Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28
Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28
Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés) Megtervezett adatbázis evolúció alkotta adatbázis Elosztott adatbázisok: A kommunikációs költségek csökkenése. Mindenki a számára ismerős adatokat gondozza. Egy-egy csomópont kiesése esetén a többi adatai továbbra is elérhetőek. Lehetséges a moduláris tervezés, a rugalmas konfigurálás. Rugalmasabb adatstruktúra kell Önszerveződő adatbázisok: A kapcsolódást nem egy központi egység határozza meg A csomópontok saját maguk döntik el, hova kapcsolódnak 3 / 28
Számunkra jelenleg lényeges paraméterek 1. Hálózat méret: Csomópontok száma Ezres, milliós, esetleg milliárdos méretek esetén lehet statisztikai adatokkal jól jellemezni egy hálózatot 2. Klaszterezettség: Csoportosulás mértéke A szomszéd node-jaim kapcsolódnak-e egymáshoz? Ha 1 akkor mindig, ha 0 akkor soha! 3. Átmérő: Kis átmérő, rövid utak, kisvilág jelleg Egy rácsban igen nagy átmérők lehetnek, míg pl. a teljes gráf átmérője 1. 4. Hasonlósági paraméter (γ): Mennyire hasonló a szerepük? (skálafüggetlen szerkezet) Ha a szám magas, akkor az egyének nagyon hasonlítanak, ha alacsony akkor (~ 2) akkor erősen eltérő szerepek vannak 5. Fokszámeloszlás: a csúcsok mekkora hányadának k a fokszáma? Egyenletes? Binomiális? Valami más? 4 / 28
Kisvilág-tulajdonság 5 / 28
Skálafüggetlenség A fokszámeloszlás hatványfüggvényt követ Kialakulásához vezet Növekedés Preferenciális kapcsolódás https://www.youtube.com/watch?v=sxaosz_t5uq 6 / 28
Gyakorló feladat 1. Hogyan néz ki egy önszerveződően alakuló hálózat? N=100 E=296 Diam=5 C=0.063 N=100 E=294 Diam=4 C=0.095 7 / 28
Hogyan navigálunk kisvilág hálózatban? Kisvilág-hálózat Kleinberg modellje Jon Kleinberg: Nem csak a topológia érdekes, hanem hogy gyorsan meg is lehet találni a célt, térkép nélkül Az optimális modell kereséshez Távolság: d(u,v) lépkedések száma a szomszédokon High Speed Networks Laboratory A rácson két pont között az kapcsolat valószínűsége ~ d(u,v) -r Mohó keresési algoritmus 8 / 28
Egy Google keresés 9 / 28
Search Engine Optimization + Success Factors 10 / 28
Search Engine Optimization + Success Factors White Hat Black Hat 11 / 28
Forgalmi modellezés High Speed Networks Laboratory 12 / 28
Egyensúly vs optimum Közösségi költség: a forgalommintához tartozó átviteli idők összege Egyensúlyi költség: közösségi költség a Nash-egyensúlyi állapotban Közösségi optimum: a lehető legkisebb közösségi költségű állapot Két fontos kérdés: 1. Van-e egyensúlyi állapotra vezető forgalomminta? 2. Ha igen, van-e olyan, aminek a költsége nincs túl messze a közösségi optimumtól? 13 / 28
Egyensúlyi vs optimális átviteli idő Optimálsi átviteli idő egyensúlyi átviteli idő Braess-paradoxon: upgrade nem feltétlenül javít az átviteli időn Legjobbválasz-leképezések Nash-egyensúly Analízis eszköze: forgalomminta potenciális energiája = travel-time függvények összege 14 / 28
Forgalmi minta megtalálása az egyensúlyban LEGJOBBVÁLASZ-ALGORITMUS 1. Kiidulás: egy tetszőleges forgalmi minta 2. Ha egyensúly KÉSZ 3. Egyébként: létezik legalább egy csomag, aminek a legjobbválasza a többire egy gyorsabb út Válasszunk egy tetszőleges ilyet; az váltson át erre 4. GOTO 2. 1. Állítás: Az algoritmus véges sok lépésben megáll Minden lépésben a forgalomminta potenciális energiája csökken 2. Állítás: Az egyensúlyi költség (egyéni átviteli idők összege) a szociális optimum költségének legfeljebb 2x-ese 15 / 28
Gyakorló feladat 2. 2.a. 300 csomagot küldünk A B, a lehetséges útvonalak az ábrán láthatóak. Milyen x és y értékek mellett áll be a Nash-egyensúly? 16 / 28
Gyakorló feladat 2. 2.b. Létrejön egy új kapcsolat A-ból B-be, amin a csomagok számától függetlenül 5 az átviteli idő. Mi a Nash-egyensúlyi állapot? Hogyan változik a teljes átviteli idő az a) ponthoz képest? 5 17 / 28
Gyakorló feladat 2. 2.c. Az A B kapcsolat megszakad, de helyette létrejön egy új, C és D között, amin 0 idő alatt érnek át a csomagok. Mi a Nash-egyensúlyi állapot? Hogyan változik a teljes átviteli idő? 0 18 / 28
Gyakorló feladat 2. 2.d. Visszaépül az A B kapcsolat, miközben a C és D közötti is megmarad. Ebben az esetben mi a Nash-egyensúlyi állapot? Hogyan változik a teljes átviteli idő? 0 5 19 / 28
Gyakorló feladat Mit tanultunk az egyensúlyi és az optimális átviteli idő viszonyáról? Hogyan változik a potenciális energia legjobbválasz leképezések során? Szemléltesd mindkettőt az alábbi példán! 150 300 0 150 20 / 28
Hálózatok növekedése, vírusterjedés High Speed Networks Laboratory 21 / 28
Lineáris növekedési modell Legegyszerűbb: N(t) = az adatbázis mérete t időpontban r = növekedési ráta dn dt = r N(t) A növekedés üteme időben állandó r t Exponenciális növekedés N t = N 0 ert A hálózat felrobban Nem mehet a végtelenségig 22 / 28
Módosítás Vegyük be a túlnépesedést = túl sokan vannak Korlátos erőforrások = a szerver csak bizonyos számú számítógépet tud kiszolgálni A növekedési ráta nem időben állandó Kis N-re r még konstans Egyre jobban csökken K = carrying capacity = teherbírás Ha N>K, akkor negatív: többen hagyják el a hálózatot, mint ahányan jönnek A növekedési ráta változása az adatbázisban levő számítógépek számának függvényében. 23 / 28
A növekedési modell A növekedési ráta nem időben állandó Kis N-re r még konstans Egyre jobban csökken K = carrying capacity = teherbírás Ha N>K, akkor negatív: többen hagyják el a hálózatot, mint ahányan jönnek Az egységre eső növekedés: N-ben lineárisan csökken Kapjuk: logisztikus növekedési modell: Kérdés: N(t) =? Meg lehet oldani analitikusan És grafikusan 24 / 28
A növekedés mértéke K/2-ig nő, utána csökken K után negatív Két fixpont: a 0 és a K Először gyorsan nő, aztán egyre lassabban A teherbírást ha túllépi, csökkeni fog Többen hagyják el a hálózatot, mint ahányan jönnek 0 fixpont, de instabil: kicsit megváltozik, akkor K-ba konvergál K fixpont, stabil: perturbáció hatására oda visszatalál 25 / 28
Vírusterjedés: SIR modell Vírusterjedés vizsgálata SIR modell Természetesen tudni kell, hogy ki kivel érintkezik S(t),I(t),R(t): fertőződésre hajlamosak, fertőzőek, gyógyultak száma t-kor β = S I contact rate ν = I R recovery rate Lassú, robbanás, lecsengés 26 / 28
Véletlen immunizálás vs hubok védelme Ha véletlenszeűen immunizáljuk a csomópontokat: Kiválasztunk 5 csomópontot Ezeket + a szomszédaikat immunizáljuk 24 csomópontot érünk el 27 / 28
Véletlen immunizálás vs hubok védelme Hubokat immunizáljuk 1 lépésben 60 csomópontot érünk el A hatékony megoldás a hubok védelme A hubok azonosítása felvet némi problémát Véletlen node egyik kapcsolata nagy valószínűséggel egy hub 28 / 28