Irracionális egyenletek, egyenlôtlenségek



Hasonló dokumentumok
Magasabbfokú egyenletek

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

Abszolútértékes és gyökös kifejezések Megoldások

Exponenciális és logaritmikus kifejezések Megoldások

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

Másodfokú egyenletek, egyenlőtlenségek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések

Másodfokú egyenletek, egyenlőtlenségek

Egyenletek, egyenlőtlenségek VII.

egyenlőtlenségnek kell teljesülnie.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Abszolútértékes egyenlôtlenségek

Paraméteres és összetett egyenlôtlenségek

MATEMATIKA A 10. évfolyam

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Függvények Megoldások

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

Paraméteres és összetett egyenlôtlenségek

Egyenletek, egyenlőtlenségek X.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

Egyenletek, egyenlőtlenségek V.

Egészrészes feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

I. Egyenlet fogalma, algebrai megoldása

Módszertani megjegyzés: A kikötés az osztás műveletéhez kötődik. A jobb megértés miatt célszerű egy-két példát mu-

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

Racionális és irracionális kifejezések

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

3. Egyenletek, egyenletrendszerek, egyenlőtlenségek

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Matematika 11. osztály

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

7. Egyenletek, egyenlőtlenségek, egyenletrendszerek I.

Matematika 8. osztály

4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

2. Algebrai átalakítások

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

Négyzetgyökös egyenletek. x A négyzetgyök értéke nem lehet negatív! R

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Számítsd ki a következő kifejezések pontos értékét!

= 1, azaz kijött, hogy 1 > 1, azaz ellentmondásra jutottunk. Így nem lehet, hogy nem igaz

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!

462 Trigonometrikus egyenetek II. rész

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

Egyenletek, egyenlőtlenségek, egyenletrendszerek I.

E-tananyag Matematika 9. évfolyam Függvények

3. Algebrai kifejezések, átalakítások

FÜGGVÉNYEK. A derékszögű koordináta-rendszer

11. Sorozatok. I. Nulladik ZH-ban láttuk:

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Németh László Matematikaverseny, Hódmezővásárhely április 11. A osztályosok feladatainak javítókulcsa

10. Koordinátageometria

25 i, = i, z 1. (x y) + 2i xy 6.1

KOVÁCS BÉLA, MATEMATIKA I.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

2. Függvények. I. Feladatok

Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

Függvények vizsgálata

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

4. Hatványozás, gyökvonás

EGYENLETEK, EGYENLŐTLENSÉGEK

Határozott integrál és alkalmazásai

FÜGGVÉNYTANI ALAPOK A) ÉRTELMEZÉSI TARTOMÁNY

2017/2018. Matematika 9.K

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. 1. Az alábbi hozzárendelések közül melyik függvény? Válaszod indokold!

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Németh László Matematikaverseny, Hódmezővásárhely március 30. A osztályosok feladatainak javítókulcsa

A tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Exponenciális és logaritmusos feladatok Megoldások

Átírás:

9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén értelmezett, ezért az egyenlet x $ 0 esetén értelmezett A metszéspont x = 0-nál van Ez megoldása az egyenletnek /II b)az a) részhez hasonlóan az egyenlet értelmezési tartománya x $ 0 A grafikonról leolvasható, hogy x = Ez jó megoldás c) Hasonlóan az elôzôekhez x = 0 az egyenlet megoldása Az értelmezési tartomány x $ 0 /III / A függvények grafikonjai nem metszik egymást, az egyenletnek nincs megoldása

Irracionális egyenletek 9 a) Az egyenlet értelmezési tartománya: x $ 0 /a A grafikonról leolvasható, hogy x = 0, x = b) Az egyenlet értelmezési tartománya: x $ 0 /b A grafikonról leolvasható, hogy x = 0, x = c) Az egyenlet értelmezési tartománya: x > 0 /c A grafikonról leolvasható, hogy x = d) Az egyenlet értelmezési tartománya: x # 0 /d A grafikonról leolvasható, hogy x = 0, x =-

96 Irracionális egyenletek, egyenlôtlenségek /e e) Az egyenlet értelmezési tartománya: x $ - A grafikonról leolvasható, hogy x = /f f) Az egyenlet értelmezési tartománya: x $ A grafikonról leolvasható, hogy x = a) Az egyenlet értelmezési tartománya: x $ - Mivel mindkét oldal nemnegatív, így mindkét oldalt négyzetre emelve az egyenlet megoldása: x =-, amely eleme az értelmezési tartománynak b) Az egyenlet értelmezési tartománya: x $ 7, négyzetre emelés után az egyenlet megoldása x = 6 c) Az egyenlet értelmezési tartománya: x # Az egyenlet megoldása: x =-, d) Az egyenlet értelmezési tartománya: x $ - Az egyenletnek nincs megoldása, mert az egyenlet bal oldalának értékkészlete, nemnegatív, jobb oldal - a) Kikötés: x $ Négyzetre emelve azt az egyenletet kapjuk, hogy: _ x - i =, ebbôl x =,, ami valóban megoldás b) Kikötés: x #, Elosztva -mal, majd négyzetre emelve, kapjuk, hogy x =, c) Kikötés: x $ - Rendezzük az egyenletet: x + = 8 Négyzetre emelés után az egyenlet gyöke x = d) Kikötés: x $ -, Rendezzük az egyenletet a következô módon: x +, =, majd négyzetre emelve kapjuk, hogy az egyenlet megoldása x = 7,

Irracionális egyenletek 97 e) Kikötés: x $ - 9 Rendezzük az egyenletet: x + = Négyzetre emelés után: x = megoldást kapjuk 9 6 a) Az egyenlet értelmezési tartománya x $ Vezessük be az a= x- jelölést, ekkor a= a egyenlethez jutunk, amelynek megoldása az a= 0, a= Visszahelyettesítve kapjuk, hogy x=, x= b) Az egyenlet értelmezési tartománya x $ Az egyenlet bal oldalának értékkészlete nemnegatív, így a jobb oldalnak is nemnegatívnak kell lenni Ebbôl adódik, hogy - x $ 0, azaz x # Összevetve az értelmezési tartománnyal x = megoldást kapjuk 7 a) Az egyenlet értelmezési tartománya: bal oldal: x $-, jobb oldal: x $, tehát x $ Négyzetre emelés után: x =-7 adódik, ami nem eleme az értelmezési tartománynak, tehát nem megoldása az egyenletnek 7 b) Bal oldal: x $, jobb oldal: x #, tehát az értelmezési tartomány: 7 # x # 8 Négyzetre emelés után: x = adódik, és ez megoldása a feladatnak 0 8 a) Mivel a négyzetgyök alatt teljes négyzet áll, ezért az egyenlet minden valós számra értelmezhetô Átalakítva: _ x- i = x-, ebbôl x- = x-, melynek megoldása x $ b) Minden valós számra értelmezett Átalakítás után: x- = x+ abszolútértékes egyenletet kapjuk Az abszolútérték felbontása után kapott egyenletek: Ha x $, akkor x- = x+, melynek az adott intervallumon nincs megoldása Ha x #, akkor - x+ = x+, melynek az adott intervallumon a megoldása x =-

98 Irracionális egyenletek, egyenlôtlenségek c) Az egyenlet bal oldala x $ esetén, a jobb oldal x # esetén értelmezett A két halmaznak nincs közös része, tehát az egyenletnek nincs megoldása 9 Célszerû a x = y ismeretlen bevezetése a) x $ 0 esetén értelmezett az egyenlet Ekkor az új egyenlet: - y= y- elsôfokú egyenletbôl: y =, tehát x = b) Értelmezési tartomány: x $ 0, x! 6; 9 Az új ismeretlen bevezetése után a törtes egyenlet megoldása: y = 0, tehát x = 00 c)hasonlóan a b) részhez: x $ 0, x! A megoldás: x = 9 d) x $ 0 Most célszerû az y= x bevezetése Ekkor az egyenlet: _ y+ i + _ y- i = _ y+ i alakban írható Zárójelfelbontás, összevonás után: y - y = 0, melybôl y= 0, y= Az egyenlet megoldása: x= 0, x= 6 0 a) Kikötések: x$ -6, x$ -, ekkor mindkét oldal nemnegatív, tehát a négyzetre emelés ekvivalens átalakítás Négyzetre emelés után az egyenlet: x + x - 8 = 0 Gyökei: x=-, x=, amelybôl az eredeti egyenlet gyöke: x = b) Kikötés: # x # Négyzetre emelés után a rendezett egyenlet: x - x + = 0, melynek gyökei: ; Az hamis gyöke az egyenletnek, így a megoldás: c) A négyzetgyök miatt egyrészt x #, másrészt x - $ 0, azaz x $ 6 teljesülése szükséges Ennek a két egyenlôtlenségnek nincs közös része, tehát a feladatnak nincs megoldása d) Kikötés x $ - 6 Rendezzük az egyenletet oly módon, hogy csak a gyökös kifejezés álljon az egyik oldalon x+ = x+, ekkor még az x $ - -nek is teljesülni kell Négyzetre emelés után: x + x - 8 = 0 egyenletet kapjuk, melynek gyökei: -; Ezek közül az eredeti egyenletnek csak az x = a megoldása e) Kikötés: x # -, majd rendezés után -- x = x+ alakban x $ -, tehát az egyenlet megoldása - # x #- intervallumon értelmezhetô A négyzetre emelés után: x + 0x + = 0, melynek gyökei: -,; -, Az eredeti egyenlet gyöke a -,

Irracionális egyenletek 99 f) A bal oldal - x $ 0, azaz x # 6esetén értelmezhetô, és a jobb 9 oldal x $ 6, kell hogy teljesüljön Így csak az x = 6 lehet a megoldás, ellenôrzéssel igazolható, hogy ez valóban jó a) Közös kikötés: x $ Négyzetre emelve, majd rendezve az egyenletet kapjuk: x - x + = 0, melynek gyökei: 7, Az eredeti egyenlet gyöke a 7 b) Közös kikötés: x $ Lásd elôzô feladat A kapott másodfokú egyenlet: x - 6x + 7 = 0 Megoldás a 7 c) Kikötés: x >, a kapott másodfokú egyenlet: x - x+ = 0 A megoldás: x = 8 d) Kikötés: x >, a kapott másodfokú egyenlet: x - 7x - = 0 Az egyenlet megoldása x = a) Az egyenlet értelmezési tartománya: x $, Két négyzetgyökös kifejezés összege csak akkor lehet 0, ha a két kifejezés külön-külön 0 Így tehát x=, es x=, egyszerre kell, hogy teljesüljön, de ez lehetetlen b) Kikötés: x$ Rendezve az egyenletet kapjuk, hogy: x-= x+, melybôl ellentmondásra jutunk c) A kikötések megtétele után vizsgálva az egyenletet ellentmondásra jutunk, hisz két nemnegatív kifejezés összege nem lehet d) A kikötések során a két egyenlôtlenségnek nincs közös része, mert 7 x $, és x # Így az egyenletnek az értelmezési tartománya üres halmaz A kikötések megtétele után rendezzük úgy az egyenleteket, hogy mindkét oldalon egy négyzetgyökös kifejezés legyen, majd ezután emeljünk négyzetre, majd a kapott egyenlet rendezése után ismételten emeljünk négyzetre a) Kikötés: # x # Rendezve az egyenletet: x- = - - x Emeljünk négyzetre: x- = - - x + - x Rendezés után: x- =- - x, melyet ha ismét négyzetre emelünk a kapott másodfokú egyenlet: x - 6x + 6 = 0, melynek gyökei x=, es x= Mindkét gyök megoldása az eredeti egyenletnek b) Kikötés: x $ Rendezés után: x+ = 8- x-, majd négyzetre emelve és rendezve: x- 8 = 6 x-

00 Irracionális egyenletek, egyenlôtlenségek Másodszori négyzetre emelés után: a kapott másodfokú egyenlet: x - 7x + 60 = 0, melynek gyökei: x = 6, és x = 0 Ellenôrzés után a megoldás: x = 0 c) Kikötés: - 7 # x # Rendezés után: x+ 7 = + - x Négyzetre emelve, majd rendezve: x- 0= - x Újból négyzetre emelve kapjuk: x + x- 88 = 0, melynek megoldásai: x=, es x=-, 76 Melyek közül csak a megoldása az egyenletnek d) Kikötés: x $ - Rendezve kapjuk: x+ 6, = x+ - Négyzetre emelve, majd rendezve: x+ = x+,, amelybôl: x+ = x+ Ennek az egyenletnek a megoldásai: x = és x =- A két gyök közül az eredeti egyenlet megoldása az x = Az ilyen típusú feladatok az egyenletek kétszeri négyzetre emelésével oldhatók meg A másodszori négyzetre emelés elôtt rendezzük úgy az egyenletet, hogy az egyik oldalon csak a négyzetgyökös kifejezés szerepeljen a) Kikötés: x $ Négyzetre emelve majd rendezve: x+ - _ x+ i_ x- i + x- = x+, illetve x= 0x + x- Újból négyzetre emelve, majd rendezve a x + x- = 0 másodfokú egyenletet kapjuk, amelynek gyökei: x=, es x=-, a kikötésnek azonban ezek a gyökök nem felelnek meg b) Kikötés: x $ 6 Az elôzôhöz hasonlóan: _ x+ i_ x- 6i =, majd ismételt négyzetre emelés után a kapott másodfokú egyenlet: x - x - 0 = 0, melynek gyökei: x = és x =- Kikötés miatt csak a lehet megoldás és ez valóban jó c) Kikötés: x $ - 7 Hasonlóan az elôzôkhöz a kapott másodfokú egyenlet: x - 8x - = 0, melynek megoldásai: x, = es x=-, ezek közül az eredeti egyenletnek a a megoldása

Irracionális egyenletek 0 d) Kikötés: x $ 7 Az elôzôkhöz hasonlóan: a kapott másodfokú egyenlet: x - x - = 0, melynek gyökei: x = 7, amelyek közül a ;! + 7 megoldása az eredeti egyenletnek Képletbe való behelyettesítés, majd négyzetre emelés után adódik, hogy s 6, m Egy emeletes ház egy emeletének magassága,-m között van, így a labdát az ötödik vagy hatodik emeletrôl ejtették ki 6 A megadott képlet alkalmazása során a megfelelô adatokra kell figyelni A lejtô alján elért sebesség a lassulás kezdôsebessége, majd a mozgás során a végsebesség 0 Ezek után a képletbe való behelyettesítéssel adódik: 0= 0 - $ $ s Ebbôl s 6, 7 m A szánkó közelítôleg 7 m út megtétele után áll meg 7 A képletbe való behelyettesítéssel könnyen kifejezhetô a megtett út, de m a behelyettesítés elôtt minden sebesség mértékegységet -ba kell váltani s km m a) v0 = 60 6, 67 h = s km m v = 0 = 8,, ekkor a megtett út hossza közelítôleg m h s (,88 m) km m b) v0 = 90 =, ekkor a megtett út kb 0 m hosszú (9,68 m) h s 8 a) Kikötések: x + x- 7$ 0, amelybôl -- - + x#, vagy x$, (I) 0 és x + x- 9$ 0, amelybôl x # - - 0, vagyx $ - +, (II) - - 0 - + 0 (I) és (II) közös része x#, vagy x$ Vezessünk be alkalmasan megválasztott ismeretlent: Legyen x + x- - 9= a, ekkor az egyenlet: a+ = a alakú lesz (a $ 0) A kikötés miatt mindkét oldal értelmezett, és nemnegatív, ezért a négyzetre emelés ekvivalens lépés A kapott másodfokú egyenlet a - 6a - 9 = 0, melynek gyökei a =, és a =- 8 8 a kikötés miatt nem lehet, ezért visszahelyettesítés után a kapott egyenlet:! 97 x + x- 9=, melynek gyökei: x ; = - Mivel az egyenlet megoldása során ekvivalens lépéseket végeztünk a megfelelô ki- kötések elvégzése után, ezért a kapott gyökök az eredeti egyenletnek is megoldásai

0 Irracionális egyenletek, egyenlôtlenségek b) Kikötések: x + 7x- 8$ 0, és x + 7x- $ 0, melyekbôl 7 97 x # - - 7 97, vagy x $ - + Az új ismeretlen bevezetése után: x + 7x- = a kapott egyenlet: a+ = a ( a $ 0) Ennek gyökei: a=, es a=- A kikötéssel összevetve csak a lehet megoldás Visszahelyettesítve a kapott 7! másodfokú egyenlet gyökei: x ; = - Mivel ekvivalens átalakításokat végeztünk a megfelelô kikötések elvégzése után, ezért az egyenletnek mindkét gyök megoldása -- - + c) Kikötés: x + x- 6$ 0, amelybôl x#, vagy x$ Vezessünk be új ismeretlent a= x + x- 6 (I) Az új egyenlet: a+ a = Rendezve a= - a, ahol a kikötések a$ 0 (II), és a# (III) -- - + (II)-bôl: x#, vagy x$ (III)-bôl: - 6 # x # (II) és (III) összevetése után: -- - + -6 # x#, vagy # x# Most már négyzetre emelve az egyenletet a kapott gyökök a = 6, és a = (III) miatt csak a lehet a megoldás Visszahelyettesítve (I)-be a kapott gyökök: x=, es x=- Mivel a kikötések vizsgálata után ekvivalens átalakításokat végeztünk, ez a két gyök megoldása az eredeti egyenletnek 9 a) Kikötések: 6 + x $ 0 6 x! R esetén teljesül 6 - x 6 + x $ 0; és x # Emeljük négyzetre az egyenlet mindkét oldalát: 6-8x+ x = 6 - x 6 + x Nullára rendezve, majd szorzattá alakítva: xc 6 + x - x+ 8m = 0 Egy szorzat akkor és csak akkor 0, ha valamelyik tényezôje 0 Így tehát x = 0 vagy 6 + x - x+ 8 = 0; melyet a 6 + x = x-8 átalakítás után megoldva x = adódik Mindkét gyök nemnegatív és megoldása az eredeti egyenletnek b) Kikötések megvizsgálása után adódik: x $ Az elôzôhöz hasonlóan négyzetre emelve majd szorzattá alakítva

Irracionális egyenletek 0 adódik, hogy x = 0, ami a kikötés miatt nem lehet, majd x = Ez a gyök nemnegatív és megoldása az eredeti egyenletnek 0 Vezessük be az y= x-8 jelölést A nevezôben nevezetes szorzatokat vehetünk észre, a közös nevezôre hozáskor, ezért egyenletünk összevonva és rendezve így írható: _ y-6i: 9`y - 6j+ `y -8jD = 0 `y -6j`y -8j A számlálóból származó gyökök: y =, y = 6, y =- 6, és ezek nem gyökei a nevezôben levô másodfokú tényezôknek x - 8 értékére természetesen csak a nemnegatív értékek jöhetnek szóba Ennek megfelelôen az eredeti egyenlet megoldásai: x = 7, illetve az x = Négyzetre emeléssel a bal oldalon negyedfokú tag szerepelne, így próbálkozzunk más ötlettel A négyzetgyök alatti kifejezés -gyel nagyobb, mint az egyenlet bal oldalán levô, így vezessünk be új ismeretlent: y= x + x+ 8 Ekkor egyenletünk: y -y- = 0 Ennek nemnegatív gyöke: y = 8 Visszahelyettesítve: x + x+ 8 = 8, melynek gyökei: x = és x =- 9 Behelyettesítéssel meggyôzôdhetünk, hogy ezek valóban megoldásai az eredeti egyenletnek A bal oldali összeg miatt: x - x+ 7 $ 0, így # x # Mivel x - x+ 7= _ x-i_ x- i +, így a jobb oldal értéke a vizsgált intervallumon legfeljebb Az intervallumban levô valós számokra vizsgáljuk a bal oldal értékét: x- $ x- és -x $ - x, mivel a gyök alatt -nél nem nagyobb számok vannak Így a bal oldalon levô összeg értéke legalább Tehát az egyenlôség pontosan akkor teljesülhet, ha mindkét oldal értéke Ez x = és x = esetén áll fenn Behelyettesítéssel látható, hogy ezek valóban megoldások Az értelmezési tartományok vizsgálata alapján egyenletünk nincs értelmezve, ha: < x <, vagy < x < Rendezve: _ x-i_ x- i = - _ x-i_ x-i; x - x+ = - _ x-i_ x- i + x- 7x+ Rendezve, majd ismét négyzetre emelve: _ x- i = _ x-i_ x-i;

0 Irracionális egyenletek, egyenlôtlenségek _ x-i_ x- i = 0, azaz x =, illetve x = A behelyettesítés mutatja, hogy ezek valóban megoldások Kikötéseink: x $ -, illetve x $ Négyzetre emelés után az x -8x - x+ = 0 egyenletet kapjuk Mivel egész gyökei nincsenek, próbáljuk meg szorzattá alakítani x -8x - x+ = `x -x- j`x + x-j A szorzat alak egyik tényezôjét megkaphatjuk abból a megfontolásból kiindulva, hogy a két oldal függvényei egymás inverzei, így képeik az f _ xi= x egyenesén metszik egymást, azaz a metszéspont abszcisszájára fennáll: x - = x A szorzat alakot vizsgálva a következô gyököket kapjuk a tényezôkbôl:! 7! x =, illetve: x = - 7 Kikötéseinket figyelembe véve a feladat megoldásai: x = +, x = - - Az egyenletnek csak x $ esetén lehet csak megoldása Tekintsük az f _ xi= - + x függvényt A függvény az alaphalmazon szigorúan monoton nô Ha x> f _ xi, akkor a monotonitás miatt f _ xi> f ` f _ xij, és f ` f _ xij > f a f ` f _ xijk Ilyen x tehát nem lehet megoldása az egyenletnek Hasonlóan látható, hogy x akkor sem lehet megoldás, ha x< f _ xi Tehát csak akkor kaphatunk megoldást, ha x= f _ xi, azaz ha x= - + x Négyzetre emelés és rendezések után: x - x + = 0, melynek gyökei: x = és x = Ellenôrzéssel láthatjuk, hogy ezek kielégítik az eredeti egyenletet 7 6 A bal oldal akkor értelmes, ha x $ -, míg a jobb oldal ha x $ 7 7 A kikötéseink akkor teljesülnek egyszerre, ha - # x #- 7 vagy 7 # x Négyzetre emelve és rendezve: x -x - 8x+ = 0 Az együtthatókat figyelve látható, hogy ennek gyöke az x = Ezért szorzattá alakítva egyenletünk: _ x- i` x + x -x- j = 0 Vizsgáljuk a második tényezôt: x + x -x- = `x -x - 7xj+ `x -6x- j= x`x -x- 7j+ + ` x -x- 7j = _ x+ i` x -x-7j Tehát további gyök: x =- az elsô tényezôbôl, valamint: x = + és az x = - a második tényezôbôl A kikötéseinknek azonban csak az

Irracionális egyenletek 0 x =- és az x = + felelnek meg Ezek ki is elégítik az eredeti egyenletet 7 Emeljük köbre mindkét oldalt Rendezés után egyenletünk: x - xb x + - xl = 7 A zárójelben levô kifejezés éppen az eredeti egyenletünk bal oldala, ezért x - x $ = 7, ahonnan: 7 x_ - xi = 6 J 7 N Köbre emelve az x - x+ K = 0 6 O másodfokú egyenlethez jutunk Ennek diszkriminánsa negatív, tehát az egyenletnek nincs megoldása a valós számok hal- L P mazán 8 Köbre emelve és rendezve a következô egyenletet kapjuk: x+ - xb x+ + - xl =- x+ 8 A zárójelben levô kifejezés épp az egyenletünk bal oldala, így: _ x+ i_ - xi = x+ 8 Ismét köbre emelve: x + 86x - 7x+ 88 = 0 Az együtthatók összege 0, így _ x - i kiemelhetô, majd a kapott másodfokú tényezô szorzattá alakítható: _ x- i _ x+ 88i = 0 Ennek két gyöke van, az és a -88 Az x =, az eredeti egyenletnek nem megoldása, míg az x =-88 igen, errôl behelyettesítéssel is meggyôzôdhetünk 9 Nyilván x nem lehet negatív szám Legyen y szintén nem negatív, melyre teljesül: 6 x = y Ekkor az új ismeretlen kapott egyenlet: y + y = y Ha y = 0, akkor x = 0 és ez megoldás Ha y! 0, akkor oszthatunk y -nal Így az y - y + = 0 egyenlethez jutunk Mivel az együtthatók összege 0, így az egyik megoldás az y = Az egyenlet szorzat alakja: _ y- i` y + y- j = 0 A második tényezôbôl kapott gyökök: y = - Mivel csak pozitív értékek lehetnek a megfelelôk,! így az eredeti egyenletnek három megoldása lehet: y = 0, x= 0; y =, ekkor x= ; y = - + J, x= - + N K O K O L P 0 Emeljünk négyzetre: 6 + x + 6 - x = 6-6 - x Újabb négyzetre emelés után: 6 x 6 6 + - = - 6 - x + 6 - x

06 Irracionális egyenletek, egyenlôtlenségek Legyen: y= 6 - x Ekkor a következô egyenlethez jutunk: y - y + = 0 Ennek gyökei: y = és az y = 8 Ha y =, akkor x = 0, míg az y = 8 nem ad valós megoldást Tehát az egyenlet egyetlen megoldása: x = 0 Kikötésünk: x $ 0, ekkor p $ 0 is igaz Rendezzük át az egyenletet: p+ x = p- x Ábrázoljuk a következô függvényeket: f _ xi = p-x, g_ xi = p+ x Az f _ xi függvény képe egyenes, mely a tengelyeket metszi a _ 0; pi és a _ p; 0i pontokban A g_ xi függvény szigorúan monoton növekvô függvény, melynek képe az y tengely p pontjából indul ki Így pontosan akkor létezik megoldás, ha p# p, azaz ha p # p Ekkor p - p= p_ p-i $ 0 Ez pontosan akkor teljesül, ha p = 0, vagy ha p $ Kikötésünk: x $ 0 Emeljünk négyzetre: b xl + a x + b- c = 0 Ez x -re nézve másodfokú egyenlet, melynek legfeljebb két gyöke lehet a valós számok halmazán, azaz az eredeti egyenletnek semmilyen paraméterértékek esetén sem lehet végtelen sok megoldása Rendezés és négyzetre emelés után: _ a+ ci x = c -b Ha az eredeti egyenletnek végtelen sok megoldása van, akkor ennek a következményegyenletnek is végtelen sok megoldása kell hogy legyen Ez viszont csak úgy lehet, ha a=-c és b= c Visszahelyettesítve ezeket az eredeti egyenletbe: x- c x + c + x = c, vagyis c- x + x = c kell, hogy teljesüljön Ez pontosan akkor áll fenn, ha 0 < c Összegezve: az egyenletnek akkor van végtelen sok megoldása, ha: c > 0 és a=- c, b= c Rendezzük az egyenletet: x- x = `-x j -x alakra 6 Négyzetre emelve és rendezve: x - 8x + 8x - = 0 Legyen y= x, ekkor egyenletünk: y - 8y + 8y- = 0 Írjuk fel egyenletünket a következô alakban: _ yi - _ yi + 9_ yi - = 0 Az együtthatók alapján a y =, azaz y = ennek megoldása

Irracionális egyenlôtlenségek 07 _ y - i-et kiemelve: _ y-id_ yi - 8_ yi+ n = 0! A második tényezô 0, ha y = Tehát y-ra a megoldásaink: y =, y = +, y = -! - Az eredeti egyenlet megoldásai lehetnek: x, =!, x6, = A négyzetre emelések miatt ellenôriznünk kell a kapott gyököket, ezek alapján + - feladatunk megoldásai: x =-, x =, x = Irracionális egyenlôtlenségek Az egyenlôtlenség bal és jobb oldalán álló függvények metszéspontját M-mel jelöljük a) Közös értelmezési tartomány: x $ 0, M( 6, ), megoldás: 0# x # 6 b) Közös értelmezési tartomány: x $, M(,), megoldás: # x # c) Közös értelmezési tartomány: x $, metszéspont nincs, megoldás: nincs ilyen valós szám 6 a) Kikötés: x + $ 0, azaz x $ -, ekkor mindkét oldal nem negatív, a négyzetre emelés ekvivalens átalakítás Megoldás: - # x # 0 b) Kikötés: x $ - Négyzetre emelés és rendezés után a megoldás: 0 - # x #-, vagy x $ - c) Kikötés: x $ Négyzetre emelés és rendezés után: 0< x -x- 6, melybôl a megoldás x > 6 6 7 a) Kikötés: x $ - 6 Ha - # x < -, akkor az állítás igaz, mert a jobb oldal negatív Ha x $ -, akkor négyzetre emelés és rendezés után: a 0> x -x- egyenlôtlenségbôl: - # x < 6 Összegezve a megoldás: - # x < b) Kikötés: x $- Négyzetre emelés és rendezés után a megoldás: - # x #

08 Irracionális egyenletek, egyenlôtlenségek 7 c) Kikötés: x $ Négyzetre emelés és rendezés után a megoldás: x # - Ez ellentmond a kezdeti feltételnek, így az egyenlôtlenségnek nincs valós megoldása 8 a) A négyzetgyökök alatt teljes négyzetek vannak, ezért az egyenlôtlenségünk a következô alakba írható: x+ + x- # Ha x < -, akkor az egyenlôtlenség: -x-- x+ #, azaz x $ - Ez ellentmondás Ha - # x #, akkor az egyenlôtlenség: x+ - x+ # Ez is ellentmondás Ha x $, akkor az egyenlôtlenség: x+ + x- #, azaz x # Ismét ellentmondásra jutottunk, így a feladat feltételeinek egyetlen valós szám sem tesz eleget b)a négyzetgyök alatt teljes négyzet van, ezért az egyenlôtlenségünk a következô alakba írható: x+ # x+ A jobb oldal akkor lesz nem negatív, ha x $ - Ha x < -, akkor az egyenlôtlenség: -x- # x+, melybôl: x $ - Ha x $ -, akkor az egyenlôtlenség: x+ # x+, mely minden számra igaz Összegezve a feladat megoldása: x $ - valós számok c)a négyzetgyök alatt teljes négyzet van, ezért az egyenlôtlenségünk a következô alakba írható: x+ $ x- Ha x <, akkor a jobb oldal negatív, így az egyenlôtlenség fennáll Ha x < -, akkor az egyenlôtlenség: -x-$ x-, azaz x # - Ha x $ -, akkor az egyenlôtlenség: x+ $ x-, mindig igaz Összegezve: az eredeti egyenlôtlenséget minden valós szám kielégíti 9 a) Kikötés: x $, ekkor mindkét gyökös kifejezés értelmezhetô Négyzetre emelve: x -x # 8- x A jobb oldal nem negatív, ha x # 96 Ismét négyzetre emelve: x -x# x - 8x+ 96, melybôl x # 96 Összegezve a megoldás: # x # b) Kikötés: x $ 8 esetén a gyökös kifejezések értelmezhetôk Rendezve és négyzetre emelve: x+ > x- 8+ + 6 x- 8 Rendezve és újra négyzetre emelve: x - 6x + 88> 0, mely teljesül, ha x<, vagy x > Tehát a megoldás: 8 # x <, vagy x >

Irracionális egyenlôtlenségek 09 60 A bal oldal értéke mindig nem negatív, így teljesül az egyenlôtlenség, ha a gyök alatti tört nem negatív Kikötésünk és egyben az egyenlôtlenség megoldása: < x # x 6 a)kikötésünk: - + x -x- $ 0, azaz $ 0 teljesül, ha x # -, x x vagy x $ x -9x-8 Négyzetre emelve és rendezve: < 0 9x Mivel a nevezô mindig pozitív, így a számlálónak negatívnak kell lennie x - 9x - 8< 0, ha -, < x < Összevetve a kikötésekkel az egyenlôtlenség megoldása: -, < x #, vagy # x < b) Kikötéseink: x! 0, és x # Esetszétválasztással dolgozunk: Ha 0< x<, akkor beszorozva és négyzetre emelve: x 6x< 0 -, ami az alaphalmaz minden értékére igaz Ha # x #, akkor -x< - x Ez az alaphalmaz minden értékére igaz Ha - < x< 0, akkor rendezés és négyzetre emelés után: x+ 6> 0 Ez ismét az alaphalmaz bármely értéke esetén igaz Ha - # x #-, akkor - - x $ 0, és x < 0miatt a megoldás: - # x #- Összegezve az egyenlôtlenség megoldása: - # x< 0, vagy 0< x # 6 Alakítsuk teljes négyzetté a bal oldalt: c x + -m - $ 0 Szorzattá alakítva: c x + -- mc x + - + m $ 0 A második tényezô minden x-re pozitív, így az elsô tényezônek szintén pozitívnak kell lennie Ez egyben az egyenlôtlenségünk megoldása is: x # - vagy x $ 6 Kikötéseink: x + $ 0, és - x $ 0, azaz - # x # Rendezve az egyenlôtlenséget: - x > x+ + 7 Négyzetre emelve a - x> x+ ekvivalens egyenlôtlenséget kapjuk

0 Irracionális egyenletek, egyenlôtlenségek A bal oldal nem lehet negatív, így: x < 7 8 Ismét négyzetre emelve és rendezve: x - 8x+ > 0 egyenlôtlenséghez jutunk 6 J 8 8 Szorzattá alakítva: x- + NJ x- - N K OK O > 0 Ez pontosan akkor teljesül, ha x > +, vagy ha x < - K 8 OK 8 O L PL P 8 8 Összevetve a kikötésekkel az egyenlôtlenséget a következô valós számok teszik igazzá: - # x < - 8 6 Alakítsuk szorzattá a másodfokú kifejezéseket: _ x+ i_ x-i_ x- i_ x+ i $ 0 x + A nevezô, ha x!-, mindig pozitív A számláló tényezôinek zérushelyei rendre: -; ; ; - Tehát a megoldás: x < -, vagy - # x #, vagy x $ 6 Kikötés: x # - 7, vagy x $ 7 Az egyenlôtlenség bal oldala _ x- 7i_ x+ 7i-re másodfokú kifejezés Alakítsuk szorzattá az egyenlôtlenség bal oldalán levô kifejezést: c _ x- 7i_ x+ 7i -9mc _ x- 7i_ x+ 7i -m $ 0 Szorozzuk meg az egyenlôtlenség mindkét oldalát a biztosan pozitív c _ x- 7i_ x+ 7i + 9mc _ x- 7i_ x+ 7i + m szorzattal: Ekkor egyenlôtlenségünk: `x -0x-00j`x -0x-j $ 0 A tényezôk zérushelyei: x= 0, x=- 0, illetve x= 8, x=- 8 Összevetve a kikötésekkel, az egyenlôtlenség megoldása: x # - 0, vagy -8 # x #- 7, vagy 7 # x # 8, vagy x $ 0 66 A gyökjel alatti kifejezéseknek és a bal oldalnak is pozitívnak kell lennie, ezért a kikötések: 0< - x< + x, ezért: 0< x < Ha az egyenlôtlenséget a nevezôk szorzatával szorozzuk, nem változik a relációs jel állása, vagyis: + x -x $ - x A kisebb oldal pozitív, emiatt négyzetre emelve: - -x $ - x, ekvivalens egyenlôtlenséghez jutunk Legyen z= - x > 0 Ekkor: 0 $ z + z- = _ z+ i - = bz+ + lbz+ - l

Irracionális egyenlôtlenségek Mivel a jobb oldali elsô tényezô pozitív, így a második tényezônek negatívnak kell lennie: z+ - = - x + - # 0 Ebbôl: -x # -, azaz x $ - A feltételek miatt: x $ - Tehát az egyenlôtlenség pontosan akkor teljesül, ha - # x < 67 a)ha x # p, akkor a gyökös kifejezés értelmezhetô Ha p = 0, akkor x< - x Ez csak akkor teljesül, ha x < 0 Ha p < 0, akkor x< p- x A gyök alatti kifejezés miatt: x # p < 0 Ha p > 0, akkor a következô eseteket kell vizsgálnunk: () p > 0 és x # 0, akkor az egyenlôtlenség mindig teljesül p () p > 0 és x > 0, akkor a gyökös tag miatti kikötésünk: x # Ekkor négyzetre emelve: x + x- p< 0 Ez teljesül, ha -- + p < x< - + + + p Mivel x pozitív, így 0< x< - + p+ Összegezve () és () eseteket: ha p > 0, akkor x< - + p+ b) Kikötés: x # Ha p # -, akkor a bal oldal értéke negatív vagy 0, minden olyan esetben, ha x # Ha p > -, akkor a bal oldali szorzat tényezôi nem negatívak, így négyzetre emelve: _ p+ i _ -xi < Az egyenlôtlenség teljesül, ha - < x # _ p + i 68 A feltételek miatt: a+ b> x> a- b> 0, így ezek négyzetgyökére is igaz, hogy: a+ b > x > a- b Adjunk a -t az egyenlôtlenséglánc minden tagjához: a+ b + a > x + a > a + a- b Mivel ezek a mennyiségek is pozitívak, így reciprokaikra: < < a+ b + a x + a a + a-b Ebbôl a nevezôket gyöktelenítve a bizonyítandó állítást kapjuk

Abszolútértékes egyenletek, egyenlôtlenségek i+ n + i 69 Elég belátnunk azt, hogy az < < egyenlôtlenség teljesül minden i=,,, n számra, mert ezeket összeadva az ere- n + n+ i n + i+ n _ i deti egyenlôtlenséget kapjuk Nézzük elôször az állítás bal oldalát! Rendezve: _ n+ ii n + i+ < _ n+ ici+ n + im ami igaz, mert: n+ i< i+ n + i, és n + i+ < n+ Hasonlóan vizsgálva a jobb oldalt: ni + n n + i < n n + i + + i n + i +, ami igaz, mert ni < i n + i +, és n n + i < n n + i+ Ezzel a bizonyítást befejeztük Abszolútértékes egyenletek, egyenlôtlenségek Abszolútértékes egyenletek 70 a) x =! 0, x =!, x =!,, x =! ; 7 b) x =!, x =!, nincs megoldás; c) x = 8, x =-, x = 9, x =-, x = 0,, x =- 0, 7 a) x =, x =-, x =, x =- 7, x =-, x =- 6; 9 b) x =, x =-, x =, x =-, x = 8, x = 0 7 a) nincs megoldás, x =!, x $ ; b) x =-, x =, x = 7 a) x, =! 6, x, =! 6, x, =!, x, =! ; b) x, =!, x =, x =-, x =-, x = ; c) x =-, x =, x =, x = -!!, x, =, x, = 7 a) # x #, - # x # ; b) x =, x =,!,!