Termodinamika 1. rész
1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni feldolgozással) 2. Az ideális gáz és leíró alapegyenletei a) Állapotjelzők b) Az ideális gáz c) Ideális gáz állapotegyenlete d) Általános gáztörvény e) Speciális gáztörvények (Boyle-Mariotte tv., Gay-Lussac I. és II. tv.) f) Hő és hőmennyiség, fajhő, hőkapacitás g) Gázok kétféle fajhője és a köztük lévő kapcsolat, mólhők és a köztük lévő kapcsolat
e.) Speciális gáztörvények Általánosan megközelítve: (állapotváltozások) Adott a gáz 1. állapota az állapotjelzőkkel p 1, V 1,, n ÁLLAPOTVÁLTOZÁS Keletkezik a gáz 2. állapota az állapotjelzőkkel p 2, V 2,, n Speciális állapotváltozások: 1. A hőmérsékletet állandó értéken tartva, a többi állapotjelző megváltozik IZOTERM 2. A nyomást állandó értéken tartva, a többi állapotjelző megváltozik IZOBÁR 3. A térfogatot állandó értéken tartva, a többi állapotjelző megváltozik IZOCHOR
1. IZOTERM állapotváltozás: Ha a hőmérsékletet állandó értéken tartjuk (T = állandó) p 1 V 1 = p 2 V 2 Írja be az p egyenletet V = állandó ide BOYLE MARIOTTE-törvény: Állandó hőmérsékleten való állapotváltozáskor (izoterm) az ideális gáz nyomása és térfogata egymással fordítottan arányos mennyiségek; azaz a gáz nyomásának és térfogatának szorzata állandó. p V = állandó
2. IZOBÁR állapotváltozás: Ha a nyomást állandó értéken tartjuk (p = állandó) V V 1 = V 2 T = állandó Luis-Joseph GAY-LUSSAC I. törvénye: Állandó nyomáson történt állapotváltozáskor (izobár) az ideális gáz térfogata és hőmérséklete egymással egyenesen arányosak; azaz az ideális gáz térfogatának és hőmérsékletének hányadosa állandó. V T = állandó Gay-Lussac
3. IZOCHOR állapotváltozás: Ha a térfogatot állandó értéken tartjuk (V = állandó) p p 1 = p 2 T = állandó Luis-Joseph GAY-LUSSAC II. törvénye: Állandó térfogaton történt állapotváltozáskor (izochor) az ideális gáz nyomása és hőmérséklete egymással egyenesen arányosak; azaz az ideális gáz nyomásának és hőmérsékletének hányadosa állandó. p T = állandó Gay-Lussac
Mindezek következnek az általános gáztörvényből is: p 1 V 1 = p 2 V 2 Ha =, akkor p 1 V 1 = p 2 V 2 p 1 V 1 = p 2 V 2 Ha p 1 = p 2, akkor p 1 V 1 = p 1 V 2 V 1 = V 2 Ha V 1 = V 2, akkor p 1 V 1 = p 2 V 1 p 1 = p 2
f.) Hő, hőmennyiség, fajhő, hőkapacitás Joseph Black (1728-1799) Kísérletek és megfigyelések a hő folyamataihoz: Pl. rézdarab és víz melegítése ugyanazon melegítő forrásra helyezve (azonos felület, azonos hő leadás) ugyanannyi idő alatt különböző hőmérsékletűvé válik (rézdarab nagyon meleg lett, míg a víz csak langyos) Különböző anyagok másként viselkednek ugyanakkora hő hatására A hőnek mennyisége van Egymással érintkező anyagok: A hő átfolyik, átáramlik egyik anyagról a másikra HŐ >
Hő Több kísérleti megfigyelés alapján: Q ~ T Q ~ m Következményképpen: Q ~ T m Az egyenes arányosság feloldására bevezettek egy arányossági tényezőt: Q = c m T c: fajhő, Q c = c = J m T kg Def(fajhő): Egységnyi tömegű anyag, 1 C-al való felmelegítéséhez szükséges hőmennyiséget az anyag fajhőjének nevezzük.
Ideális gázok fajhői Ideális gázoknak kétféle fajhője létezik: 1. Állandó térfogaton vett fajhő: c V (kis c) 2. Állandó nyomáson vett fajhő: c p (kis c) A kétféle fajhő között létezik fizikai kapcsolat: c p c V = R M = R i
Ideális gázok fajhői - folytatás c p c V = R M = R i c p M c V M = R Definíciók: 1. Állandó térfogathoz tartozó mólhő: C V = c V M 2. Állandó nyomáshoz tartozó mólhő: C p = c p M (nagy c) C p C V = R C p = C V = J kmol
Ideális gázok mólhői Ideális gázok típusai Egyatomos gázok (He, Ne, Ar, Kr, Xe, Rd, ) - nemesgázok Kétatomos gázok (H 2, O 2, N 2, ) Többatomos gázok (CH 4, ) Állandó térfogathoz tartozó mólhő C V = 3 2 R C V = 5 2 R C V = 7 2 R Állandó nyomáshoz tartozó mólhő C p = 5 2 R C p = 7 2 R C p = 9 2 R
Hőkapacitás Definíció: A hőkapacitás számértéke megadja, hogy a test hőmérséklete 1 C-kal való megemeléséhez mekkora hőmennyiség szükséges. Jele: K, mértékegysége: J K = J Q = c m T /: T K = Q T = c m K = J = J K