FIZIKA 10. OSZTÁLY - HŐTAN

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "FIZIKA 10. OSZTÁLY - HŐTAN"

Átírás

1 FIZIKA 10. OSZTÁLY - HŐTAN 1

2 Hőtani alapjelenségek Bevezető: Fizikai alapmennyiség: Hőmérséklet (jele: T, me.: C, K, F) Termikus kölcsönhatás során a két test hőmérséklete kiegyenlítődik. Hőmérsékleti skálák: Egyes természeti jelenségek mindig ugyanazon a hőmérsékleten következnek be (víz fagyása 0 C, forrása 100 C) Celsius-féle hőmérsékleti skála 2

3 Hőtani alapjelenségek Hőmérsékleti skálák: Kelvin-skála: Alappontja a -273,15 C (0 K = -273,15 C) Abszolút hőmérsékleti skálának is nevezik, ami arra utal, hogy 0 K-nál nincs alacsonyabb hőmérséklet. Az abszolút nulla fok az a hőmérséklet, amelynél a testből nem nyerhető ki hőenergia. A Kelvin-skálán 0 K, a Celsius-skálán 273,15 C, a Fahrenheit-skálán 459,67 F. Ezen a szinten az atomok és molekulák mozgása megszűnik, 3

4 Hőtani alapjelenségek Testek változása hő hatására, a hőtágulás: A testek hőtágulásának mértéke függ: a kezdeti térfogattól vagy hosszúságtól, a hőmérséklet-változás nagyságától, az anyagi minőségtől, és ezen belül különösen az anyag halmazállapotától. A testek hőtágulása a testeket alkotó részecskék (atomok, molekulák) hőmozgása alapján is értelmezhető. 4

5 Gyakorlati alkalmazása: Hőtani alapjelenségek 5

6 Hőtani alapjelenségek 6

7 A szilárd testek hőtágulásának törvényszerűségei A szilárd testek lineáris hőtágulása A szilárd testek térfogati hőtágulása 7

8 Szilárd testek LINEÁRIS hőtágulása Lineáris vagy hosszanti hőtágulásról akkor beszélünk, ha a szilárd test valamely hosszmérete a hőmérséklet növekedése következtében változik. A gyakorlatban elsősorban azon testek lineáris hőtágulását vizsgáljuk, amelyek esetén a hosszméret jóval nagyobb a keresztmetszetnél (pl. huzalok, rudak). 8

9 Szilárd testek LINEÁRIS hőtágulása Egy adott test lineáris méretének változása ( l) Egyenesen arányos a hőmérséklet-változással ( T); Egyenesen arányos az eredeti hosszal (l 0 ); Függ a testek anyagi minőségétől is (α). A l hosszváltozást a következő összefüggésből számíthatjuk ki: l = α l 0 T 9

10 Szilárd testek LINEÁRIS hőtágulása Az α anyagi állandót lineáris hőtágulási tényezőnek nevezzük. Mértékegysége: 1 C A lineáris hőtágulási tényező megmutatja, hogy mennyivel változik meg a test egységnyi hosszmérete, ha a hőmérséklet-változás 1 C. 10

11 Szilárd testek LINEÁRIS hőtágulása 11

12 Szilárd testek TÉRFOGATI hőtágulása A szilárd testek térfogati vagy más néven köbös hőtágulásának törvényszerűsége a lineáris hőtáguláséhoz hasonló. 12

13 Szilárd testek TÉRFOGATI hőtágulása Egy adott test térfogatának megváltozása ( V) Egyenesen arányos a hőmérséklet-változással ( T); Egyenesen arányos az eredeti térfogattal (V 0 ); Függ a testek anyagi minőségétől is (β). A V térfogatváltozást a következő összefüggésből számíthatjuk ki: V = β V 0 T 13

14 Szilárd testek TÉRFOGATI hőtágulása Az β anyagi állandót térfogati (vagy köbös) hőtágulási tényezőnek nevezzük. Mértékegysége: 1 C A térfogati hőtágulási tényező megmutatja, hogy mennyivel változik meg a test egységnyi térfogata, ha a hőmérséklet-változás 1 C. 14

15 A szilárd testek hőtágulása 15

16 A szilárd testek hőtágulása 16

17 A szilárd testek hőtágulása 17

18 A folyadékok térfogati hőtágulása 18

19 Folyadékok térfogati hőtágulása A folyadékok térfogatának megváltozása ( V) Egyenesen arányos a hőmérséklet-változással ( T); Egyenesen arányos az eredeti térfogattal (V 0 ); Függ a testek anyagi minőségétől is (β). A V térfogatváltozást a következő összefüggésből számíthatjuk ki: V = β V 0 T 19

20 A folyadékok térfogati hőtágulása A hőtágulás mértékét jellemző β anyagi állandót térfogati hőtágulási tényezőnek nevezzük. Mértékegysége: 1 C A térfogati hőtágulási tényező megmutatja, hogy mennyivel változik meg a test egységnyi térfogata, ha a hőmérséklet-változás 1 C. 20

21 A folyadékok térfogati hőtágulása 21

22 GÁZOK ÁLLAPOTVÁLTOZÁSAI 22

23 Gázok állapotváltozásai A gázok melegedése nem feltétlenül jár együtt a gáz tágulásával. Az is lehetséges, hogy a gáz lehűlés közben tágul ki. (Gondoljunk a szifonpatronban lévő CO 2 gázra.) 23

24 Gázok állapotváltozásai Ha adott mennyiségű és térfogatú gáz belsejében mindenhol ugyanakkora a nyomás és a hőmérséklet értéke, akkor a gáz egyensúlyi állapotban van. A gázok egyensúlyi állapotát bizonyos mérhető mennyiségek egyértelműen meghatározzák. Az ilyen mennyiségeket állapotjelzőknek (vagy állapothatározóknak) nevezzük. 24

25 Gázok állapotváltozásai Adott minőségű gáz állapotát az alábbi állapotjelzők határozzák meg: a gáz hőmérséklete (T); a gáz nyomása (p); a gáz térfogata (V) és a gáz tömege (m). 25

26 Gázok állapotváltozásai A levegő nyomását Torricelli ( ) olasz fizikus határozta meg először. Egyik végén zárt, kb. 1m hosszú üvegcsövet megtöltött higannyal, majd a csövet nyitott végével lefelé, higanyt tartalmazó edénybe merítette. 26

27 Gázok állapotváltozásai A függőleges csőben a külső higanyszinthez viszonyítva 76cm magas higanyoszlop maradt. (A kifolyó higany helyén légüres tér keletkezett, amelyet szokás Torricelli-űrnek is nevezni.) A higanyoszlop súlyából származó nyomással a külső légnyomás tartott egyensúlyt. 27

28 Gázok állapotváltozásai Egy h magasságú, A keresztmetszetű, ρ sűrűségű folyadékoszlop súlyából származó nyomás (hidrosztatikai nyomás): p = ρ g h Ez alapján a légnyomás értéke: p = Pa 10 5 Pa (1bar) Ezt szokás normál légnyomásnak nevezni. 28

29 Gázok állapotváltozásai Ha egy adott mennyiségű gáz kölcsönhatásba kerül más testekkel, akkor a gáz állapota változik. A gáz állapotának megváltozását az állapotjelzőinek változása mutatja. (A gáz állapotváltozásakor egyidejűleg legalább két állapotjelző változik.) 29

30 Gázok állapotváltozásai Először a gázok olyan speciális állapotváltozásait vizsgáljuk, ahol a gáz állapotváltozása során a ρ, V, T állapotjelzők közül valamelyik állandó marad. Így megkülönböztetünk: izobár ( állandó nyomáson történő), izochor (állandó térfogat melletti) és izoterm (állandó hőmérsékletű) állapotváltozásokat. 30

31 GÁZOK ÁLLAPOTVÁLTOZÁSA ÁLLANDÓ NYOMÁSON (izobár állapotváltozás) 31

32 Miért marad állandó a gázok nyomása a gázok tágulását vizsgáló kísérleti összeállításnál? Ideális gázok V-T grafikonja IZOBÁR ÁLLAPOTVÁLTOZÁS 32

33 Izobár állapotváltozás Azt az idealizált (valóságban nem létező) gázt, amelynek a hőtágulási tényezője pontosan β = (= 3, C C ) lenne, ideális gáznak nevezzük. Az olyan valódi (vagy reális) gázokat, amelyek hőtágulásánál a β értéke a fenti értéket jól megközelíti, ideális gázoknak tekintjük. 33

34 Izobár állapotváltozás A V-T grafikonnak megfelelően célszerű egy új hőmérsékleti skálát bevezetni. A grafikon V tengelyét párhuzamosan eltoljuk abba a pontba, ahol a grafikon egyenese a T- tengelyt metszi. Így az új skála zéruspontja -273 o C- nál lesz. 34

35 Izobár állapotváltozás A skálabeosztás nagysága változatlan marad megegyezik a Celsius-skála beosztásával. Az így nyert új hőmérsékleti skálát abszolút hőmérsékleti skálának vagy Kelvin-skálának nevezzük Lord Kelvin ( ) angol fizikus tiszteletére. 35

36 Izobár állapotváltozás A Kelvin-skálán mért hőmérsékletet abszolút hőmérsékletnek hívjuk. A Kelvin-skála egységét kelvinnek nevezzük, jele: K. A hőmérséklet értékét úgy számoljuk át kelvinbe, hogy a Celsius-fokban mért értékhez 273-at adunk. Így -273 o C-nak 0K, 0 o C-nak pedig 273K felel meg. 36

37 Izobár állapotváltozás A Kelvin-skálát alkalmazva állandó nyomáson az ideális gázok térfogata és abszolút hőmérséklete között egyenes arányosság áll fenn. Ennek képe az origóból kiinduló félegyenes. 37

38 Izobár állapotváltozás V 1 T 1 = V 2 T 2 (p = állandó) Az adott tömegű ideális gáz állandó nyomáson történő állapotváltozásakor a gáz térfogata egyenesen arányos a gáz abszolút hőmérsékletével. Ez Gay-Lussac I. törvénye. 38

39 Izobár állapotváltozás Az izobár állapotváltozás képe a p-v diagrammon a V-tengellyel párhuzamos egyenes. 39

40 Izobár állapotváltozás Megjegyzés 1.: A valódi gázok annál inkább ideális gázként viselkednek, minél kisebb a sűrűségük, és minél magasabb a hőmérsékletük. Így pl. szobahőmérsékleten a hidrogén, a hélium, az oxigén, a nitrogén gázokat ideális gázoknak tekintjük. 40

41 Izobár állapotváltozás Megjegyzés 2.: Alacsony (-100 o C alatti) hőmérsékleten a valódi gázok cseppfolyósodnak, ekkor megszűnnek gázként viselkedni. Ezért a további hőmérsékletcsökkenés esetén térfogatváltozásuk már semmiképp nem felel meg az ideális gázokra vonatkozó grafikonnak. Ezért ér véget a V-T grafikonja, mielőtt a hőmérsékleti tengelyt metszené. 41

42 Izobár állapotváltozás Megjegyzés 3.: Az abszolút zéruspont közelében az anyagok szokatlan sajátosságokkal rendelkeznek (szuperfolyékonyság, szupravezetés, stb.). Az anyagok fajhője a zérusponthoz közeledve megváltozik, a nullához közeli értéket vesz fel, amelyből az következik, hogy a legkisebb hőfelvétel is nagy hőmérséklet-emelkedést okoz. Ezért nem érhető el és nem léphető túl az abszolút zéruspont. 42 Nincs negatív abszolút hőmérséklet!

43 Izobár állapotváltozás Gondolkodtató kérdés 1.: Mi történik a szoba levegőjének egy részével, ha a szobában befűtünk? Mi történik a szoba levegőjével lehűléskor? Fűtéskor a szoba levegőjének egy része a szabadba távozik, lehűléskor pedig a szabadból levegő jut a szobába (ezt a jelenséget nevezik természetes szellőzésnek). 43

44 Izobár állapotváltozás Gondolkodtató kérdés 2.: A hűtőszekrényből kivett közel üres üdítős üveg nyílására helyezzünk egy könnyű pénzérmét, majd melegítsük tenyerünkkel az üveg falát. Mit tapasztalunk? Magyarázzuk a jelenséget! 44

45 Izobár állapotváltozás A pénzérme az üveg száján a melegítés során többször felemelkedik. Az üvegben levő pénzérmével elzárt levegő melegszik, így nyomása megnő, ezért a palackban keletkező túlnyomásból származó erő hatására a pénzérme felemelkedik, eközben az üvegből kiáramló levegő hatására a nyomás kiegyenlítődik, ekkor a pénzérme visszaesik a palack szájára. Ez a folyamat a melegedés során többször megismétlődik. 45

46 Izobár állapotváltozás Gondolkodtató kérdés 3.: 46

47 Izobár állapotváltozás A zacskóban felmelegedett levegő sűrűsége kisebb lesz, így a zacskó léggömbként felemelkedik. A levegő lehűlése után a sűrűsége megnő, ezért a léggömb leereszkedik. 47

48 Izobár állapotváltozás Gondolkodtató kérdés 4.: Miért poros a radiátorok fölött a szoba mennyezete? Hogyan akadályozhatjuk meg a beporosodást? A radiátor feletti levegő kitágul és felfelé áramlik, így a légáramlattal a levegőben lévő por a mennyezetre jut, ahol megtapad. A radiátorra helyezett üveglappal megakadályozhatjuk a felfelé szálló légáramlatot. 48

49 Izobár állapotváltozás Gondolkodtató kérdés 5.: A természetben milyen nagy légáramlatokat ismerünk? Az Egyenlítőnél felszálló és a Rák- és Baktérítőn leszálló passzátszelek. 49

50 Izobár állapotváltozás Feladatok 1.: Mekkora lenne annak a levegőnek a térfogata 20 C hőmérsékleten és külső légköri nyomáson, amely akkor távozik egy 4m x 5m x 3m méretű szobából, amikor a szoba levegőjének hőmérséklete 0 C-ról 20 C-ra növekszik? (β levegő = 0, ) V = V 0 β levegő T V = 4,41m 3 50

51 Izobár állapotváltozás Feladatok 2.: Egy tornaterem levegőjének hőmérséklete 0 C. A terem 15 C-ra való felfűtése során a nyílászárókon távozó levegő térfogata 50 m 3. Mekkora a tornaterem magassága, ha az alapterülete 200 m 2? V V 0 = β levegő T V 0 = 907m 3 h = V 0 A h = 4,54m 51

52 Izobár állapotváltozás Feladatok 3.: Egy könnyen mozgó dugattyúval elzárt 0,8dm 2 alapterületű hengeres edényben 0 C hőmérsékletű, 4dm 3 térfogatú ammóniagáz van. Melegítés hatására a dugattyú 5cm-t elmozdul. Mekkora a felmelegített gáz hőmérséklete? (A gázt tekintsük valódinak!) A h T = V 0 β ammónia T = 26,3 T = T 0 + T T = 26,3 52

53 Izobár állapotváltozás Feladatok 4.: A gázok hőtágulását vizsgáló kísérleti összeállítás lombikjának térfogata 100cm 3. A hozzá csatlakozó cső belső átmérője 5mm. Mekkora az 1 C-nak megfelelő, a csövön található, két szomszédos beosztás közötti távolság? V = V 0 β T V = 0,3663cm 3 h = V r 2 π h = 1,87cm 53

54 Izobár állapotváltozás Feladatok 5.: Egy 50 liter űrtartalmú tartály 30 C hőmérsékletű gázt tartalmaz. A tartály környezetétől nincs légmentesen elzárva. A gáz hányad része távozik el a tartályból, ha a gáz hőmérséklete a tartályban 50 C-ra emelkedik? (A gázt tekintsük ideálisnak!) V 1 V 0 = 1 + T V 0 = 45m 3 V 2 = V T V 2 = 53, 24m 3 q = V 2 V 1 V 1 q = 0,066, azaz 6,6% 54

55 Izobár állapotváltozás Feladatok 6.: Miért emelkedik a hőlégballon a magasba? A hőlégballonra felhajtóerő hat, mert a meleg levegő és így a ballon átlagos sűrűsége kisebb, mint a környezetéé. 55

56 GÁZOK ÁLLAPOTVÁLTOZÁSA ÁLLANDÓ TÉRFOGATON (izochor állapotváltozás) 56

57 Izochor állapotváltozás Állandó mennyiségű gáz állandó térfogaton történő melegítésekor vagy hűtésekor a gáznak csak a nyomása (p) és a hőmérséklete (T) változik meg. A gázok ilyen speciális állapotváltozását izochor állandó térfogatú állapotváltozásnak nevezzük. 57

58 Izochor állapotváltozás A lombikban lévő gáz hőmérséklete a vízfürdő hőmérsékletével változtatható. Az állandó térfogatot a lombikhoz higanyt csatlakozó közlekedőedény jobb szárának elmozdításával állítjuk be. A gáz túlnyomását a higanyszintek h különbségéből határozhatjuk meg. 58

59 Izochor állapotváltozás Hogyan tartjuk a térfogatot állandó értéken az izochor állapotváltozást vizsgáló kísérletnél? A jobb oldali üvegszár mozgatásával. 59

60 Izochor állapotváltozás Az izochor állapotváltozás p-t grafikonjai 60

61 Izochor állapotváltozás p 1 T 1 = p 2 T 2 (V = állandó) Az állandó térfogaton történő állapotváltozások során az adott tömegű ideális gáz nyomása egyenesen arányos a gáz abszolút hőmérsékletével. Ez Gay-Lussac II. törvénye. 61

62 Izochor állapotváltozás Lord Kelvin ( ) angol és Louis Joseph Gay- Lussac ( ) francia fizikusok 62

63 Izochor állapotváltozás Gondolkodtató kérdés 1.: Miért nehéz lecsavarni a befőttesüveg fedelét, ha melegen zárták le (légmentesen)? Hogyan segíthetünk ezen? Lehűléskor a befőttesüvegbe zárt levegő nyomása lecsökken, az így kialakult nyomáskülönbség miatt a külsö légnyomás a fedelet az üvegre szorítja. A fedél pereme alá pl. egy kés pengéjével feszítve az üvegbe levegőt tudunk engedni. Ez a nyomáskülönbséget megszünteti, ezután a fedél könnyedén lecsavarható. 63

64 Izochor állapotváltozás Gondolkodtató kérdés 2.: Hogyan változik meg az autókerékben a nyomás értéke, ha a kocsival tűző napon parkolunk? Hogyan állíthatjuk vissza az eredeti nyomást? A tömlőbe bezárt levegő hőmérséklete és nyomása megnövekszik. A nyomást levegő kiengedésével vagy hűtéssel csökkenthetjük. 64

65 Izochor állapotváltozás Gondolkodtató kérdés 3.: Milyen lesz a képe az izochor állapotváltozásoknak a p-v és a V-T diagramokon? A p-, illetve V-tengellyel párhuzamos egyenes szakasz. 65

66 Izochor állapotváltozás Gondolkodtató kérdés 4.: Ha héjától megfosztott, kemény főtt tojást teszünk egy előzőleg lánggal kissé felmelegített lombik szájához, a lehűlő lombik egészében besszippantja a tojást. Szájával lefelé fordított lombikból melegítéssel egészében ismét visszanyerhetjük a tojást. Adjunk magyarázatot az érdekes kísérletre! 66

67 Izochor állapotváltozás A lombikban lévő levegő hűlésekor nyomása csökken, így a külső légnyomás nagyobb lesz. A nyomáskülönbségből származó erő a főtt tojást a lombikba préseli. Melegítéskor fordított lesz a helyzet: a lombikban megnő a nyomás, ezért a tojás kipréselődik a lombikból. 67

68 Izochor állapotváltozás Feladatok 1.: Egy nyári délelőttön a benzinkútnál, amikor a hőmérséklet 20 C, az autó kerekeiben 200kPa-ra állítjuk be a nyomást. (A mért nyomás túlnyomást jelent.) A külső légköri nyomást vegyük 100kPa-nak. a.) Mekkora túlnyomás mérhető a tűző napon hagyott gépkocsi kerekeiben, ha a hőmérséklet 50 C? b.) Mekkora lesz a keréknyomás hajnalban, amikor a levegő 10 C-ra hűl le? 68

69 Izochor állapotváltozás Feladatok 1. - megoldás: a. ) p 2 = 220,4 kpa b. ) p 3 = 193,2 kpa 69

70 Izochor állapotváltozás Feladatok 2.: Egy befőttesüveget melegen, légmentesen zárunk le kör alakú, 8cm átmérőjű fedéllel. Ekkor a bezárt levegő hőmérséklete 80 C. A légnyomás állandó értéke 100kPa. Mekkora erővel nyomódik rá a fedél az üvegre, ha a befőttesüveg kihűl, és a belső hőmérséklet 20 C-ra csökken le? 70

71 Feladatok 2. - megoldás: Izochor állapotváltozás F = 415N 71

72 Izochor állapotváltozás Feladatok 3.: A biztonsági szeleppel ellátott gáztartály szelepe 300kPa túlnyomás esetén nyílik ki. 20 C hőmérsékleten a tartályban a túlnyomás 180kPa. Mekkora a bezárt gáz hőmérséklete, amikor a biztonsági szelep működésbe lép? (A légnyomás értéke 100kPa.) 72

73 Feladatok 3. - megoldás: Izochor állapotváltozás T 2 = 418,6K = 145,6 73

74 Izochor állapotváltozás Feladatok 4.: Egy hűtőszekrényből, ahol a belső hőmérséklet 15 C, kiveszünk egy kb. félig telt üdítősüveget. Az üveg szájára megnedvesített pénzérmét helyezünk. Miközben az üvegben lévő levegő melegszik, az érme többször megemelkedik az üveg száján. A pénzérme tömege 30g, a palack nyílásának keresztmetszete 3cm 2, a külső levegő légnyomása 98kPa. a.) Mekkora a palackba zárt levegő hőmérséklete akkor, amikor az érme először emelkedik meg az üveg száján? b.) Hogyan függ ez a hőmérsékleti érték a palackban lévő 74 levegő térfogatától?

75 Feladatok 4. - megoldás: a. ) T = 17,9 Izochor állapotváltozás b. ) Nem függ a kérdéses hőmérséklet a palackban lévő levegő térfogatától. 75

76 GÁZOK ÁLLAPOTVÁLTOZÁSA ÁLLANDÓ HŐMÉRSÉKLETEN (izotermikus állapotváltozás) 76

77 Izoterm állapotváltozás A gázok állandó hőmérsékleten történő összenyomása és tágítása a nyomás megváltozásával jár együtt. A gázok ilyen állapotváltozását izotermikus vagy izoterm (állandó hőmérsékletű) állapotváltozásnak nevezzük. Ekkor a gáznak csak a p nyomása és a V térfogata változik meg.l 77

78 Izoterm állapotváltozás Hogyan változtatjuk a bezárt gáz nyomását a gázok izoterm állapotváltozásának vizsgálatára szolgáló kísérleti összeállításnál? A jobb oldali üvegszár mozgatásával. 78

79 Izoterm állapotváltozás A gáz nyomását a térfogat függvényében a fordított arányosság grafikonja, az izoterma mutatja. Hogyan nevezzük a görbét? Hiperbolának nevezzük. 79

80 Izoterm állapotváltozás p 1 V 1 = p 2 V 2 (T = állandó) Állandó hőmérsékleten az adott tömegű ideális gáz V térfogata és p nyomása között fordított arányosság van, szorzatuk állandó. Ez Boyle-Mariotte törvénye. 80

81 Izoterm állapotváltozás 81

82 Izoterm állapotváltozás Gondolkodtató kérdés 1.: A gázok izotermikus állapotváltozásánál hogyan függ a gázok sűrűsége a nyomástól? 82

83 Izoterm állapotváltozás Gondolkodtató kérdés 2.: Mi történhet a gázzal, ha azt alacsony hőmérsékleten nagyon kis térfogaton nyomjuk össze? 83

84 Izoterm állapotváltozás Gondolkodtató kérdés 3.: Helyezzünk egy kissé felfújt léggömböt a légszivattyú burája alá, majd szívjuk ki a bura alól a levegő egy részét! Mi történik ekkor a léggömbbel? Értelmezzük a jelenséget! 84

85 Izoterm állapotváltozás Gondolkodtató kérdés 4.: A 3. feladat kísérlete alapján magyarázzuk meg, miért szükséges a világűrbe kilépő űrhajósoknak szkafandert viselniük! 85

86 Izoterm állapotváltozás Gondolkodtató kérdés 5.: Szereljünk szét egy kerékpárpumpát, tanulmányozzuk és értelmezzük a működését! Hogyan készíthetnénk belőle légzsivattyút? 86

87 Molekuláris hőelmélet Emlékeztető: A gázok rendezetlen hőmozgást végző részecskékből állnak. Brown-mozgás A folyadékok és gázok spontán elkeveredése, diffúziója is a részecskék hőmozgásával értelmezhető. 87

88 Molekuláris hőelmélet 88

89 A gázok állapotváltozásának molekuláris értelmezése A gázt alkotó atomi részecskék a rendezetlen hőmozgás során a részecskéket pontszerűnek tekintjük, a részecskék rendezetlen mozgást végeznek, egymással és a tárolóedény falával rugalmasan ütköznek, kitöltik a rendelkezésükre álló teret, 89

90 A gázok állapotváltozásának molekuláris értelmezése Az izoterm (T=áll.) állapotváltozásoknál a térfogatváltozással együttjáró részecskesűrűség megváltozása okozza a nyomás változását. A gáz összenyomásakor a részecskesűrűség növekedése a nyomás növekedésével jár. Táguláskor pedig a részecskesűrűség csökkenése a nyomás csökkenését okozza. 90

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

Szakmai fizika Gázos feladatok

Szakmai fizika Gázos feladatok Szakmai fizika Gázos feladatok 1. *Gázpalack kivezető csövére gumicsövet erősítünk, és a gumicső szabad végét víz alá nyomjuk. Mennyi a palackban a nyomás, ha a buborékolás 0,5 m mélyen szűnik meg és a

Részletesebben

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha

Részletesebben

3. Gyakorlat Áramlástani feladatok és megoldásuk

3. Gyakorlat Áramlástani feladatok és megoldásuk 3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

A nyomás. IV. fejezet Összefoglalás

A nyomás. IV. fejezet Összefoglalás A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

Termodinamika. 1. rész

Termodinamika. 1. rész Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni

Részletesebben

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja

Részletesebben

Gáztörvények tesztek

Gáztörvények tesztek Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop

Részletesebben

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor légnyomás függ... 1. 1:40 Normál egyiktől sem a tengerszint feletti magasságtól a levegő páratartalmától öntsd el melyik igaz vagy hamis. 2. 3:34 Normál E minden sorban pontosan egy helyes válasz van Hamis

Részletesebben

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor Melyik állítás az igaz? (1 helyes válasz) 1. 2:09 Normál Zárt térben a gázok nyomása annál nagyobb, minél kevesebb részecske ütközik másodpercenként az edény falához. Zárt térben a gázok nyomása annál

Részletesebben

(2006. október) Megoldás:

(2006. október) Megoldás: 1. Állandó hőmérsékleten vízgőzt nyomunk össze. Egy adott ponton az edény alján víz kezd összegyűlni. A gőz nyomását az alábbi táblázat mutatja a térfogat függvényében. a)ábrázolja nyomás-térfogat grafikonon

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

gáznál = 32, CO 2 gáznál 1+1=2, O 2 gáznál = 44)

gáznál = 32, CO 2 gáznál 1+1=2, O 2 gáznál = 44) Hőtan - gázok Gázok állapotjelzői A gázok állapotát néhány jellemző adatával adhatjuk meg. Ezek: Térfogat Valójában a tartály térfogata, amelyben van, mivel a gáz kitölti a rendelkezésére álló teret, tehát

Részletesebben

Hőtágulás - szilárd és folyékony anyagoknál

Hőtágulás - szilárd és folyékony anyagoknál Hőtágulás - szilárd és folyékony anyagoknál Celsius hőmérsékleti skála: 0 ºC pontja a víz fagyáspontja 100 ºC pontja a víz forráspontja Kelvin hőmérsékleti skála: A beosztása 273-al van elcsúsztatva a

Részletesebben

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora

Részletesebben

Feladatlap X. osztály

Feladatlap X. osztály Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor 1. 2:29 Normál párolgás olyan halmazállapot-változás, amelynek során a folyadék légneművé válik. párolgás a folyadék felszínén megy végbe. forrás olyan halmazállapot-változás, amelynek során nemcsak a

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor gázok hőtágulása függ: 1. 1:55 Normál de független az anyagi minőségtől. Függ az anyagi minőségtől. a kezdeti térfogattól, a hőmérséklet-változástól, Mlyik állítás az igaz? 2. 2:31 Normál Hőáramláskor

Részletesebben

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny Nyomás Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny, mértékegysége N (newton) Az egymásra erőt kifejtő testek, tárgyak érintkező felületét nyomott felületnek

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor 1. 2:24 Normál Magasabb hőmérsékleten a részecskék nagyobb tágassággal rezegnek, s így távolabb kerülnek egymástól. Magasabb hőmérsékleten a részecskék kisebb tágassággal rezegnek, s így távolabb kerülnek

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Lázmérő. Bimetáll hőmérő. Digitális hőmérő. Galilei hőmérő. Folyadékos hőmérő

Lázmérő. Bimetáll hőmérő. Digitális hőmérő. Galilei hőmérő. Folyadékos hőmérő A hőmérséklet mérésére hőmérőt használunk. Alaontok a víz forrásontja és a jég olvadásontja. A két érték különbségét 00 egyenlő részre osztották. A skála egy-egy beosztását ma Celsiusfoknak ( C) nevezzük.

Részletesebben

Mivel foglalkozik a hőtan?

Mivel foglalkozik a hőtan? Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:

Részletesebben

gáznál 16+16 = 32, CO 2 gáznál 1+1=2, O 2 gáznál 12+16+16= 44)

gáznál 16+16 = 32, CO 2 gáznál 1+1=2, O 2 gáznál 12+16+16= 44) Hőtan - gázok Gázok állapotjelzői A gázok állapotát néhány jellemző adatával adhatjuk meg. Ezek: Térfogat Valójában a tartály térfogata, amelyben van, mivel a gáz kitölti a rendelkezésére álló teret, tehát

Részletesebben

HIDROSZTATIKA, HIDRODINAMIKA

HIDROSZTATIKA, HIDRODINAMIKA HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz

Részletesebben

Ideális gáz és reális gázok

Ideális gáz és reális gázok Ideális gáz és reális gázok Fizikai kémia előadások 1. Turányi Tamás ELTE Kémiai Intézet Állaotjelzők állaotjelző: egy fizikai rendszer makroszkoikus állaotát meghatározó mennyiség egykomonensű gázok állaotjelzői:

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Méréstechnika. Hőmérséklet mérése

Méréstechnika. Hőmérséklet mérése Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű

Részletesebben

Folyadékok és gázok mechanikája. Fizika 9. osztály 2013/2014. tanév

Folyadékok és gázok mechanikája. Fizika 9. osztály 2013/2014. tanév Folyadékok és gázok mechanikája Fizika 9. osztály 2013/2014. tanév Szilárd testek nyomása Az egyenlő alaplapon álló hengerek közül a legsúlyosabb nyomódik legmélyebben a homokba. Belenyomódás mértéke a

Részletesebben

1. Feladatok a termodinamika tárgyköréből

1. Feladatok a termodinamika tárgyköréből . Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi

Részletesebben

Hidrosztatika. Folyadékok fizikai tulajdonságai

Hidrosztatika. Folyadékok fizikai tulajdonságai Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba

Részletesebben

Hidrosztatika, Hidrodinamika

Hidrosztatika, Hidrodinamika Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a izika tanításához Gázok állaotjelzői Adott mennyiségű gáz állaotjelzői: Nyomás: []=Pa=N/m Térogat []=m 3 Hőmérséklet [T]=K; A gázok állaotát megadó egyéb mennyiségek: tömeg: [m]=g

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny Nyomás Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny, mértékegysége N (newton) Az egymásra erőt kifejtő testek, tárgyak érintkező felületét nyomott felületnek

Részletesebben

TestLine - Fizika hőjelenségek Minta feladatsor

TestLine - Fizika hőjelenségek Minta feladatsor 1. 2:29 Normál zt a hőmérsékletet, melyen a folyadék forrni kezd, forráspontnak nevezzük. Különböző anyagok forráspontja más és más. Minden folyadék minden hőmérsékleten párolog. párolgás gyorsabb, ha

Részletesebben

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői, állapotváltozásai Hőmérséklet Az anyagok melegségének

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői, állapotváltozásai Hőmérséklet Az anyagok melegségének Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői, állapotváltozásai Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála:

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben

. T É M A K Ö R Ö K É S K Í S É R L E T E K

. T É M A K Ö R Ö K É S K Í S É R L E T E K T É M A K Ö R Ö K ÉS K Í S É R L E T E K Fizika 2018. Egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú

Részletesebben

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István FIZIKA Ma igazán belemelegszünk! (hőtan) Dr. Seres István Hőtágulás, kalorimetria, Halmazállapot változások fft.szie.hu 2 Seres.Istvan@gek.szi.hu Lineáris (vonalmenti) hőtágulás L L L 1 t L L0 t L 0 0

Részletesebben

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd

Részletesebben

2011/2012 tavaszi félév 2. óra. Tananyag:

2011/2012 tavaszi félév 2. óra. Tananyag: 2011/2012 tavaszi félév 2. óra Tananyag: 2. Gázelegyek, gőztenzió Gázelegyek összetétele, térfogattört és móltört egyezősége Gázelegyek sűrűsége Relatív sűrűség Parciális nyomás és térfogat, Dalton-törvény,

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ... Tanmenet Fizika 7. osztály ÉVES ÓRASZÁM: 54 óra 1. félév: 1 óra 2. félév: 2 óra A OFI javaslata alapján összeállította az NT-11715 számú tankönyvhöz:: Látta:...... Harmath Lajos munkaközösség vezető tanár

Részletesebben

Hőtan 2. feladatok és megoldások

Hőtan 2. feladatok és megoldások Hőtan 2. feladatok és megoldások 1. Mekkora a hőmérséklete 60 g héliumnak, ha első energiája 45 kj? 2. A úvárok oxigénpalakjáan 4 kg 17 0C-os gáz van. Mekkora a első energiája? 3. A tanulók - a fizika

Részletesebben

Bolyai Farkas Országos Fizika Tantárgyverseny 2014 Bolyai Farkas Elméleti Líceum Marosvásárhely X. Osztály. Válaszoljatok a következő kérdésekre:

Bolyai Farkas Országos Fizika Tantárgyverseny 2014 Bolyai Farkas Elméleti Líceum Marosvásárhely X. Osztály. Válaszoljatok a következő kérdésekre: Válaszoljatok a következő kérdésekre: 1. feladat Adott mennyiségű levegőt Q=1050 J hőközléssel p 0 =10 5 Pa állandó nyomáson melegítünk. A kezdeti térfogat V=2l. (γ=7/5). Mennyi a végső térfogat és a kezdeti

Részletesebben

Szabadentalpia nyomásfüggése

Szabadentalpia nyomásfüggése Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével

Részletesebben

TERMIKUS KÖLCSÖNHATÁSOK

TERMIKUS KÖLCSÖNHATÁSOK ERMIKUS KÖLCSÖNHAÁSOK ÁLLAPOJELZŐK, ERMODINAMIKAI EGYENSÚLY A mindennai élet legkülönbözőbb területein találkozunk a hőmérséklet fogalmáal, méréséel, a rendszerek hőtani jellemzőiel (térfogat, nyomás,

Részletesebben

Hatvani István fizikaverseny Döntő. 1. kategória

Hatvani István fizikaverseny Döntő. 1. kategória 1. kategória 1.D.1. A villamosiparban a repülő drónok nagyon hasznosak, például üzemzavar esetén gyorsan és hatékonyan tudják felderíteni, hogy hol van probléma. Egy ilyen hibakereső drón felszállás után,

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással Fizika feladatok 014. december 8. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-3) Határozzuk meg egy 0 cm hosszú, 4 cm átmérőjű hengeres vörösréz rúdon

Részletesebben

Feladatok gázokhoz. Elméleti kérdések

Feladatok gázokhoz. Elméleti kérdések Feladatok ázokhoz Elméleti kérdések 1. Ismertesd az ideális ázok modelljét! 2. Írd le az ideális ázok tulajdonsáait! 3. Mit nevezünk normálállapotnak? 4. Milyen tapasztalati tényeket használhatunk a hımérséklet

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3 Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy

Részletesebben

Newton törvények, lendület, sűrűség

Newton törvények, lendület, sűrűség Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja

Részletesebben

HŐTAN. Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki:

HŐTAN. Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Hőmérséklet HŐTAN Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja a víz fagyáspontja 100 ºC pontja a víz forráspontja Fahrenheit skála (angolszász országokban

Részletesebben

Bor Pál Fizikaverseny, középdöntő 2012/2013. tanév, 8. osztály

Bor Pál Fizikaverseny, középdöntő 2012/2013. tanév, 8. osztály Bor Pál Fizikaverseny, középdöntő 2012/201. tanév, 8. osztály I. Igaz vagy hamis? (8 pont) Döntsd el a következő állítások mindegyikéről, hogy mindig igaz (I) vagy hamis (H)! Írd a sor utolsó cellájába

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes

Részletesebben

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!

Részletesebben

Ellenállásmérés Ohm törvénye alapján

Ellenállásmérés Ohm törvénye alapján Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos

Részletesebben

1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai

1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai 3.1. Ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai rendszer? Az anyagi valóság egy, általunk kiválasztott szempont vagy szempontrendszer

Részletesebben

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy

Részletesebben

1.1 Hasonlítsa össze a valós ill. ideális folyadékokat legfontosabb sajátosságaik alapján!

1.1 Hasonlítsa össze a valós ill. ideális folyadékokat legfontosabb sajátosságaik alapján! Kérem, þ jellel jelölje be képzését! AKM VBK Környezetmérnök BSc AT0 Ipari termék- és formatervező BSc AM0 Mechatronikus BSc AM Mechatronikus BSc ÁRAMLÁSTAN. FAKULTATÍV ZH 203.04.04. KF8 Név:. NEPTUN kód:

Részletesebben

DINAMIKA ALAPJAI. Tömeg és az erő

DINAMIKA ALAPJAI. Tömeg és az erő DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban

Részletesebben

MUNKAANYAG. Szabó László. Hogyan kell U csöves manométerrel nyomást mérni? A követelménymodul megnevezése: Fluidumszállítás

MUNKAANYAG. Szabó László. Hogyan kell U csöves manométerrel nyomást mérni? A követelménymodul megnevezése: Fluidumszállítás Szabó László Hogyan kell U csöves manométerrel nyomást mérni? A követelménymodul megnevezése: Fluidumszállítás A követelménymodul száma: 699-06 A tartalomelem azonosító száma és célcsoportja: SzT-001-0

Részletesebben

21. A testek hőtágulása

21. A testek hőtágulása 21. A testek hőtágulása Végezzen el két kísérletet a hőtágulás jelenségének szemléltetésére a rendelkezésre álló eszközök felhasználásával! Magyarázza meg a kísérleteknél tapasztalt jelenséget! Soroljon

Részletesebben

Bor Pál Fizikaverseny tanév 8. évfolyam I. forduló Név: Név:... Iskola... Tanárod neve:...

Bor Pál Fizikaverseny tanév 8. évfolyam I. forduló Név: Név:... Iskola... Tanárod neve:... Név:... Iskola... Tanárod neve:... A megoldott feladatlapot 2019. január 8-ig küldd el a SZTE Gyakorló Gimnázium és Általános Iskola (6722 Szeged, Szentháromság u. 2.) címére. A borítékra írd rá: Bor Pál

Részletesebben

Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).

Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg). Az előadás vázlata: I. A tökéletes gáz és állapotegyenlete. izoterm, izobár és izochor folyamatok. II. Tökéletes gázok elegyei, a móltört fogalma, a parciális nyomás, a Dalton-törvény. III. A reális gázok

Részletesebben

Műszaki hőtan I. ellenőrző kérdések

Műszaki hőtan I. ellenőrző kérdések Alapfogalmak, 0. főtétel Műszaki hőtan I. ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és zárt termodinamikai rendszer? A termodinamikai rendszer (TDR) az anyagi

Részletesebben

óra 1 3 5 7 9 11 13 15 17 19 21 23 24 C 6 5 3 3 9 14 12 11 10 8 7 6 6

óra 1 3 5 7 9 11 13 15 17 19 21 23 24 C 6 5 3 3 9 14 12 11 10 8 7 6 6 Időjárási-éghajlati elemek: a hőmérséklet, a szél, a nedvességtartalom, a csapadék 2010.12.14. FÖLDRAJZ 1 Az időjárás és éghajlat elemei: hőmérséklet légnyomás szél vízgőztartalom (nedvességtartalom) csapadék

Részletesebben

ÁLTALÁNOS METEOROLÓGIA 2. METEOROLÓGIAI MÉRSÉSEK MÉRÉSEK ÉS ÉS MEGFIGYELÉSEK

ÁLTALÁNOS METEOROLÓGIA 2. METEOROLÓGIAI MÉRSÉSEK MÉRÉSEK ÉS ÉS MEGFIGYELÉSEK ÁLTALÁNOS METEOROLÓGIA 2. METEOROLÓGIAI MÉRSÉSEK MÉRÉSEK ÉS ÉS MEGFIGYELÉSEK 03 02 Termodinamika Az adatgyűjtés, állapothatározók adattovábbítás mérése nemzetközi Hőmérséklet hálózatai Alapfogalmak Hőmérséklet:

Részletesebben

Gázrészecskék energiája: Minél gyorsabban mozognak a részecskék, annál nagyobb a mozgási energiájuk. A gáz hőmérséklete egyenesen arányos a

Gázrészecskék energiája: Minél gyorsabban mozognak a részecskék, annál nagyobb a mozgási energiájuk. A gáz hőmérséklete egyenesen arányos a Hőtan (2. rész) Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a

Részletesebben

ÖVEGES JÓZSEF FIZIKAVERSENY Iskolai forduló

ÖVEGES JÓZSEF FIZIKAVERSENY Iskolai forduló ÖVEGES JÓZSEF FIZIKAVERSENY Iskolai forduló Számításos feladatok km 1. Az egyik gyorsvonat ( rapid ) 98 átlagsebességgel teszi meg a Nyíregyháza és h Debrecen közötti 49 km hosszú utat. A Debrecen és Budapest

Részletesebben

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F III. HőTAN 1. A HŐMÉSÉKLET ÉS A HŐ Látni fogjuk: a mechanika fogalmai jelennek meg mikroszkópikus szinten 1.1. A hőmérséklet Mindennapi általános tapasztalatunk van. Termikus egyensúly a résztvevők hőmérséklete

Részletesebben

TERMODINAMIKA ÉS MOLEKULÁRIS FIZIKA

TERMODINAMIKA ÉS MOLEKULÁRIS FIZIKA PÉCSI TUDOMÁNYEGYETEM Természettudományi Kar Dr. Kotek László TERMODINAMIKA ÉS MOLEKULÁRIS FIZIKA Feladatgyűjtemény Pécs, 2005 Lektorálta: Dr. Hraskó Péter ELŐSZÓ A feladatgyűjtemény a Pécsi Tudományegyetem

Részletesebben

Szilárd testek rugalmassága

Szilárd testek rugalmassága Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)

Részletesebben

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o ELLENÁLLÁSO HŐMÉRSÉLETFÜGGÉSE Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o szobahőmérsékleten értelmezett. Ismeretfrissítésként tekintsük át az 1. táblázat adatait:

Részletesebben

ÁLTALÁNOS METEOROLÓGIA

ÁLTALÁNOS METEOROLÓGIA ÁLTALÁNOS METEOROLÓGIA A meteorológia szó eredete Aristoteles: : Meteorologica Meteorologica A meteorológia tárgya: az ókorban napjainkban Ógörög eredetű szavak a meteorológiában: kozmosz, asztronómia,

Részletesebben

Halmazállapotok. Gáz, folyadék, szilárd

Halmazállapotok. Gáz, folyadék, szilárd Halmazállapotok Gáz, folyadék, szilárd A levegővel telt üveghengerbe brómot csepegtetünk. A bróm illékony, azaz könnyen alakul gázhalmazállapotúvá. A hengerben a levegő részecskéi keverednek a bróm részecskéivel

Részletesebben

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja: Képzési kódja: MŰSZAKI HŐTAN I. 1. ZÁRTHELYI N- Név: Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Dobai Attila Györke Gábor Péter Norbert Vass Bálint Termodinamika

Részletesebben