(-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9
A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk meghatározni. Elõbbit egy kétkarú emelõt is tartalmazó mûszerrel mérjük A rudat különbözõ súlyokkal terhelve mérõórával (±. mm) megmérjük a rúd behajlását. Kétféle módszer szerint mérünk, elõször adott hosszúságú minta behajlását vizsgáljuk a terhelés függvényében, másik esetben pedig egy adott terheléshez tartozó behajlást mérjük a hosszúság függvényében. A torziómoduluszt a mérési leírásban szereplõ módon, a szálra erõsített torziós inga lengésidejébõl határozhatjuk meg. A mérés során az A jelû téglalap alapú rudat, és az S9 jelû hengeres rudat mértem. A rudak geometriája: A téglalap alapú rúd hosszabb oldalát a-val, rövidebb oldalát b-vel jelölöm. Mindkét oldalát a rúd több pontján mértem, ezeknek az adatoknak az átlagát fogadom el, mint a rúd valós mérete. a.9 mm ±. % b. mm ±. % A henger átmérõje: d. mm ±. %. mérés: Elsõ alkalommal a téglalap keresztmetszetû rudat fogtam be a mûszerbe, amely a hosszabb oldalán feküdt föl a tartószerkezetre. A mérés során a rúd hossza állandó volt (l cm), és a feszítõerõt változtattam. Az adatok lejjebb láthatók, az elsõ oszlopban a feszító erõ van (N), a másodikban a rúd behajlása. mm egységekben. t_a_l.9 9.. 9.. 9. Lehajlás (. mm). 9.. Feszítõ erõ (N). okt.. /9 Készítette:
Az adatokra egyenest illesztettem, ennek egyenlete: y.9*x +. l Az s : F képletben az F együtthatója az illesztett függvény meredeksége (m). Ebbõl E I l kifejezhetjük a Young-moduluszt: E :. Az I értéke ebben az esetben az a b m I képletbõl számolható, melynek értéke:. m. Az adatokat SI mértékrendszerbe konvertálva, és behelyettesítve: E. * Pa.. mérés: A mérést ugyanezen a rúdon végeztem, csak itt a terhelõ erõ volt állandó ( kg -> 9. N), és az alátámasztásokkal a rúd hosszát változtattam. Az adatok lejjebb láthatók, az elsõ oszlopban a rúd hossza van (cm), a másodikban a rúd behajlása. mm egységekben. t_a_m Lehajlás (. mm) Rúd hossza (cm) Az (l, s) adatpárokra egyenest illesztettem, amibõl aztán a harmadfokú görbe egyenletét is megkaptam: y.* - *x +.. okt.. /9 Készítette:
F Az s : l képletben az l együtthatója az illesztett függvény meredeksége (m). Ebbõl E I F kifejezhetjük a Young-moduluszt: E :. Az I értéke ugyanannyi, mint az elõbbi mérés m I során,. m. Az adatokat SI mértékrendszerbe konvertálva, és behelyettesítve: E. * Pa.. mérés: Ez alkalommal szintén a téglalap keresztmetszetû rudat fogtam be a mûszerbe, amely a rövidebb oldalán feküdt föl a tartószerkezetre. A mérés során a rúd hossza állandó volt (l cm), és a feszítõerõt változtattam. Az adatok lejjebb láthatók, az elsõ oszlopban a feszító erõ van (N), a másodikban a rúd behajlása. mm egységekben. t_b_l.9 9.. 9.. 9 9. 9. 9. Lehajlás (. mm) 9. 9 9. Feszítõ erõ (N) Az adatokra egyenest illesztettem, ennek egyenlete: y.*x +. l Az s : F képletben az F együtthatója az illesztett függvény meredeksége (m). Ebbõl E I l kifejezhetjük a Young-moduluszt: E :. Az I értéke ebben az esetben az a b m I képletbõl számolható, melynek értéke:. m. Az adatokat SI mértékrendszerbe konvertálva, és behelyettesítve: E. * Pa.. okt.. /9 Készítette:
. mérés: A mérést ugyanezen a rúdon végeztem, csak itt a terhelõ erõ volt állandó ( kg -> 9. N), és az alátámasztásokkal a rúd hosszát változtattam. Az adatok lejjebb láthatók, az elsõ oszlopban a rúd hossza van (cm), a másodikban a rúd behajlása. mm egységekben. t_a_m Lehajlás (. mm) Rúd hossza (cm) Az (l, s) adatpárokra egyenest illesztettem, amibõl aztán a harmadfokú görbe egyenletét is megkaptam: y.* - *x +. F Az s : l képletben az l együtthatója az illesztett függvény meredeksége (m). Ebbõl E I F kifejezhetjük a Young-moduluszt: E :. Az I értéke ugyanannyi, mint az elõbbi mérés m I során,. m. Az adatokat SI mértékrendszerbe konvertálva, és behelyettesítve: E.9 * Pa. Összegzés: A rúd Young-moduluszára a különbözõ mérésekbõl a következõ értékek adódtak:.9,.,.,. (* GPa). Ebbõl a.-es érték nagyon eltér a többitõl, valószínûleg mérési hiba miatt, ezért nem veszem figyelembe a pontos érték kiszámításánál. A Young-modulusz anyagra jellemzõ, így a három adat átlagát veszem pontos értéknek:. * GPa. okt.. /9 Készítette:
Hibaszámítás: A hibát az. és. mérésben használt képlet tényezõinek hibájának összegébõl számolom. Mivel b-nek nagyobb a hibája, mint a-nak, ezért a b -t tartalmazó I hibáját számolom. Az egyenes hibáját.-nek becsülöm, és a hibát felfelé kerekítem, ezzel valószínûleg túlbecsülöm. E l m a : + + + b. % E l m a b A Young-modulusza a téglalap alapú rúdnak tehát:. * GPa ±. %. mérés: Ez alkalommal a hengeres rudat fogtam be a mûszerbe. A mérés során a rúd hossza állandó volt (l cm), és a feszítõerõt változtattam. Az adatok lejjebb láthatók, az elsõ oszlopban a feszító erõ van (N), a másodikban a rúd behajlása. mm egységekben. h_l.9 9.. 9.. 9.. Lehajlás (. mm) 9 9. 9. 9 9. 9 Feszítõ erõ (N) Az adatokra egyenest illesztettem, ennek egyenlete: y.*x +. l Az s : F képletben az F együtthatója az illesztett függvény meredeksége (m). Ebbõl E I l kifejezhetjük a Young-moduluszt: E :. Az I értéke ebben az esetben az π m I R képletbõl számolható, melynek értéke:. m. Az adatokat SI mértékrendszerbe konvertálva, és behelyettesítve: E.9 * Pa.. okt.. /9 Készítette:
. mérés: A mérést ugyanezen a rúdon végeztem, csak itt a terhelõ erõ volt állandó ( kg ->. N), és az alátámasztásokkal a rúd hosszát változtattam. Az adatok lejjebb láthatók, az elsõ oszlopban a rúd hossza van (cm), a másodikban a rúd behajlása. mm egységekben, a harmadikban a nullpont helyzete, a negyedikben a. és. oszlop különbsége. h_m 9 9 9 9 9 9 9 9 9 9 Lehajlás (. mm) 9 Rúd hossza (cm) Az (l, s) adatpárokra egyenest illesztettem, amibõl aztán a harmadfokú görbe egyenletét is megkaptam: y.* - *x +. F Az s : l képletben az l együtthatója az illesztett függvény meredeksége (m). Ebbõl E I F kifejezhetjük a Young-moduluszt: E :. Az I értéke ugyanannyi, mint az elõbbi mérés m I során,. m. Az adatokat SI mértékrendszerbe konvertálva, és behelyettesítve: E.9 * Pa. Hibaszámítás: A hibát az. mérésben használt képlet tényezõinek hibájának összegébõl számolom. Az egyenes hibáját.-nek becsülöm, és a hibát felfelé kerekítem, ezzel valószínûleg itt is túlbecsülöm. E l m : + + R.9 % E l m R Legvalószínûbb értéknek a két mérésbõl származó értékek átlagát veszem. A Young-modulusza a hengeres rúdnak tehát:.9 * GPa ±.9 %. okt.. /9 Készítette:
. mérés A mérés során egy vékony szál torziómoduluszát (G) mértem torziós inga segítségével. Az ingára két tömeget A mérési adatok lejjeb láthatók, az elsõ oszlopban a tömegek távolsága a forgástengelytõl (a), a másodikban lengés ideje van ( T). torzio.... 9.9.9. T négyzet 9 9.9. 'a' négyzet Az (a, T ) adatpárokra egyenest illesztettem, aminek egyenlete: T.*a +. Az egyenes meredekségébõl a G kiszámolható: G K m + m :, ahol K m ingára helyezett testek tömege, m az egyenes meredeksége. πl : r, m és m az Adatok: m (9. ±.) g m (9. ±.) g r (. ±.) mm l (9. ±.) cm (-as jelû tömeg) (-ös jelû tömeg) Az adatokat SI-be átváltva (m-et is!) G-re a következõ érték adódik: G. * GPa Az egyenes tengelymetszetébõl megkapjuk az üres inga tehetetlenségi nyomatékát: G b Θ ü : Θ s Θ s, ahol b a tengelymetszet, Θ és Θ a tömegek tehetetlenségi K s s nyomatéka.. okt.. /9 Készítette:
Adatok: Θ s.*m *R Θ s.*m *R R (. ±.) cm R (. ±.) cm Az adatokat SI-be átváltva, és behelyettesítve: Θ ü. * - kg*m Hibaszámítás: A torziómodulusz hibája: G l ( r) m : + +. % G l ( r) m A tömegmérés hibáját elhanyagoltam, illetve belevettem az egyenes meredekségének hibájába, mert - nagyságrendû a hibája. A torziómodulusz tehát: G. * GPa ±. % Az üres inga tehetetlenségi nyomatékának hibája: Θ ü (b*(m + m )/m) + Θ s + Θ s ( ) Θ s m R : +. % --> Θ.9 * - kg*m Θ s m R s ( ) Θ s m R : +. % --> Θ. * - kg*m Θ s m R s Az elsõ tag hibáját nem számolom ki, nagyságrendileg ugyanannyi lehet, mint az elõzõ két tag hibája. Θ ü *.9 * -. * - kg*m Az üres inga tehetetlenségi nyomatéka tehát: Θ ü (. ±.) * - kg*m. okt.. 9/9 Készítette: