Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Hasonló dokumentumok
TÁMOP /1/A Tantárgy címe: Transzdifferenciáció és regeneratív medicina Dr. Balogh Péter és Dr. Engelmann Péter

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Sejtek - őssejtek dióhéjban február. Sarkadi Balázs, MTA-TTK Molekuláris Farmakológiai Intézet - SE Kutatócsoport, Budapest

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Őssejtek és hemopoiézis 1/23

Molekuláris Medicina

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

BIOLÓGIAI HATÓANYAGOK TESZTELÉSE BIOTECHNOLÓGIAI MÓDSZEREKKEL

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Transzdifferenciáció és regeneratív medicina

Transzgénikus állatok előállítása

Őssejtek és hemopoiézis 1/23

Őssejtkezelés kardiovaszkuláris kórképekben

Indukált pluripotens sejtek (IPs) 6 év alatt a Nobel-díjig és 8 év alatt az öngyilkosságig

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Epigenetikai Szabályozás

In vivo szövetanalízis. Különös tekintettel a biolumineszcens és fluoreszcens képalkotási eljárásokra

Problémák és lehetőségek a helyreállító gyógyítás területén

A biológia szerepe az egészségvédelemben

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

A sejtek lehetséges sorsa. A sejtek differenciálódása. Sejthalál. A differenciált sejtek tulajdonságai

Nagy Krisztina Semmelweis Egyetem, Orálbiológiai Tanszék

Zárójelentés a Hisztamin hatása a sejtdifferenciációra, összehasonlító vizsgálatok tumor - és embrionális őssejteken című számú OTKA pályázatról

Áttörések és kihívások az őssejt-kutatásban

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

10. előadás: A sejtciklus szabályozása és a rák

Transzdifferenciáció és regeneratív medicina

A keringı tumor markerek klinikai alkalmazásának aktuális kérdései és irányelvei

Őssejtek & Regeneratív Medicina

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Mik a klónok? Genetikailag azonos élılények, identikus ikrek

Biológiai módszerek alkalmazása környezeti hatások okozta terhelések kimutatására

Őssejtek, őssejtterápia - alapfogalmak és alapjelenségek

A polikomb fehérje, Rybp kulcsfontosságú az egér embrionális őssejtek neurális differenciációjához

Őssejtek, őssejtterápia - alapfogalmak és alapjelenségek

In Situ Hibridizáció a pathologiai diagnosztikában és ami mögötte van.

A BIOTECHNOLÓGIA ALKALMAZÁSI LEHETŐSÉGEI A GYÓGYSZERKUTATÁSBAN

Az ABCG2 multidrog transzporter fehérje szerkezetének és működésének vizsgálata

Az X kromoszóma inaktívációja. A kromatin szerkezet befolyásolja a génexpressziót

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az omnipotens kutatónak, Dr. Apáti Ágotának ajánlva, egy hálás ex-őssejtje

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Új terápiás lehetőségek (receptorok) a kardiológiában

10. Genomika 2. Microarrayek és típusaik

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

VÁLASZ DR. CSEH SÁNDOR PROFESSZOR ÚRNAK, AZ MTA DOKTORÁNAK, OPPONENSI VÉLEMÉNYÉRE

Tartalmi vonatkozások. 1. A témaválasztás korszerűsége és tudományos jellege

Molekuláris terápiák

A PLURIPOTENS ŐSSEJTEK KÜLÖNLEGES BIOLÓGIAI PROGRAMJA, EMBRIONÁLIS ÉS INDUKÁLT PLURIPOTENS ŐSSEJTEK

Immunológia alapjai. 10. előadás. Komplement rendszer

Mint emlős, az ember genetikai modelljeként is szolgál. Genomja, génjeinek elrendeződése, szabályozása sok hasonlóságot mutat az emberével.

K Egér klónozás testi- és embrionális ős-sejtekből: A donor sejtek eredetének és kezelésének hatása a genetikai újraprogramozás folyamatára

ELEN MEZŐGAZDASÁGI BIOTECHNOLÓGIAI KUTATÓKÖZPONT GÖDÖLLŐ

Az immunrendszer működésében résztvevő sejtek Erdei Anna Immunológiai Tanszék ELTE

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

A génterápia genetikai anyag bejuttatatása diszfunkcionálisan működő sejtekbe abból a célból, hogy a hibát kijavítsuk.

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Mozgékony molekulák vizsgálata modern mikroszkópiával

Anyai eredet kromoszómák. Zigóta

Mit tud a genetika. Génterápiás lehetőségek MPS-ben. Dr. Varga Norbert

Szövettípusok a növény és állatvilágban

PLURIPOTENCIA GÉNEK IZOLÁLÁSA ÉS IN VITRO VIZSGÁLATA NYÚLBAN

ÖSSZ-TARTALOM 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás

Jelutak ÖSSZ TARTALOM. Jelutak. 1. a sejtkommunikáció alapjai

SZENT ISTVÁN EGYETEM MEZŐGAZDASÁG- ÉS KÖRNYEZETTUDOMÁNYI KAR ÁLLATTENYÉSZTÉS TUDOMÁNYI DOKTORI ISKOLA

Immunológia alapjai előadás. A humorális immunválasz formái és lefolyása: extrafollikuláris reakció és

NUKLEINSAVAK. Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag

Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai

Csordás Attila Transzhumanisták

Immunológia alapjai. 16. előadás. Komplement rendszer

ŐSSEJTEK A KUTATÁSBAN ÉS AZ ORVOSI GYAKORLATBAN Apáti Ágota Uher Ferenc Sarkadi Balázs

-Két fő korlát: - asztrogliák rendkívüli morfológiája -Ca szignálok értelmezési nehézségei

Génátvitel magasabb rendű állatokba elméleti megfontolások, gyakorlati eredmények és génterápiás lehetőségek

Immunológiai módszerek a klinikai kutatásban

Immunológia alapjai előadás MHC. szerkezete és genetikája, és az immunológiai felismerésben játszott szerepe. Antigén bemutatás.

Immunológia alapjai. Az immunválasz szupressziója Előadás. A szupresszióban részt vevő sejtes és molekuláris elemek

Az embrionális őssejt technológia immunhisztokémiai hasznosítása

avagy az ipari alkalmazhatóság kérdése biotechnológiai tárgyú szabadalmi bejelentéseknél Dr. Győrffy Béla, Egis Nyrt., Budapest

TÉMAKÖRÖK. Ősi RNS világ BEVEZETÉS. RNS-ek tradicionális szerepben

Receptorok és szignalizációs mechanizmusok

Biofizika I

ÖSSZ-TARTALOM. 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás 4. Idegi kommunikáció 3.

Sejt- és fejlődésbiológia ea (zh2) / (Áttekintés) (1. csoport) : Start :42:23 : Felhasznált idő 00:00:14 Név: minta

OTKA ZÁRÓJELENTÉS

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Immunológia alapjai 5-6. előadás MHC szerkezete és genetikája, és az immunológiai felismerésben játszott szerepe. Antigén bemutatás.

Sejtbiológia gyakorlati szempontból. Alapfogalmak, tematika

A tumor-markerek alkalmazásának irányelvei BOKOR KÁROLY klinikai biokémikus Dr. Romics László Egészségügyi Intézmény

PROGRAMFÜZET. "GENETIKAI MŰHELYEK MAGYARORSZÁGON" XIII. Minikonferencia SZEPTEMBER 12.

Kromoszómák, Gének centromer

ŐSSEJTEK A KUTATÁSBAN ÉS AZ ORVOSI GYAKORLATBAN Apáti Ágota, Uher Ferenc és Sarkadi Balázs

FEHÉRJE VAKCINÁK BIOTECHNOLÓGIAI ELŐÁLLÍTÁSA III.

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Sejtmag, magvacska magmembrán

A BIOLÓGIAI GYÓGY- SZEREK FEJLESZTÉSÉNEK FINANSZÍROZÁSA ÉS TERÁPIÁS CÉLTERÜLETEI

Sejtfeldolgozás Felhasználás

Átírás:

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Dr. Balogh Péter és Dr. Engelmann Péter Transzdifferenciáció és regeneratív medicina 5. előadás GENOMIKUS ÉS MÁS SEJT-NYOMON- KÖVETÉSES ELJÁRÁSOK, ÚJRA- PROGRAMOZÁS

Klónozás 1952. Ebihal 1963. Ponty 1986. Egér 1996. Birka 2000. Majom 2001. Tehén, macska 2003. Patkány, ló, öszvér 2005. Kutya 2008. Ember

Őssejt potenciál Típus Leírás Példa Totipotens Pluripotens Multipotens A sejtek új élőlényt hoznak létre A sejtek bármilyen sejttípust képesek létrehozni Differenciálódott sejtek, de képesek más szöveteket létrehozni 1-4 napos embriók Blasztociszta néhány sejtje (5-14 napos) Fetális szövet, köldökvér és felnőtt őssejtek

Az őssejtek eredete és az újraprogramozás Zigóta Blasztociszta Epiblaszt (beágyazódás után) Késői embrió/ korai foetus Felnőtt Elköteleződés Elköteleződés Bőr Belső sejttömeg Epiblaszt Primordiális ivarsejtek Központi idegrendszer Csontvelő Totipotens Embrionális őssejtek Pluripotens Epiblaszt őssejtek Pluripotens Embrionális őssejtek Pluripotens Felnőtt őssejtek Multipotens vagy unipotens Egyéb Indukált pluripotens őssejtek Pluripotens + Oct4, Sox2, Klf4, Myc

Az őssejtek konvencionális forrásai TÁMOP-4.1.2-08/1/A-2009-0011 1.Felnőtt őssejtek Szervekből vagy szövetekből kigyűjtve (csontvelő) Multipotens, esetleges szövetspecifikus, pluripotent? Számos klinikai felhasználási lehetőség 2.Embrionális őssejtek A blasztociszta belső sejttömegéből erednek Pluripotens, minden sejtféleséget létrehoz Számos technikai és etikai kérdést, nehézséget vet fel Felnőtt szövetekből is indukálható

Az ES sejtek eredete 1.Felesleges IVF embriók 2.Terápiás klónozás (szomatikus sejtmag transzfer): Donor oocita + szomatikus sejtmag A sejteket a sejtmag donor tulajdonságai jellemzik Sejtvonalak különböző betegségeket is reprezentálhatnak Individuális vonalak: nem immunogének

Szomatikus sejtmag transzfer Kihívást jelent: a klónozott sejtvonalakban, a gének 4%-a abnormálisan működik - Imprinting, metilációs állapot Korlátozottan sikeres: a sejtmagtranszferek ~25% blasztociszta stádiumig; majd a blasztociszták 35%- ból lehet komplett sejtvonalak

Mikromanipulációs készülék és tartozékok Inverz mikroszkóp (fluoreszcens) CO 2 inkubátor Fűthető tárgyasztal tartó pipetta (belső átmérő 10 µm) injektáló pipetta (belső átmérő 7 µm)

Kromoszóma eltávolítás ( Enucleation ) TÁMOP-4.1.2-08/1/A-2009-0011 Kémiai enukleáció: specifikus gátlószerek segítségével Mechanikus enukleáció: 1. A petesejt rögzítve van a kromoszóma orsón keresztül a tartó pipetta segítségével. 2. Az injektáló pipetta keresztüljut a zona pellucida-n és eléri kromoszómaorsót a leszívása céljából. 3. A kromoszóma orsó eltávolítása 4. A kromoszóma orsó teljes eltávolítása és a injekciós pipetta kivétele 5. A kromoszómaorsó elengedése.

Sejtmag injektálás Elektrofúzió Microinjekció: 1. A injekciós pipetta bejuttatása a petesejt zona pellucida rétegébe. 2. Egy kis citoplazma kiszívása, így megkönnyíthető a petesejt membránjának a visszazárása.

Blasztociszta és ESC kolónia létrehozása Az ES sejteket lehet nyerni 8 napos embrióból, szedercsíra állapotból, habár a leghatékonyabb amikor blasztocisztát használnak. Az 5-6 napos blasztocisztában már megfigyelhető a belső sejttömeg. ES sejtek tenyésztéséhez feeder sejtek szükségesek. 4-5 nap múlva ES sejtkolóniák már megfigyelhetőek a szövetkultúra edények oldalán.

Őssejtek karakterizálása I. Karakterizálás: tesztelni kell a kérdéses sejteket, hogy rendelkeznek az őssejtekre jellemző alapvető tulajdonságokkal Az őssejteket rendszeres mikroszkópos vizsgálat során hónapokig kell növeszteni, passzálni. Specializált módszerekkel vizsgálni kell azon sejtfelszíni markereket, melyek csak a differenciálatlan sejtekre jellemzőek

Őssejtek karakterizálása II. Meg kell határozni, hogy a sejteket lehet-e tovább tenyészteni fagyasztás, olvasztás, passzálás után. A humán embrionális őssejtek pluripotenciálja meghatározható: a sejtek spontán differenciálódása sejtkultúrában a sejtek manipulációja, hogy különböző specifikus sejttípust hozzanak létre. egy immunszupresszált egérbe bejutott sejtek képeznek-e egy jóindulatú daganatot un. teratoma-t. A teratomák jellegzetesen többféle differenciáltságú sejtet tartalmaznak. Ha embrioid testecskéket képesek létrehozni, akkor spontánul differenciálódnak. Létrehozhatnak izom/ideg/egyéb típusú sejtet.

Őssejt markerek I. Oct4: oktamer-kötő transzkripciós faktor 4 egy homeodomain tr. molekula melyet a POU5F1 gén kódol. Jellemzi az ES sejteket, jelen van a petesejtben és az embrióban is. Sox2: vagy SRY (sex determináló régió Y)-box 2 HMG faktor, mely transzkripcionális aktivátorként müködik, miután komplexet képez más fehérjékkel (Oct4, Pax6). Elengedhetetlen az ipsc létrehozásban. SSEA3/4: stádium specifikus embrionális antigének, 5-6 monoszaharid kapcsolódik egy ceramid lipidvéghez. Jelenlétük megemelkedik a differenciálódás során. Jelenleg mutatták ki, hogy az SSEA-3 és SSEA-4 faktorok nem feltétlenül szükségesek a hes sejtek pluripotenciájának a fenntartásában.

Őssejt markerek II. A TRA-1-60, TRA-1-81 tumor rejekciós antigének gyakran használt markerek az őssejtek azonosításában. Egy keratán szulfát proteoglikánhoz (KSPG) kapcsolódnak neuraminidáz szenzitív és nem-szenzitív módon. Alkalikus foszfatáz egy hidroláz enzim, amit szintén gyakran használnak az őssejtek azonosítására/aktivitásuk igazolására.

Sejt-nyomonkövetés az őssejtbiológiában Nem genomikus TÁMOP-4.1.2-08/1/A-2009-0011 BrdU (bromodeoxyuridine) beépülés Fluoreszcens festékek: CM-DiI CFSE Hoechst 33342 PKH26

Sejt-nyomonkövetés az őssejtbiológiában: Genomikus I. TÁMOP-4.1.2-08/1/A-2009-0011 1. GFP 27 kda protein (eredetileg a medúzákból izolált) népszerű szöveti riporter rendszer a vizsgálni kívánt gén klónozása után különböző GFP variánsok elérhetőek 2. Lac-Z E. coli lac operon gén X-gal szubsztrátot használó szöveti riporter rendszer

Sejt-nyomonkövetés az őssejtbiológiában Genomikus II. 3. Y kromoszóma marker: A detektálás jóval egyszerűbb, hogyha az előző rendszerekhez hasonlítjuk (GFP, LacZ) FISH analízis Magas kötődési hatékonyság Gyakran használt módszer őssejt transzplantációban (szív/érrendszeri-, emésztőrendszeri betegségek)

Sejtek nyomon követése in vivo képalkotás segítségével Az időkinetikai és 2 foton mikroszkópok kifejlesztése igen nagy előnyt jelent az élő sejtekkel kapcsolatos vizsgálatokban. Az őssejteket különböző időpontokban és helyszíneken lefotózva időkinetikai videók állíthatóak elő, továbbá az automatizált kép és statisztikai analízissel dinamikusan monitorozható az őssejtek sorsa. A sejtvándorlás, sejtalak változás, a sejtosztódás kinetikája együttesen ellenőrizhető.

Sejtkövetés az őssejt biológiában z x t 1 y t 2 Automatizált kép és statisztikai analízis t n Migráció Proliferáció Sejt-forma változás Sejtsors analízis

Újraprogramozás A testi sejteket dedifferenciáltatni lehet őssejtekké un. indukált pluripotens őssejtekké (ips) különböző kísérleti megközelítésekkel. Sejtfúzión alapuló Sejtmag extraktumon alapuló Pluripotens faktorok transzfekciója Szomatikus sejtmag transzfer

Az önmegújhodás molekuláris mechanizmusai Lif PI3K Grb2 Jak Akt MAPK STAT3 Tbx3 Klf4 Sejt-ciklus szabályozás Nanog Sox2 b-myb S G2 Oct3/4 c-myc G1 M Cdx Gata4 2 A differenciálódás megelőzése

Az újraprogramozásban résztvevő gének Nanog: a Nanog cdns 2184 nukleotidból (nt) áll és egy nyitott leolvasási keretet alkot egy 305 AS proteint kódolva a belső sejttömeg és ES sejtek pluripotenciájában játszik szerepet képes fenntartani az ES sejtek önmegújhodását Klf4: Krüppel-szerű faktor CREB transzkripciós faktorral működik közre ES és MS sejtekben expresszálódik Lin28: citoplazmatikus mrns-kötő fehérje kötődik az IGF-2 mrns-hez humán fibroblasztokból történő ips sejtek előállítását megkönnyíti differenciálatlan sejtek markere let-7 mirns-hez kötődik és az aktivitását gátolja Oct4: ld. korábban Sox2: ld. korábban

Telomeráz aktivitás I. A telomér egy heterochromatinális ribonukleoprotein struktúra a kromoszómák végén. Megvédi a kromoszomát a degradálódástól és kettős-láncú DNS törésektől. Amikor a Dolly-t klónozták SCNT-vel, felmerült a kérdés, hogy vajon milyen idősek a sejtjei. A telomér Dollyban, mintegy 20%-al volt rövidebb mint az azonos korú fajtársaié. Számos ellentmondó adat után ki lehet azt jelenteni, hogy a sejtek újraprogramozása során a már megrövidült telomér is meghosszabbodhat, bár ez a képesség igen változó volt az egyes esetekben. Ez kiemeli a telomérhossz ellenőrzésének az összetettségét.

Telomeráz aktivitás II. Telomer az ips sejtekben az ips sejtekre nagy mennyiségű Tert (a telomeráz reverz transzkriptáz komponense) és magas telomeráz aktivitás volt jellemző. az ips sejtek újraprogramozása normál sejtekből (egér és ember) a telomérhosszt és telomeráz aktivitást helyreállította olyan szintre, ami hasonló ES sejtekben megfigyeltekhez.. Az ips újraprogramozás során a TERT, és a TERC (Tel. asszociált RNA komponens) aktiválódik. Az Oct4 és Nanog faktorok a TERC gén szabályozó elemeihez kapcsolódnak, ami magyarázhatja, hogy ezek a komponensek miért jelennel meg nagyobb mennyiségben az ips sejtekben.

Összefoglalás ES és ips sejtek sorsa ellenőrizhető vitális festés után (nem-genomikai/ genomikai) in vivo képalkotó technikákkal. A pluripotencia és önmegújhodás gének (Oct4, Sox2, Klf4) bekapcsolása elősegíti az ips sejtek újraprogramozását. ips sejtek létrehozása hasznos lehet a regeneratív medicina szempontjából, bár nem szabad figyelmen kívül hagyni számos megválaszolatlan kérdést az újraprogramozás folyamatában.