Tudjuk ma, hogy mi lesz holnap? Lássuk előre az ügyfelek viselkedését! Csendes Balázs Brand Manager IBM Magyarország
Oscar Díj / 2012
Megjósolni az Oscar díj eredményét Meryl Streep The Iron Lady Best Picture The Artist Női mellékszereplő Octavia Spencer Jean Dujardin The Artist
Mérföldkövek a mesterséges intelligenciában Deep Blue 1997- ben legyőzte Garry Kasparov sakk világbajnokot
ÁTörés a tartalom elemzésben IBM Watson (Jeopardy) Üzle% kihívás Előrelépés a QuesWon Answer (QA) rendszerek terén, lehetőséget adva több iparágban is használható alkalmazások számára az átörésre. Iparág: széles körben Érték: üzle5 döntések javítása Megoldás: content analy5cs információ kereső eszköz, ami képes a kérdéseink megértésére, így biztosítva, hogy megkapjuk amit akarunk, természetes párbeszéd formájában közölt tartalom formájában. Dr. David Ferrucci Principal Inves5gator Watson project Miért jobb? Az IBM Content AnalyWcs (LanguageWare) használata más technológiákkal együt hatalmas mennyiségű strukturálatlan tartalom olvasására, elemzésére, megértésére. Többféle algoritmus párhuzamos futatása a lehetséges válaszok megbízhatósági szintjeinek összehasonlításával. A válaszokkal együt a megbízhatósági szintek megadása. Jobb üzle% működés Iparági megjelenés hamarosan! Számtalan alkalmazás értékét növeli meg az egészségügytől kezdve az ügyfélszolgálatokon át a kormányzaw hírszerzésig, és ezeken túl.
IBM Content and PredicWve AnalyWcs A kérdés: Mit tudunk? A tartalom és prediktív analitikai képességek ötvözése valós idejű és tényleges adat alapú döntéshozatal érdekében Analizálni és vizualizálni a múltat Megérteni a trendeket, mintázatokat, eltéréseket, anomáliákat a kontextusnak megfelelően és felismerni az összefüggéseket Látni a jelent Elemezni és kivonatolni a szövegeket, folyamat dokumentumokat valamint egyéb információkat találni a strukturálatlan adatokban Megjósolni a jövőt Prediktív modelleket használni, hogy a jelen döntések megalapozottabbak legyenek
IBM Content and PredicWve AnalyWcs ÁTekintés KINYERNI a tényeket és a kapcsolatokat a különböző adatbázisokból Analizálni és Megjeleníteni a múlt, jelen és jövőbeli forgatókönyveket hogy egy tényeken alapuló adatbázis kapjunk Analyze Visualize A Content Analytics a természetes nyelvi feldolgozással analizálja a trendeket, mintákat, eltéréseket a strukurálatlan adatokban. Az SPSS a prediktív osztályozást és valószínűség analízist végzi el. Mindezek lehetővé teszik a munkatársaknak és vezetőknek, hogy Kapcsolatba kerüljenek a tárolt információkkal és azokból új következtetéseket újszerűen vonjanak le Integrálják és hasznosítsák más rendszerek eredményeivel 7
Miért érw meg nehezen a gép az embert? Hol született Einstein? Strukturált adat Fizikus Szül. hely A. Einstein Ulm N. Bohr Copenhagen M. Curie Warsaw Source: Excel File, Database, etc. Strukturálatlan adat Egy napon Otto kiválasztott egy szép ulmi képeslapot és elküldte Albert Einsteinnek emlékül a szülővárosából Source: http://www.schaeffenacker-ulm.de/en/otto.html Mit vezetett J. Welch? Személy Szervezet L. Gerstner IBM J. Welch GE Source: Excel File, Database, etc. W. Gates Microsoft Source: IBM Research Ha a vállalatvezetés művészet, akkor Jack Welch festőművésznek bizonyult a GEnél eltöltött időszak alatt Source: Jack Welch and the GE Way, Robert Slater
Nyers információból gyors következtetések Fedezzen fel új üzlew lehetőségeket ez egyedi vizualizációs technikával Kinyerni és aggregálni többféle forrásból Analizálni, rendezni és vizuálizálni Feltárni az összefüggéseket hatalmas és sokféle szöveg alapú tárak feldolgozása. vállalaw tartalom (és adat) felhasználása, hogy felismerjük a kölönböző trendeket, mintákat és korrelációkat. megvizsgálni a gyanús összefüggéseket anélkül, hogy külön modellt építetünk volna a területre.
IBM Content and PredicWve AnalyWcs a gyors következtetéseket szolgáltató plagorm A nyers információt gyorsan következtetésekké alakítja modellek felépítése vagy összetet rendszerek használata nélkül. A következtetéseket órák vagy napok alat képes szolgáltatni nem hetek vagy hónapok alat. Könnyen használható mindenki számára a tartalom keresésére és feltárására. Rugalmas és bővíthető a mélyebb összefüggések feltárására. Rapidly Derived Insight Search and Explore Analyze and Visualize Aggregate and Extract External and Internal Content (and Data) Sources including Social Media and More
Szabadítsuk fel az értéket a tartalomból Mire használják jelenleg ügyfeleink megoldást? Megérteni az ügyfelek kérdését mielőt kérdezik. Felderíteni visszaéléseket mielőt a kérelem kifizetésre kerülne. Dinamikusan hozzárendelni az erőforrásokat az legfontosabb területekhez. Életeket menteni azzal hogy gyorsan azonosítjuk a biztonsági problémákat. Ön kihasználja a rejteq értékeket a tárolt strukturálatlan tartalmakból?
Call center sajátosságai Információ a beszélgetésekben A beszélgetések <1%- át hallgatják vissza Értékes kihasználatlan információk A céget egy operátor hangja képviseli Nincs tökéletes operátor Call center voice Feladat: kiaknázni a beszélgetésekben lévő információt 12
Call Center Egy létező megoldás Hangalapú elemzés Predictive CRM Speech-totext IBM Content and Predictive Analytics Ügyféladat Strukturált adat Hívás adatok Külső ab. 13
ÜzleW probléma Lemondási szándék Elégedetlen ügyfél Reklámkampány hatásának vizsgálata Operátori teljesítmény monitorozás Protokoll tartás... 14
Lemondási szándék Azonosíthatóan megjelenik a beszélgetésekben Eredmény: napi lemondási lista azonnal akció tervezhető 15
Protokoll tartás 16
Köszönöm a figyelmet! Csendes Balázs Brand Manager Industry SoluWons Tel: 20/823-5547 Mail: bcsendes@hu.ibm.com
The Interactive Discovery User Interface Explained Search Query Exploration Views, Filters and Thresholds Automatically Extracted and Analyzed Concepts, Entities, Relationships, Meta Data and Classifications Visualization with Drill Down for Exploration and Assessment 18
Connections View links highly correlated terms to one another 19
Create Dashboard Views for Executive Summaries 20
Ability to add custom views into ICA Text Miner Sample Plug-in Map View 21