiból

Részletesebben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben 1117 Végeselem alkalmazások a tűzvédelmi tervezésben 1117 NASTRAN végeselem rendszer Általános végeselemes szoftver, ami azt jelenti, hogy nem specializálták, nincsenek kimondottam valamely terület számára

Részletesebben

Nemlineáris anyagviselkedés peridinamikus modellezése. Ladányi Gábor, PhD hallgató

Nemlineáris anyagviselkedés peridinamikus modellezése. Ladányi Gábor, PhD hallgató Nemlineáris anyagviselkedés peridinamikus modellezése Ladányi Gábor, PhD hallgató ladanyi@uniduna.hu Tartalom Bevezetés Motiváció A peridinamikus anyagmodell Irodalmi áttekintés Korábbi kutatási eredmények

Részletesebben

CAD technikák Mérnöki módszerek gépészeti alkalmazása

CAD technikák Mérnöki módszerek gépészeti alkalmazása Mérnöki módszerek gépészeti alkalmazása XI. előadás 2008. április 28. MI A FEM/FEA? Véges elemeken alapuló elemzési modellezés (FEM - Finite Element Modeling) és elemzés (FEA - Finite Element Analysis).

Részletesebben

Vasbeton födémek tűz alatti viselkedése Egyszerű tervezési eljárás

Vasbeton födémek tűz alatti viselkedése Egyszerű tervezési eljárás tűz alatti eljárás A módszer célja 2 3 Az előadás tartalma Öszvérfödém szerkezetek tűz esetén egyszerű módszere 20 C Födém modell Tönkremeneteli módok Öszvérfödémek egyszerű eljárása magas Kiterjesztés

Részletesebben

GÉPSZERKEZETTAN - TERVEZÉS GÉPELEMEK KÁROSODÁSA

GÉPSZERKEZETTAN - TERVEZÉS GÉPELEMEK KÁROSODÁSA GÉPSZERKEZETTAN - TERVEZÉS GÉPELEMEK KÁROSODÁSA 1 Üzemképesség Működésre, a funkció betöltésére való alkalmasság. Az adott gépelem maradéktalanul megfelel azoknak a követelményeknek, amelyek teljesítésére

Részletesebben

Atomerőművi anyagvizsgálatok (Erőművi berendezések élettartam számításának alapjai)

Atomerőművi anyagvizsgálatok (Erőművi berendezések élettartam számításának alapjai) Anyagvizsgáló és Állapotellenőrző Laboratórium Atomerőművi anyagvizsgálatok (Erőművi berendezések élettartam számításának alapjai) Bevezetés. Az erőművek feladata a mindenkori fogyasztói igényeknek megfelelő

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015. Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő

Részletesebben

Szilárdsági számítások. Kazánok és Tüzelőberendezések

Szilárdsági számítások. Kazánok és Tüzelőberendezések Szilárdsági számítások Kazánok és Tüzelőberendezések Tartalom Ellenőrző számítások: Hőtechnikai számítások, sugárzásos és konvektív hőátadó felületek számításai már ismertek Áramlástechnikai számítások

Részletesebben

KIFÁRADÁSI ÉLETTARTAM MINTAFELADAT (MSc.)

KIFÁRADÁSI ÉLETTARTAM MINTAFELADAT (MSc.) BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KIFÁRADÁSI ÉLETTARTAM MINTAFELADAT (MSc.) Járműelemek és Járműszerkezetanalízis Tanszék FELADAT: Határozza meg a megadott rendszertelen terhelési folyamat

Részletesebben

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3 BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F

Részletesebben

Korrodált acélszerkezetek vizsgálata

Korrodált acélszerkezetek vizsgálata Korrodált acélszerkezetek vizsgálata 1. Szerkezeti példák és laboratóriumi alapkutatás Oszvald Katalin Témavezető : Dr. Dunai László Budapest, 2009.12.08. 1 Általános célkitűzések Korrózió miatt károsodott

Részletesebben

Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Anyagvizsgáló és Állapotellenőrző Laboratórium Atomerőművi anyagvizsgálatok Az akusztikus emisszió vizsgálata a műszaki diagnosztikában Anyagvizsgálati módszerek Roncsolásos metallográfia, kémia, szakító,

Részletesebben

Mérnöki faszerkezetek korszerű statikai méretezése

Mérnöki faszerkezetek korszerű statikai méretezése Mérnöki faszerkezetek korszerű statikai méretezése okl. faip. mérnök - szerkezettervező Előadásvázlat Bevezetés, a statikai tervezés alapjai, eszközei Az EuroCode szabványok rendszere Bemutató számítás

Részletesebben

FÉLMEREV KAPCSOLATOK NUMERIKUS SZIMULÁCIÓJA

FÉLMEREV KAPCSOLATOK NUMERIKUS SZIMULÁCIÓJA FÉLMEREV KAPCSOLATOK NUMERIKUS SZIMULÁCIÓJA Vértes Katalin * - Iványi Miklós ** RÖVID KIVONAT Acélszerkezeti kapcsolatok jellemzőinek (szilárdság, merevség, elfordulási képesség) meghatározása lehetséges

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

KIFÁRADÁSI ÉLETTARTAM KISFELADAT (MSc.)

KIFÁRADÁSI ÉLETTARTAM KISFELADAT (MSc.) BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KIFÁRADÁSI ÉLETTARTAM KISFELADAT (MSc.) Járműelemek és Járműszerkezetanalízis Tanszék Ssz.:...... Név:......................................... Neptun kód.:.........

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése Rugalmas állandók mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. április 23. (hétfő délelőtti csoport) 1. Young-modulus mérése behajlásból 1.1. A mérés menete A mérés elméleti háttere megtalálható a jegyzetben

Részletesebben

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően

Részletesebben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 14. Határozzuk meg a nyírásból adódó csúsztatófeszültség

Részletesebben

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal

Részletesebben

Használhatósági határállapotok. Alakváltozások ellenőrzése

Használhatósági határállapotok. Alakváltozások ellenőrzése 1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy

Részletesebben

Ismételt igénybevétellel szembeni ellenállás

Ismételt igénybevétellel szembeni ellenállás Ismételt igénybevétellel szembeni ellenállás 1 Azt a jelenséget, amikor egy anyag az ismételt igénybevételek során bevitt, halmozódó károsodások hatására a folyáshatárnál kisebb terhelés esetén eltörik

Részletesebben

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.

Részletesebben

Polimerek vizsgálatai

Polimerek vizsgálatai SZÉCHENYI ISTVÁN EGYETEM ANYAGTUDOMÁNYI ÉS TECHNOLÓGIAI TANSZÉK Polimerek vizsgálatai DR Hargitai Hajnalka Rövid idejű mechanikai vizsgálat Szakítóvizsgálat Cél: elsősorban a gyártási körülmények megfelelőségének

Részletesebben

Navier-formula. Frissítve: Egyenes hajlítás

Navier-formula. Frissítve: Egyenes hajlítás Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a

Részletesebben

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 212. október 16. Frissítve: 215. január

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Dr. Márialigeti János egyetemi tanár Járműelemek és Jármű-szerkezet -analízis Tanszék BME Közlekedésmérnöki és Járműmérnöki Kar

Dr. Márialigeti János egyetemi tanár Járműelemek és Jármű-szerkezet -analízis Tanszék BME Közlekedésmérnöki és Járműmérnöki Kar Dr. Márialigeti János egyetemi tanár Járműelemek és Jármű-szerkezet -analízis Tanszék BME Közlekedésmérnöki és Járműmérnöki Kar Élettartam számítás a helyi feszültségnyúlás viszonyok modellezése alapján

Részletesebben

Molekuláris dinamika. 10. előadás

Molekuláris dinamika. 10. előadás Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

Kizárólag oktatási célra használható fel!

Kizárólag oktatási célra használható fel! DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II III. Előadás Vékonyfalú keresztmetszetek nyírófeszültségei - Nyírófolyam - Nyírási középpont - Shear lag hatás - Csavarás Összeállította:

Részletesebben

Hidak Darupályatartók Tornyok, kémények (szélhatás) Tengeri építmények (hullámzás)

Hidak Darupályatartók Tornyok, kémények (szélhatás) Tengeri építmények (hullámzás) Dr. Németh György Szerkezetépítés II. 1 A fáradt törés ismétlődő terhek hatására a statikus törőszilárdság feszültségszintje alatt feszültségcsúcsoknál lokális képlékeny alakváltozásból indul ki általában

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

A gradiens törésmutatójú közeg I.

A gradiens törésmutatójú közeg I. 10. Előadás A gradiens törésmutatójú közeg I. Az ugrásszerű törésmutató változással szemben a TracePro-ban lehetőség van folytonosan változó törésmutatójú közeg definiálására. Ilyen érdekes típusú közegek

Részletesebben

Építőanyagok I - Laborgyakorlat. Fémek

Építőanyagok I - Laborgyakorlat. Fémek Építőanyagok I - Laborgyakorlat Fémek Az acél és a fémek tulajdonságai Az acél és fémek fizikai jellemzői Fém ρ (kg/m 3 ) olvadáspont C E (kn/mm 2 ) Acél 7850 1450 210000 50 Alumínium 2700 660 70000 200

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

HELYI TANTERV. Mechanika

HELYI TANTERV. Mechanika HELYI TANTERV Mechanika Bevezető A mechanika tantárgy tanításának célja, hogy fejlessze a tanulók logikai készségét, alapozza meg a szakmai tantárgyak feldolgozását. A tanulók tanulási folyamata fejlessze

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

Gyakorlat 04 Keresztmetszetek III.

Gyakorlat 04 Keresztmetszetek III. Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)

Részletesebben

Polimerek fizikai, mechanikai, termikus tulajdonságai

Polimerek fizikai, mechanikai, termikus tulajdonságai SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka 2011.10.05. BURGERS FÉLE NÉGYPARAMÉTERES

Részletesebben

KIFÁRADÁSI ÉLETTARTAM KISFELADAT

KIFÁRADÁSI ÉLETTARTAM KISFELADAT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KIFÁRADÁSI ÉLETTARTAM KISFELADAT Járműelemek és Járműszerkezetanalízis Tanszék Ssz.:...... Név:......................................... Neptun kód.:.........

Részletesebben

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához http://www.mm.bme.hu/~kossa/vemalap4.pdf Kossa Attila (kossa@mm.bme.hu)

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben