FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI



Hasonló dokumentumok
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

A leíró statisztikák

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

A Statisztika alapjai

A valószínűségszámítás elemei

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Segítség az outputok értelmezéséhez

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Kutatásmódszertan és prezentációkészítés

Készítette: Fegyverneki Sándor

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév

[Biomatematika 2] Orvosi biometria

Matematikai statisztika c. tárgy oktatásának célja és tematikája

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria

Valószínűségi változók. Várható érték és szórás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Matematikai statisztika Tómács Tibor

Dr. Karácsony Zsolt. Miskolci Egyetem november

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

1. tétel. Valószínűségszámítás vizsga Frissült: január 19. Valószínűségi mező, véletlen tömegjelenség.

Mérési hibák

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok.

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

KÖVETKEZTETŐ STATISZTIKA

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok.

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

Bevezetés a hipotézisvizsgálatokba

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

egyetemi jegyzet Meskó Balázs

Microsoft Excel Gyakoriság

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

Adatok statisztikai értékelésének főbb lehetőségei

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai becslés

Valószínűségszámítás összefoglaló

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

11. Matematikai statisztika

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

A valószínűségszámítás elemei

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE

Több valószínűségi változó együttes eloszlása, korreláció

Kísérlettervezés alapfogalmak

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

y ij = µ + α i + e ij

A maximum likelihood becslésről

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

Matematikai statisztika

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai

Hipotézis vizsgálatok

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

i p i p 0 p 1 p 2... i p i

Területi sor Kárpát medence Magyarország Nyugat-Európa

Osztályozóvizsga követelményei

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás

Statisztika elméleti összefoglaló

Többváltozós lineáris regressziós modell feltételeinek

Elemi statisztika fizikusoknak

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Biostatisztika Összefoglalás

6. Előadás. Vereb György, DE OEC BSI, október 12.

[Biomatematika 2] Orvosi biometria

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016

Bevezetés. 1. előadás, február 11. Módszerek. Tematika

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis

Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Átírás:

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4

IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen fogalmazhatjuk meg: "Következtetés tapasztalati adatokból események ismeretlen valószínűségeire vagy valószínűségi változók ismeretlen eloszlásfüggvényeire és ezek paramétereire." (Vincze, 1975). Továbbá a matematikai statisztika feladata olyan módszerek kidolgozása, amelyek segítségével tapasztalati adatokból a keresett elméleti értékekre a lehető legtöbb információt nyerhetjük. De feladata maguknak a kísérleteknek a tervezése és számuk optimalizálása is. A statisztikai következtetés: a bekövetkezés esetlegessége. Csak a valószínűség ismert (átlagosság, az esetek százaléka, relatív gyakoriság). Nem tudjuk megmondani, hogy bekövetkezik vagy nem, de elég nagy valószínűségű eseményt gyakorlatilag biztosnak tekintünk. A matematikai statisztika főbb fejezetei: becsléselmélet (pont, intervallum), hipotézisvizsgálat, a mintavétel elmélete. 2. MINTA, MINTAVÉTEL Minthogy mind a hipotézisvizsgálat mind a becsléselmélet következtetései tapasztalati megfigyelések alapján történik, ezért a mintavétel elmélete a matematikai statisztika alapvető és egyben bevezető fejezetének tekinthető, amelynek egyes részei csak az elmélet különböző részei során tárgyalhatók. Pl. egy kísérlet tervezése már attól függ, hogy a kísérlet kimenetele alapján milyen becslési vagy hipotézisvizsgálati módszert alkalmazunk. Definíció: Az hármast statisztikai mezőnek nevezzük, ahol Megjegyzés: Feladat az igazi paraméterre való következtetés. Egy valószínűségi változó kerül megfigyelésre, amelynek lehetséges értékei az mintateret alkotják és ennek bizonyos részhalmazai a -algebrát. A statisztikai mező generálja hozzá a valószínűségeket. Legyenek ezek ahol ha akkor Tekinthetjük ezt is statisztikai mezőnek. Valójában a következtetés -ről történik -ra. Definíció: A valószínűségi változók összességet mintának nevezzük, ha azonos eloszlásúak. Megjegyzés: 1. Ha a valószínűségi változók függetlenek, azonos eloszlásúak, akkor független mintának nevezzük (a legfontosabb esetekben a minta ilyen lesz). 2. Gyakorlati követelmény: jellemezze az összességet, ahonnan származik, továbbá minél több információ az ismeretlen eloszlásra. Hogyan biztosítható, hogy teljesüljön az azonos eloszlás, függetlenség, véletlenszerűség. 3. Megkövetelt nagyságrendek: a. "nagy" minta (százas nagyságrend): elméleti érték becslése, b. "kis" minta (4-30): statisztikai hipotézis ellenőrzése (a kísérlet költséges, sokszor kell elvégezni). 4. A mintavétel módszerei:

a. egyszerű véletlen; b. kétfokozatú, többfokozatú, szekvenciális (részsokaságok monotonitása, csomagolás, költség); c. rétegezett, csoportos (egylépéses, kétlépéses). Definíció: Az tényleges mérési adatok összességet mintarealizációnak nevezzük. A statisztikai minta jellemzői (leíró statisztikák) Definíció: Legyen ekkor statisztika, ha mérhető függvény. Megjegyzés: Statisztika a mintaelemek mérhető függvénye. A következőkben megadunk néhány használatos leíró statisztikát: Átlag (mintaközép): A minta elemeit sorba rendezzük. jelölje a legkisebbet. A rendezett minta: Megjegyzés: Ne felejtsük el, hogy függvények esetében pontonként kell alkalmaznunk a rendezést. Definíció: Adott az eloszlásfüggvény és a valószínűség. Az -kvantilis, ha Ha mediánnak, míg és esetén alsó illetve felső kvartilisnek nevezzük. Megjegyzés: Jelölje a -kvantilis tapasztalati megfelelőjét, azaz ekkor aszimptotikusan ahol az -hez tartozó sűrűségfüggvény. A medián tapasztalati megfelelője esetén. Medián abszolút eltérés: Mintaterjedelem: Tapasztalati szórásnégyzet és korrigáltja:

Szórási együttható: (szórás nagysága az értékekhez képest, általában akkor alkalmazzuk, ha Tapasztalati momentumok: Ferdeség: azaz a standardizált harmadik momentum. Lapultság: azaz a standardizált negyedik momentumból hármat levonunk. Ezzel a normális eloszlás esetén nullára állítjuk be az értékét és ehhez viszonyítunk. Tapasztalati eloszlásfüggvény: Tétel: (Glivenko a matematikai statisztika alaptétele) Ha a független minta, akkor Hisztogramok Még sokféle statisztika használatos. Ezek közül ki kell emelni a hisztogramokat, amelyek a sűrűségfüggvény közelítésének tekinthetők. A hisztogram az alapstatisztikák közé tartozik, de az előzőekkel szemben lényeges különbség, hogy nincs egyértelmű algoritmus (definíció) csak néhány általánosan elfogadott szabály az elkészítésére. Ezek a Pearson-féle -próba kívánalmainak felelnek meg. Az intervallum tartalmazza az adatokat.

A felosztáskor figyeljük a darabszámot, kiugró értékeket és általában legyenek egyenlő hosszúak az intervallumok (kivéve a széleken). Adjuk meg a intervallumba eső adatok számát minden -re. Az gyakorisággal arányos oszlopot rajzolunk a intervallumra. Gyakorisághisztogram esetén: Sűrűséghisztogram esetén: Digitális Egyetem, Copyright Fegyverneki Sándor, 2011