A lineáris törésmechanika alapjai

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A lineáris törésmechanika alapjai"

Átírás

1 A lineáris törésmechanika alapjai Tihanyi Károly Tartalom Bevezetés... 1 Törésmechanikai elméletek... 1 Lineárisan rugalmas törésmechanika... 2 Feszültség intenzitás elmélete... 2 Energia elmélete... 5 Irodalomjegyzék... 8 Bevezetés Törésmechanika a törésre való méretezéssel foglalkozó tudományág. A hagyományos szilárdsági méretezéssel szemben, feltételezi, hogy az anyag nem tökéletes folytonosságú, hanem abban valamilyen oknál fogva repedések vannak jelen. A törésmechanika feladata annak eldöntése, hogy a repedés milyen feltételek mellett terjed tovább.[1] Ennek a tudománynak az alapját képező repedéseknek az anyag makroszkópikus folytonossági hiányait hívjuk. Az anyagot összetartó kémiai kötés a repedés környezetében külső vagy belső feszültségek, esetleg az anyagot körülvevő közeg hatására megszűnik. Ez a folyamat végül az adott alkatrész törésével teljesedik ki.[2] Törésmechanikai elméletek A törésmechanika viszonylag fiatal tudományág, az 1950-es évek végétől kezdték el kidolgozni a különböző anyagokra, illetve repedésterjedési típusokra érvényes elméleteket. Bár Griffith által már az 1920-as években kidolgozott repedésterjedésre vonatkozó elméletét is lehet a kezdet kezdetének tekinteni. A repedés terjedés feltételének azt tekinti, hogy a felszabaduló rugalmas alakváltozással tárolt energia nagyobb, mint a keletkező felületek felületi energiája. Elméleti megfontolásai azonban csak a szélsőségesen rideg anyagokra igazak. Kimutatták, hogy még a legridegebb anyagokban is a repedés csúcsánál létrejön egy atomi méretekben mérhető képlékenyen alakváltozott anyagrész. Az ő elméletét aztán Irwin dolgozta tovább, figyelembe véve a repedés előtti képlékeny tartományt is.[1,2] A törésmechanikai elméletek alapvetően kétféle megközelítéssel élnek, az előzőekben ismertetett repedésterjedéshez szükséges energia elméletéből, vagy pedig a repedés csúcsánál a külső/belső névleges feszültségek által létrehozott feszültség-, alakváltozási mező meghatározásából, vezetnek le olyan összefüggéseket, melyekből eldönthetővé válik, hogy a repedés terjedni fog-e vagy

2 sem. Lineárisan rugalmas anyagokra, ahol egyszerű geometriai feltételek esetén komplex feszültség függvényekből levezetett analitikus megoldások nyújtanak kielégítő pontosságú törési kritériumokat. A fenti törésmechanikai elméletekből kielégítő pontosságú törési feltételekhez lehet jutni, olyan esetekben, ahol a repedés előtti képlékeny tartomány lényegesen kisebb, mint a repedés mérete.[2] Azokban az esetekben azonban, mikor a képlékenyen alakváltozott anyagrész mérete már jelentős a képlékeny törésmechanika megközelítéseivel kell élni. Az egyik ilyen a COD-elmélet (= crack opening displacement), amely nem a repedéscsúcs feszültségintenzitásával, hanem az elmozdulás, a kritikus repedéskinyílás segítségével állapít meg repedésterjedési kritériumokat. A másik, igen elterjedten használt J-integrál elmélet, amely a repedéscsúcs körül kialakult rugalmasan alakváltozott mező energiájából, valamint elmozdulás, feszültség mezőből kiindulva határoz meg törési feltételt.[2] Ezeken kívül születtek még elméletek a fáradásos repedésterjedési -, hőfáradásos repedésterjedési -, valamint a korróziós repedés terjedési sebesség megahatározására. A dinamikus erőhatások pedig a repedés megindulási, repedés terjedési, valamint repedés megállási elméleteket dolgoztak ki.[2] Lineárisan rugalmas törésmechanika Feszültség intenzitás elmélete A lineárisan rugalmas törésmechanika feszültség intenzitás levezetett törési kritériumhoz először érdemes megvizsgálni Neuber feszültség koncentrációs tényezőjét. Az 1.ábrán látható lemez alakú próbatestet névleges húzófeszültséggel terhelünk, ebben egy ellipszis alakú repedés található. Az ellipszis hossztengelye hosszúságú, a repedés végeinek lekerekítési sugara. Ekkor többtengelyű feszültség állapot alakul ki, melynek a húzás irányú komponense az ábrán látható eloszlású. Ennek a maximuma: (1), ahol formatényező az (2). Látható, hogy minnél nagyobb a repedés hossza a szélességéhez képest annál nagyobb ez az érték. Valódi repedésméreteknél a maximális feszültség 2-3 nagyságrenddel nagyobb is lehet, mint a névleges feszültség, esetén, pedig a a -hez tart.[1]

3 1.ábra: Neuber feszültség koncentrációs tényezőhöz tartozó értékek [3] A Neuber feszültség koncentrációs elv éles bemetszésekre, azaz lekerekítési sugarú repedésekre nem alkalmazható. A probléma megoldása egy síkban fekvő hosszúságú, éles bemetszésű repedést tartalmazó test feszültségállapotának meghatározásából indul ki. A modell különböző terhelési módokra egy végtelen méretű, lemezszerű testben, a repedés csúcsának környezetében szilárdságtani számítások útján határozza meg a különböző feszültségkomponensek nagyságát az repedéscsúcstól mért távolság, és a repedés síkjával bezárt szög függvényében. A modell értelmezését segítő vázlat a 2.ábrán látható. Ha a lemezre a repedés síkjára merőleges irányú feszültség hat, akkor a, húzófeszültségek, valamint a nyírófeszültségek értéke a következő egyenletekkel írható fel:

4 2.ábra: Egy végtelen, lemezszerű anyag feszültség intenzitási tényezőjének meghatározásához szükséges jelölések értelmezése [4] Ha síkbeli feszültségi állapotban van a test, akkor a, ha azonban az, azaz síkbeli alakváltozási állapot írja le a test viselkedését, akkor az egyenletből a. Látható, hogy a, és a -hez tartozó egyenletek mindegyike egy csak a repedés méretétől és a feszültség nagyságától függő tagból és egy csak a repedés csúcsától való távolságtól és iránytól függő tagok szorzatából áll. A feszültségmező, tehát egy értékkel jellemezhető, melyet feszültségintenzitási tényezőnek neveznek és a mértékegysége vagy. Ha ennek mértéke meghalad egy az anyagra, illetve a falvastagságra jellemző értéket a repedés elkezd instabilan terjedni, ezt a mérőszámot kritikus feszültségintenzitási tényezőnek nevezzük és -vel jelöljük. A feszültség intenzitási tényező indexében levő I a terhelési módra utal, a repedés síkjára merőleges húzófeszültségen kívül még két féle terhelési módot különböztetünk meg. A II terhelési mód esetén az igénybevételi állapot a repedés terjedési irányával párhuzamos, a III mód esetén pedig a lemez síkjából kifelé mutat és az előző kettőre merőleges. Mindhárom terhelési módhoz különböző anyagtól és falvastagságtól függő kritikus feszültségintenzitási tényezők tartoznak, melyeket rendre,, -vel jelölnek. A különböző terhelési módok a 3. ábrán láthatóak, a gyakorlatban a -nek van jelentősége.[1,2]

5 3.ábra: Végtelen lemezalakú test három különböző terhelési módja [4] Előzöleg említésre került, hogy a kritikus feszültségintenzitási tényező a falvastagságtól is függ, ui. vékony lemezekre a síkbeli feszültségi állapot, míg a vastag lemezekre síkbeli alakváltozási állapot a jellemző, mint ismeretes ebben az esetben egy a lemez síkjára merőleges feszültségkomponens is ébred. A -t a vastagság függvényében ábrázoló diagram a 4.ábrán látható. maximumát a vastagságnál veszi fel, míg értéktől kezdve az alakváltozási állapot gyakorlatilag síkbeli. Energia elmélete 4.ábra: Kritikus feszültségintenzitási tényező falvastagság függése [5] Az lineáris rugalmas törésmechanika energia elméletének tárgyalásához, először érdemes Griffith repedésterjedési modelljét vizsgálni. A megállapításait kizárólag rugalmasan alakváltozott anyag repedésterjedésére mondja ki, ahol a terhelő névleges feszültség a repedés terjedése alatt semmilyen alakváltozást nem okoz a vizsgált darabon, tehát az általa végzett munka 0. Alapfeltevése az volt, hogy a repedés terjedése során a keletkező felületek felületi feszültségéből származó plusz energiának, és a repedés környezetében rugalmas alakváltozással tárolt energia felszabadulásának az összege mindig a stabilisabb állapot felé mozdul, tehát csökken. Azaz az ( felületi feszültségből származó energia, rugalmas energia felszabadulásából származó energia) megváltozása a repedés növekedésének függvényében mindig kisebb, mint 0. Ha az 2. ábrán látható, az előző alfejezetben már vizsgált végtelen lemez alakú testre nézzük, akkor a következő féleképpen juthatunk el a repedésterjedési kritériumhoz: A felületi feszültség növekedéséből származó energia:, ahol 2a a repedés hossza, v a lemez vastagsága, S pedig a fajlagos felületi feszültség, a képlet elején levő 2-es szorzó repedés két végére utal. A tárolt rugalmas energia:, magyarázatára nem térek ki külön, az összefüggés elején lévő a lineárisan rugalmas alakváltozás munkája. Ha ezeket behelyettesítjük a kiinduló összefüggésbe és szerint deriválva megvizsgáljuk, hogy milyen feltételek mellett csökken, akkor a feszültség intenzitási tényezőt kifejező összefüggést kapunk:

6 Vizsgálatok kimutatták, hogy ez az összefüggés csak ideálisan rideg törésnél érvényes, mert még a legridegebb anyagokban is játszódik le képlékeny alakváltozás.[1] A valóságos repedésterjedéseknél az anyagban tárolt rugalmas energia felszabadulás mellett terhelő erők munkájára is szükség van. Az energia elméletének bevezetéséhez érdemes az 5. ábrán látható elrendezést szemügyre venni. 5.ábra: 2a hosszúságú repedést tartalmazó rugalmasan alakváltozó lemez modellje [2] Ha az anyag lineárisan rugalmas, akkor a lemez egy rugóként is modellezhető és fölírható rá a következő összefüggés:, ahol rugómerevség függ az eredeti hossztól, a rugalmassági modulustól és a repedés hosszúságától. Amennyiben egy adott terhelő erő esetén a repedés hossza megnő, a rugómerevség is vele nő, melyet a 6. ábra szemléltet.

7 6.ábra: A rugómerevség és a hosszváltozásának hatására munkát viszünk a rendszerbe [2] Látható, hogy a vizsgált darab megnyúlt azaz a sraffozott háromszögnek megfelelő nagyságú munkát vittünk a rendszerbe, amely a repedés növelésére fordítódott. Képletekkel fölírva: Ha ennek a repedésterjedésre fordított munkának nézem a repedés hossza szerinti megváltozását, akkor a G-vel jelölt fajlagos energia felszabadulásnak nevezett értékhez jutok. G mértékegysége MPam vagy MPamm. A G-ből és a kifejezhetőek a következő képletek segítségével: feszültség intenzitási tényezők is Síkbeli feszültségi állapot esetén: Síkbeli alakváltozási állapot esetén: Az első képletet megvizsgálva nagyon hasonló a Griffith által megállapított feltételhez, amelyből megállapítható, hogy a G ideálisan törékeny anyagok esetében éppen a fajlagos felületi feszültség kétszerese, azaz 2S. A valóságban ennél 3 nagyságrenddel nagyobb értékeket mértek. A különbség a képlékeny alakváltozás által felemésztett energiából adódik.

8 Felkészülést segítő kérdések Milyen törésmechanikai elméletek léteznek? Milyen a tengelyirányú feszültség eloszlása egy ellipszis alakú bemetszést tartalmazó lemezszerű test esetében a Neuber elmélet szerint? Van egy teljes keresztmetszeten átérő, sík repedést tartalmazó végtelen, lemezszerű testünk, melyet a repedésre merőleges egytengelyű húzófeszültséggel terhelünk. A repedés környezetében felírható, feszültség állapotot jellemző egyenletekben mi lesz az a tag, amely csak a feszültségtől és a repedés méretétől függ? Mi feszültségintenzitási tényező jele és mértékegysége? Hogyan dönthető el a fenti esetben, hogy a repedés terjed-e vagy sem? Milyen terhelési módok léteznek? Hogyan befolyásolja a falvastagság mérete a kritikus feszültségintenzitási tényező nagyságát? Milyen alapfeltevésből indul ki a Griffith modell? Milyen repedésterjedési feltételt állapít meg a Griffith modell? Milyen kapcsolat van a Griffith modell és a feszültségintenzitási elmélet között? Hol alkalmazható a Griffith modell? Milyen plusz energiára van szükség a repedés terjedéséhez az energia elmélet szerint a Griffith modellhez képest? Mit nevezünk fajlagos energiafelszabadulásnak? Mi a jele és a mértékegysége? Milyen törési feltételt állapít meg a törésmechanika energia elmélete? Milyen kapcsolat áll fenn a fajlagos energiafelszabadulás és feszültségintenzitási tényezők között az egyes terhelési módok esetében? Ez a lineáris törésmechanikáról szóló összefoglaló eredetileg az Önálló Feladat 2 nevű tárgyhoz készült. Úgy gondoltam, hogy megosztom veletek, hátha segítelek titeket a törésmechanika alapjainak megértésében. Amennyiben a rövid összefoglalóban hibát találtok vagy egyéb észrevételetek van kérlek írjátok meg nekem a címre. Mindenkinek sikeres és hosszú távon hasznos felkészülést kívánok! Irodalomjegyzék [1] Dr. Gillemot László: Anyagszerkezettan és anyagvizsgálat, 1967 IBSN x [2] Horst Blumenauer Gerhard Pusch: Műszaki törésmechanika, 1987 IBSN [3] Dr. Csizmazia Ferencné: Anyagismeret I. diasor [4] [5] Dr Krállics György Reé András: Törés diasor [6]

9

Anyagismeret I. A töréssel szembeni ellenállás vizsgálata. Összeállította: Csizmazia Ferencné dr.

Anyagismeret I. A töréssel szembeni ellenállás vizsgálata. Összeállította: Csizmazia Ferencné dr. Anyagismeret I. A töréssel szembeni ellenállás vizsgálata Összeállította: Csizmazia Ferencné dr. Az anyag viselkedése terhelés hatására Az anyagok lehetnek: szívósak, képlékenyek és ridegek. Szívós vagy

Részletesebben

Anyagszerkezettan és anyagvizsgálat 2015/16. Törés. Dr. Krállics György

Anyagszerkezettan és anyagvizsgálat 2015/16. Törés. Dr. Krállics György Anyagszerkezettan és anyagvizsgálat 2015/16 Törés Dr. Krállics György krallics@eik.bme.hu Az előadás során megismerjük az állapottényezők hatását; a törések alapvető fajtáit, mechanikai és fraktográfiai

Részletesebben

Törés. Az előadás során megismerjük. Bevezetés

Törés. Az előadás során megismerjük. Bevezetés Anyagszerkezettan és anyagvizsgálat 015/16 Törés Dr. Krállics György krallics@eik.bme.hu Az előadás során megismerjük az állapottényezők hatását; a törések alapvető fajtáit, mechanikai és fraktográfiai

Részletesebben

Anyagvizsgálatok. Mechanikai vizsgálatok

Anyagvizsgálatok. Mechanikai vizsgálatok Anyagvizsgálatok Mechanikai vizsgálatok Szakítóvizsgálat EN 10002-1:2002 Célja: az anyagok egytengelyű húzó igénybevétellel szembeni ellenállásának meghatározása egy szabványosan kialakított próbatestet

Részletesebben

tervezési szempontok (igénybevétel, feszültségeloszlás,

tervezési szempontok (igénybevétel, feszültségeloszlás, Elhasználódási és korróziós folyamatok Bagi István BME MTAT Biofunkcionalitás Az élő emberi szervezettel való kölcsönhatás biokompatibilitás (gyulladás, csontfelszívódás, metallózis) aktív biológiai környezet

Részletesebben

A töréssel szembeni ellenállás vizsgálata

A töréssel szembeni ellenállás vizsgálata A töréssel szembeni ellenállás vizsgálata 1 Az anyag viselkedése terhelés hatására Az anyagok lehetnek: szívósak, képlékenyek és ridegek. 2 Szívós vagy képlékeny anyag Az anyag törését a csúsztatófeszültségek

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás.

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. MAGASÉPÍTÉSI ACÉLSZERKEZETEK 5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. KÉSZÜLT FERNEZELYI SÁNDOR EGYETEMI TANÁR ELŐADÁSI JEGYZETEI ÉS AZ INTERNETEN ELÉRHETŐ MÁS ANYAGOK

Részletesebben

Járműelemek. Rugók. 1 / 27 Fólia

Járműelemek. Rugók. 1 / 27 Fólia Rugók 1 / 27 Fólia 1. Rugók funkciója A rugók a gépeknek és szerkezeteknek olyan különleges elemei, amelyek nagy (ill. korlátozott) alakváltozás létrehozására alkalmasak. Az alakváltozás, szemben más szerkezeti

Részletesebben

Tevékenység: Tanulmányozza a ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál!

Tevékenység: Tanulmányozza a ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál! Tanulmányozza a.3.6. ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál! Az alakváltozás mértéke hajlításnál Hajlításnál az alakváltozást mérnöki alakváltozási

Részletesebben

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. BME Szilárdságtani és Tartószerkezeti Tanszék

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. BME Szilárdságtani és Tartószerkezeti Tanszék MAGASÉPÍTÉSI ACÉLSZERKEZETEK 5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. FERNEZELYI SÁNDOR EGYETEMI TANÁR Az acél szakító diagrammja Lineáris szakasz Arányossági határnak

Részletesebben

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk

Részletesebben

A.2. Acélszerkezetek határállapotai

A.2. Acélszerkezetek határállapotai A.. Acélszerkezetek határállapotai A... A teherbírási határállapotok első osztálya: a szilárdsági határállapotok A szilárdsági határállapotok (melyek között a fáradt és rideg törést e helyütt nem tárgyaljuk)

Részletesebben

Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése

Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése Tóth László, Rózsahegyi Péter Bay Zoltán Alkalmazott Kutatási Közalapítvány Logisztikai és Gyártástechnikai Intézet Bevezetés A mérnöki

Részletesebben

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ Egykristály és polikristály képlékeny alakváltozása A Frenkel féle modell, hibátlan anyagot feltételezve, nagyon nagy folyáshatárt eredményez. A rácshibák, különösen a diszlokációk jelenléte miatt a tényleges

Részletesebben

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban

Részletesebben

Atomerőművi anyagvizsgálatok (Erőművi berendezések élettartam számításának alapjai)

Atomerőművi anyagvizsgálatok (Erőművi berendezések élettartam számításának alapjai) Anyagvizsgáló és Állapotellenőrző Laboratórium Atomerőművi anyagvizsgálatok (Erőművi berendezések élettartam számításának alapjai) Bevezetés. Az erőművek feladata a mindenkori fogyasztói igényeknek megfelelő

Részletesebben

KÖTÉSEK FELADATA, HATÁSMÓDJA. CSAVARKÖTÉS (Vázlat)

KÖTÉSEK FELADATA, HATÁSMÓDJA. CSAVARKÖTÉS (Vázlat) KÖTÉSEK FELADATA, HATÁSMÓDJA. CSAVARKÖTÉS (Vázlat) Kötések FUNKCIÓJA: Erő vagy nyomaték vezetése relatív nyugalomban lévő szerkezeti elemek között. OSZTÁLYOZÁSUK: Fizikai hatáselv szerint: Erővel záró

Részletesebben

Dr. Márialigeti János egyetemi tanár Járműelemek és Jármű-szerkezet -analízis Tanszék BME Közlekedésmérnöki és Járműmérnöki Kar

Dr. Márialigeti János egyetemi tanár Járműelemek és Jármű-szerkezet -analízis Tanszék BME Közlekedésmérnöki és Járműmérnöki Kar Dr. Márialigeti János egyetemi tanár Járműelemek és Jármű-szerkezet -analízis Tanszék BME Közlekedésmérnöki és Járműmérnöki Kar Élettartam számítás a helyi feszültségnyúlás viszonyok modellezése alapján

Részletesebben

A szerkezeti anyagok tulajdonságai és azok vizsgálata

A szerkezeti anyagok tulajdonságai és azok vizsgálata A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minıség, élettartam A termék minısége

Részletesebben

POLIMERTECHNIKA Laboratóriumi gyakorlat

POLIMERTECHNIKA Laboratóriumi gyakorlat MÉRÉSI JEGYZŐKÖNYV Polimer anyagvizsgálat Név: Neptun kód: Dátum:. Gyakorlat célja: 1. Műanyagok folyóképességének vizsgálata, fontosabb reológiai jellemzők kiszámítása 2. Műanyagok Charpy-féle ütővizsgálata

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. VI. Előadás. Rácsos tartók hegesztett kapcsolatai.

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. VI. Előadás. Rácsos tartók hegesztett kapcsolatai. DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II VI. Előadás Rácsos tartók hegesztett kapcsolatai. - Tönkremeneteli módok - Méretezési kérdések - Csomóponti kialakítások Összeállította:

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Előadó: Érseki Csaba http://ersekicsaba.hu

Előadó: Érseki Csaba http://ersekicsaba.hu Előadó: Érseki Csaba http://ersekicsaba.hu Extrudálás, mint kiinduló technológia Flakonfúvás Fóliafúvás Lemez extrudálás Profil extrudálás Csőszerszám* - Széles résű szerszám* - Egyedi szerszámok** * -

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

1. Ütvehajlító vizsgálat

1. Ütvehajlító vizsgálat 1. Ütvehajlító vizsgálat Ütvehajlító vizsgálat segítségével megvizsgálhatjuk, hogy az adott körülmények között dinamikus igénybevétel hatására hogyan viselkedik az agyagunk. A körülményektől függően egy

Részletesebben

1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók.

1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók. 1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók. Tevékenység: Olvassa el a jegyzet 18-29 oldalain található tananyagát! Tanulmányozza át a segédlet 8.2. és 8.3. fejezeteiben lévı kidolgozott feladatait,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

A beton kúszása és ernyedése

A beton kúszása és ernyedése A beton kúszása és ernyedése A kúszás és ernyedés reológiai fogalmak. A reológia görög eredetű szó, és ebben az értelmezésben az anyagoknak az idő folyamán lejátszódó változásait vizsgáló műszaki tudományág

Részletesebben

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.

Részletesebben

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például

Részletesebben

A vizsgált anyag ellenállása az adott geometriájú szúrószerszám behatolásával szemben, Mérnöki alapismeretek és biztonságtechnika

A vizsgált anyag ellenállása az adott geometriájú szúrószerszám behatolásával szemben, Mérnöki alapismeretek és biztonságtechnika Dunaújvárosi Főiskola Anyagtudományi és Gépészeti Intézet Mérnöki alapismeretek és biztonságtechnika Mechanikai anyagvizsgálat 2. Dr. Palotás Béla palotasb@mail.duf.hu Készült: Dr. Krállics György (BME,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

Hidrosztatika. Folyadékok fizikai tulajdonságai

Hidrosztatika. Folyadékok fizikai tulajdonságai Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba

Részletesebben

Gyakorlat 04 Keresztmetszetek III.

Gyakorlat 04 Keresztmetszetek III. Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)

Részletesebben

KERESZTMETSZETI JELLEMZŐK

KERESZTMETSZETI JELLEMZŐK web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

ERŐVEL ZÁRÓ KÖTÉSEK (Vázlat)

ERŐVEL ZÁRÓ KÖTÉSEK (Vázlat) ERŐVEL ZÁRÓ KÖTÉSEK (Vázlat) Erővel záró nyomatékkötések Hatáselve: a kapcsolódó felületre merőleges rugalmas szorítás hatására a felület érintőjének irányába ható terheléssel ellentétes irányban ébredő

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

GÉPÉSZETI ALAPISMERETEK TÉMAKÖRÖK

GÉPÉSZETI ALAPISMERETEK TÉMAKÖRÖK GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÉRETTSÉGI TÉMAKÖRÖK Preisz Csaba mérnök-tanár Műszaki mechanika Statikai alapfogalmak - Erőrendszer fogalma - Vektorokkal végezhető alapműveleteket (erők felbontása,

Részletesebben

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok 12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-

Részletesebben

Csvezetéki hibák értékelésének fejldése

Csvezetéki hibák értékelésének fejldése Csvezetéki hibák értékelésének fejldése Dr. Nagy Gyula VIII. Országos Törésmechanikai Szeminárium Bevezetés Az üzemelő vezetékeken nagyszámú hiba, eltérés fordul elő. A korábbi, kivitelezésnél alkalmazott

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy

Részletesebben

Toronymerevítık mechanikai szempontból

Toronymerevítık mechanikai szempontból Andó Mátyás: Toronymerevítık méretezése, 9 Gépész Tuning Kft. Toronymerevítık mechanikai szempontból Mint a neve is mutatja a toronymerevítık használatának célja az, hogy merevebbé tegye az autó karosszériáját

Részletesebben

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, 2002 március 13 9-12 óra 11 osztály 1 Egyatomos ideális gáz az ábrán látható folyamatot végzi A folyamat elsõ szakasza izobár folyamat, a második szakasz

Részletesebben

4. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára

4. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára 4. feladat Géprajz-Gépelemek (GEGET4B) c. tárgyból a űszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára TOKOS TENGELYKAPCSOLÓ méretezése és szerkesztése útmutató segítségével 1. Villamos motorról

Részletesebben

IWM VERB az első magyar nyelvű törésmechanikai szoftver

IWM VERB az első magyar nyelvű törésmechanikai szoftver IWM VERB az első magyar nyelvű törésmechanikai szoftver Lenkeyné Biró Gyöngyvér, Ludvik Hodulak, Igor Varfolomeyev Vázlat Repedésszerű hibák értékelési módszerei Európai törekvések (SINTAP és FITNET projektek)

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

2. Tantermi Gyakorlat A szerkezeti anyagok tulajdonságai és azok vizsgálata Nyomóvizsgálat, hajlítóvizsgálat, keménységmérés

2. Tantermi Gyakorlat A szerkezeti anyagok tulajdonságai és azok vizsgálata Nyomóvizsgálat, hajlítóvizsgálat, keménységmérés SZÉCHENYI ISTVÁN EGYETEM Anyagtudományi és Technológiai Tanszék Anyagszerkezet és vizsgálat Fémtan, anyagvizsgálat 2. Tantermi Gyakorlat A szerkezeti anyagok tulajdonságai és azok vizsgálata Nyomóvizsgálat,

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Leggyakoribb fa rácsos tartó kialakítások

Leggyakoribb fa rácsos tartó kialakítások Fa rácsostartók vizsgálata 1. Dr. Koris Kálmán, Dr. Bódi István BME Hidak és Szerkezetek Tanszék Leggakoribb fa rácsos tartó kialakítások Változó magasságú Állandó magasságú Kis mértékben változó magasságú

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.

20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. . tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. Először megadom a síkbeli definíciójukat, mert ez alapján vezetjük le az egyenletüket. Alakzat

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 14. Határozzuk meg a nyírásból adódó csúsztatófeszültség

Részletesebben

Jármű- és hajtáselemek I. (KOJHA 156) Hegesztés kisfeladat (A típus) Járműelemek és Hajtások Tanszék

Jármű- és hajtáselemek I. (KOJHA 156) Hegesztés kisfeladat (A típus) Járműelemek és Hajtások Tanszék BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Jármű- és hajtáselemek I. (KOJHA 156) Hegesztés kisfeladat (A típus) Járműelemek és Hajtások Tanszék Ssz.: A/... Név:.........................................

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.

Részletesebben

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort!

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1 / 20 2. példa: Rajzoljuk fel az adott feszültségtenzorhoz tartozó kockát! 2 / 20 3. példa: Feszültségvektor számítása. Egy alkatrész egy

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

Hidegsajtoló hegesztés

Hidegsajtoló hegesztés Budapesti Műszaki és Gazdaságtudományi Egyetem SAJTOLÓ HEGESZTÉSI ELJÁRÁSOK 1. Hőbevitel nélküli eljárások Dr. Palotás Béla Mechanikai Technológia és Anyagszerkezettani Tanszék Hidegsajtoló hegesztés A

Részletesebben

Földstatikai feladatok megoldási módszerei

Földstatikai feladatok megoldási módszerei Földstatikai feladatok megoldási módszerei Földstatikai alapfeladatok Földnyomások számítása Általános állékonyság vizsgálata Alaptörés parciális terhelés alatt Süllyedésszámítások Komplex terhelési esetek

Részletesebben

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I ALKALMAZOTT MECHANIKA TANSZÉK V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki Tudományi Doktori Iskola hallgatói számára

Részletesebben

Legnagyobb anyagterjedelem feltétele

Legnagyobb anyagterjedelem feltétele Legnagyobb anyagterjedelem feltétele 1. Legnagyobb anyagterjedelem feltétele A legnagyobb anyagterjedelem feltétele (szabványban ilyen néven szerepel) vagy más néven a legnagyobb anyagterjedelem elve illesztett

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

Törésmechanika. Statikus törésmechanikai vizsgálatok

Törésmechanika. Statikus törésmechanikai vizsgálatok Törésmechnik (Gykorlti segédlet) A C törési szívósság meghtározás Sttikus törésmechniki vizsgáltok A vizsgáltokt áltlábn z 1. és. ábrán láthtó úgynevezett háromontos hjlító (TPB) illetve CT róbtesteken

Részletesebben

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője

Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője É 063-06/1/13 A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6.

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6. statikai számítás Tsz.: 51.89/506 TARTALOMJEGYZÉK 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1. Anyagminőségek 6.. ALKALMAZOTT SZABVÁNYOK 6. 3. A VASBETON LEMEZ VIZSGÁLATA 7. 3.1 Terhek 7. 3. Igénybevételek

Részletesebben

Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Anyagvizsgáló és Állapotellenőrző Laboratórium Atomerőművi anyagvizsgálatok Az akusztikus emisszió vizsgálata a műszaki diagnosztikában Anyagvizsgálati módszerek Roncsolásos metallográfia, kémia, szakító,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése 2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának

Részletesebben

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre

Részletesebben

Anyagismeret és anyagvizsgálat. Kovács Attila kovacs.attila@nyf.hu

Anyagismeret és anyagvizsgálat. Kovács Attila kovacs.attila@nyf.hu Anyagismeret és anyagvizsgálat Kovács Attila kovacs.attila@nyf.hu Mit nevezünk anyagvizsgálatnak? "Az ipar és a technika fejlődése megkívánja, hogy a gyártási folyamatok során felhasznált anyagokról minél

Részletesebben

A talajok összenyomódásának vizsgálata

A talajok összenyomódásának vizsgálata A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek emelt szint 1621 ÉRETTSÉGI VIZSGA 2016. október 17. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

KIFÁRADÁSI ÉLETTARTAM KISFELADAT

KIFÁRADÁSI ÉLETTARTAM KISFELADAT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KIFÁRADÁSI ÉLETTARTAM KISFELADAT Járműelemek és Járműszerkezetanalízis Tanszék Ssz.:...... Név:......................................... Neptun kód.:.........

Részletesebben

Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője

Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Vasbeton födémek tűz alatti viselkedése Egyszerű tervezési eljárás

Vasbeton födémek tűz alatti viselkedése Egyszerű tervezési eljárás tűz alatti eljárás A módszer célja 2 3 Az előadás tartalma Öszvérfödém szerkezetek tűz esetén egyszerű módszere 20 C Födém modell Tönkremeneteli módok Öszvérfödémek egyszerű eljárása magas Kiterjesztés

Részletesebben

Acélszerkezetek. 3. előadás 2012.02.24.

Acélszerkezetek. 3. előadás 2012.02.24. Acélszerkezetek 3. előadás 2012.02.24. Kapcsolatok méretezése Kapcsolatok típusai Mechanikus kapcsolatok: Szegecsek Csavarok Csapok Hegesztett kapcsolatok Tompavarrat Sarokvarrat Coalbrookdale, 1781 Eiffel

Részletesebben