P02 A frontális (végtagi) elvezetések



Hasonló dokumentumok
SE Kórélettani Intézet: megjegyzések az EKG-munkafüzethez

Orvosi fizika laboratóriumi gyakorlatok 1 EKG

EKG a prehospitális sürgősségi ellátásban. Keskeny és széles QRS-ű tachykardiák

EKG a házi gyermekorvosi gyakorlatban. Dr Környei László Gottsegen György Országos Kardiológiai Intézet

Bevezetés az EKG analízisbevi. EgyébEKG eltérések & EKG összefoglalás. Hypocalcemia. Hypercalcemia. Hypocalcemia, hyperkalemia.

Az akciós potenciál (AP) 2.rész. Szentandrássy Norbert

Végtagi elvezetések Bal kar: sárga Bal láb: zöld Jobb kar: piros Jobb láb: fekete ( földelés ) UNIPOLÁRIS ELVEZETÉS: Egy végtagi elvezetésen észlelt p

Augustus Desiré Waller ( ) Bevezetés az EKG analízisbe I. rész. Elektrométertől az elektrokardiogramig. Willem Einthoven ( )

Vérnyomásmérés, elektrokardiográfia. A testhelyzet, a légzés, a munkavégzés hatása a keringési rendszerre. A mérési adatok elemzése és értékelése

A PITVARI ÉS KAMRAI TERHELTSÉG EKG JELEI. Dr. Szabados Eszter

Vérnyomásmérés, elektrokardiográfia. A testhelyzet, a légzés, a munkavégzés hatása a keringési rendszerre.

Megállapítani, hogy a szív ritmusosan ver-e, normálisan terjed-e az akciós potenciál.

Bevezetés az EKG analízisbe IV. Myocardiális ischemia, sérülés és nekrózis. Prof. Szabó Gyula SZTE ÁOK Kórélettani Intézet

Bevezetés az EKG analízisbe IV. Myocardiális ischemia, sérülés és nekrózis

P pulmonale 7. Bal pitvari abnormalitások (P mitrale)

Szívmőködés. Dr. Cseri Julianna

Szívbetegségek hátterében álló folyamatok megismerése a ciklusosan változó szívélettani paraméterek elemzésén keresztül

Vérnyomásmérés, elektrokardiográfia. A testhelyzet, a légzés, a munkavégzés hatása a keringési rendszerre. A mérési adatok elemzése és értékelése

Szombath D. Tornóci L.: EKG-munkafüzet EKG-felvételei

A szív élettana. Aszív élettana I. A szív pumpafunkciója A szívciklus A szívizom sajátosságai A szív elektrofiziológiája Az EKG

Gyógyszerek a kardiológiai és sürgősségi ellátásban. DR. KUN CSABA DE OEC KARDIOLÓGIAI INTÉZET Elektrofiziológia

Membránpotenciál, akciós potenciál

A szív vizsgáló módszerei

Elektromos ingerek hatása békaszívre

PACEMAKER KEZELÉS INDIKÁCIÓI ÉS TECHNIKÁJA A PERIOPERATÍV SZAKBAN. Dr. Varga István DE OEC Kardiológia Klinika

Transzportfolyamatok a biológiai rendszerekben

IONCSATORNÁK. Osztályozás töltéshordozók szerint: pozitív töltésű ion: Na+, K+, Ca2+ negatív töltésű ion: Cl-, HCO3-

M E G O L D Ó L A P. Egészségügyi Minisztérium


IDEIGLENES ÉS VÉGLEGES PACEMAKER /PM/ KEZELÉS

M E G O L D Ó L A P. Egészségügyi Minisztérium

Az ACS helyszíni diagnosztikája:

A szív ingerképző és vezető rendszere

Bevezetés az EKG analízisbe II. rész. Az EKG gyakorlati haszna. A sinus csomó diszfunkció etiológiája

A szívizom akciós potenciálja, és az azt meghatározó ioncsatornák

Érzékszervi receptorok

SZÍV ÉS ÉRRENDSZER. Szederjesi Janos

FEJEZETEK AZ ÉLETTAN TANTÁRGYBÓL

Membránpotenciál. Nyugalmi membránpotenciál. Akciós potenciál

Ioneltérések,toxikus hatások ekg jelei Zámolyi Károly

Pulmonalis embolisatio. Kerekes György DEOEC, Belgyógyászati Intézet, III. sz. Belgyógyászati Klinika

Mellékelten továbbítjuk a delegációknak a D043528/02 számú dokumentum mellékletét.

Az Országos Mentőszolgálat eljárási rendje

A szívizomsejt ioncsatornái és azok működése

RF MARINR UNIPOLÁRIS ESZKÖZ

M E G O L D Ó L A P. Egészségügyi Minisztérium

Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv

Szom bath D. Tornóci L.: EKG-m unk afüzet EKG-felvételei

Sportolók normális és kóros ekg jelei Zámolyi Károly

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Egy idegsejt működése. a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál

RF CONTACTR 8 MM. Irányítható elektródkatéter intrakardiális ablációhoz. Műszaki leírás

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM

Bal kamra funkció echocardiographiás megítélése

a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál. Nyugalmi potenciál. 3 tényező határozza meg:

Szívstresszmérés (VIPORT - EKG-bázisú szívstresszmérő készülék)

SZÍVRITMUSZAVAROK KORAI ÜTÉSEK SUPRAVENTRIKULÁRIS TACHYARITMIÁK JUNKCIONÁLIS ARITMIÁK VENTRIKULÁRIS TACHYARITMIÁK ÁTTEKINTÉS

A keringési rendszer rendellenességei

Összeállította: dr. Leitold Adrien egyetemi docens

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

Az agyi infarktus (más néven iszkémiás stroke) kialakulásának két fő közvetlen oka van:

C M Y K Verzió: 2 REF 5010 AMED-TECH

A harántcsíkolt izom struktúrája általános felépítés

2. Az R1. 2. számú melléklete az 1. melléklet szerint módosul. b) 2. pontjában a 120 szövegrész helyébe a 132 szöveg,

Tranziens jelenségek rövid összefoglalás

2002-ben volt az EKG felfedezésének centenáriuma. Einthoven ( )

1. ábra. 24B-19 feladat

Vezetők elektrosztatikus térben

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Érzékelési folyamat szereplői. Az érzékelés biofizikájának alapjai. Receptor felépítése. Az inger jellemzői MILYEN? HOL? MENNYI? MEDDIG?

Szívultrahang vizsgálatok gyermekkorban. Dr. Tölgyesi Andrea I. sz. Gyermekklinika Semmelweis Egyetem, Bp.

Nagyító alatt a szélütés - a stroke

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

Vérkeringés. A szív munkája

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

EKG monitorozás loop recorder syncopeban Somlói Miklós

Syncope diagnosztika a kardiológus szemszögéből SIMOR TAMÁS PTE, KK SZIVGYÓGYÁSZATI KLINIKA

A Szinkopék megközelítése és klasszifikációja. Kaposvár, 2014 Szeptember 19 Rudas László

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.

A szív felépítése, működése és működésének szabályozása

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Biomatematika 2 Orvosi biometria

ELEKTROFIZIOLÓGIAI VIZSGÁLAT (MP 066.B1)

3. A Keringés Szervrendszere

[Biomatematika 2] Orvosi biometria

HÁROMFÁZISÚ VÁLTAKOZÓ ÁRAM

Tomcsányi János. A Troponin használata a sürgősségi sségi gyakorlatban a kardiológus szemszögéből

Az Egészségügyi Minisztérium szakmai protokollja Kamrai ritmuszavarok diagnosztikája és kezelése. Készítette: A Kardiológiai Szakmai Kollégium

A gyógyszerek okozta proaritmia - A repolarizációs rezerv jelentősége

Optika fejezet felosztása

Tömegpontok mozgása egyenes mentén, hajítások

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

Az ingerületi folyamat sejtélettani alapjai

Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet

Szupraventrikuláris aritmiák mechanizmusa és katéter ablációs kezelése. Csanádi Zoltán DEOEC Kardiológiai Intézet

Mit nevezünk nehézségi erőnek?

Átírás:

Szombath D.Tornóci L.: EKG-munkafüzet Gyakorlati tudnivalók (P-sorozat) A tartalomjegyzékben a szövegre kattintva a megfelelő ábrához jutunk. Innen az oldalszámra kattintva térhetünk vissza a tartalomjegyzékhez. Ez az anyag kivetítőn való megjelenítésre készült, kinyomtatni nem szabad, de nem is érdemes. Akinek szüksége van rá papír formában, megvásárolhatja a Semmelweis Kiadó által forgalmazott könyvet (ez nyomdatechnikai okok miatt sokkal jobb minőségű, mint amit egy lézernyomtatón el lehet érni). 2009. szeptember 8. Dr. Szombat Dezső, Dr. Tornóci László, 2009 Az anyag bármely részének vagy egészének mindennemű többszörözése kizárólag a szerkesztők és a Semmelweis Kiadó előzetes írásbeli engedélye alapján jogszerű.

Tartalom P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15 P16 Az EKG papír A frontális (végtagi) elvezetések A horizontális (mellkasi) elvezetések A frekvencia meghatározása Akciós potenciálok a szív különböző területein Az akciós potenciálok, az EKG és a szívciklus viszonya Intervallumok és szegmentumok Az elektromos dipólus. A szív dipólusmodellje A hexaaxiális referenciarendszer A dipólusvektor összefüggése az elvezetésekben mért feszültséggel Vektorkardiográfia és a skaláris EKG. Az átlagos QRS-vektor A tengelyállás meghatározása 1 A tengelyállás meghatározása 2 A QRS vizsgálata a horizontális síkban 1 A QRS vizsgálata a horizontális síkban 2 A szív ingerületvezető-rendszere P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 Az aritmiák vázlatos felosztása Az extrasystolék időbeli viszonyai Az AV-blokkok felosztása I-fokú, magas fokú és teljes AV-blokk A II-fokú AV-blokk Wenckebach (Mobitz I) típusa A II-fokú AV-blokk Mobitz II típusa A QRS-komplexum leírása. Az intrinsicoid deflection (ID) fogalma Az intraventicularis vezetési zavarok felosztása Tawara-szár-blokkok Preexcitáció, járulékos nyalábok, WPW-szindróma A reentry kialakulása A P-abnormalitások EKG-jelei A repolarizációs zavarok leírása Az ST-elevációs infarctusok lokalizációja és stádiumbeosztása A laesio okozta ST-eltérések kialakulása A necrosis jelei az EKG-n A T-hullámok alakját meghatározó tényezők

Az EKG-papír 1 mm 0,04 s 1s 25 mm 1 s 1s feszültség [mv] ERŐSÍTÉS (STANDARDIZÁCIÓ) 10 mm 1 mv A szokásos beállítás: 10 mm/1 mv 1 db 1 1 mm-es kis négyzet 0,1 mv 5 mm 0,2 s idő [s] PAPÍRSEBESSÉG A szokásos beállítás: 25 mm/s 2 vastag függőleges vonal között 1 s telik el. 1 db 5 5 mm-es nagy négyzet 0,2 s = 200 ms 1 db 1 1 mm-es kis négyzet 0,04 s = 40 ms Más papírsebességek: 50 mm/s (pl. gyermekgyógyászatban ez a szokásos), esetleg 100 mm/s P01

P02 A frontális (végtagi) elvezetések A frontális elvezetések jeleit nem befolyásolja, hogy az adott végtagon az elektródot hova helyezzük. Ezért a vállak helyett a csuklókra, a combtő helyett a bokákra szokták tenni az elektródokat. EINTHOVEN-FÉLE jobb (right) WILSONGOLDBERGER-FÉLE BIPOLÁRIS ELVEZETÉSEK UNIPOLÁRIS ELVEZETÉSEK bal (left) mv I. II. mv avr avl III. mv mv láb (foot) avf mv I II avr avl III avf AZ mv ELVEZETÉSEKHEZ RENDELT TENGELYEK

A horizontális (mellkasi) elvezetések A mellkasi elvezetések unipolárisak, a mérőelektródok potenciálját a Wilson-féle central terminalhoz képest mérjük. Az elektródák elhelyezési pontjai nagyjából egy horizontális síkban vannak, ezért horizontális elvezetéseknek is nevezzük őket. jobb váll A mérőelektródok helye (a pontos elhelyezés igen fontos!): bal váll V1 R R V2 V1: 4. bordaköz, a szegycsont jobb oldalán V2: 4. bordaköz, a szegycsont bal oldalán V3: a V2 és V4 közötti szakasz felezőpontjában V4: 5. bordaköz, a bal medioclaviculáris vonalban V5: V4-gyel azonos horizontális síkban, az elülső hónaljvonalban V6: V4-gyel azonos horizontális síkban, a középső hónaljvonalban V3 V4 V5 V6 R mv láb Ritkábban használatos horizontális elvezetések: V9 V8 V7 V6 V5 V4 V1 V2 V3 Dorzális elvezetések: V7: V4V6-tal azonos horizontális síkban, a hátsó hónaljvonalban V8: V4V6-tal azonos horizontális síkban, a scapularis vonalban V9: V4V6-tal azonos horizontális síkban, a gerincoszlopnál Jobb oldali elvezetések: V3RV6R: mint a V3V6, csak bal oldal helyett a mellkas jobb oldalán P03

P04 A frekvencia meghatározása 1. AZ Előny: változó frekvencia mellett is alkalmazható Hátrány: csak akkor pontos, ha elég hosszú a regisztrátum ÁTLAGOS FREKVENCIA MEGHATÁROZÁSA 15 QRS : 6 s = x : 60 s 1 2 0 2. A 3 4 5 1 7 6 8 2 9 10 3 KONSTANS FREKVENCIA MEGHATÁROZÁSA f = 60 / RR [s] f = 300 / RR [ ] f = 1500 / RR [ ] RR [ ] f 1 2 3 4 5 6 300 150 100 75 60 50 becslés 11 12 4 13 14 5 15 x = 150/min 6 s Előny: nem kell hosszú regisztrátum Hátrány: csak konstans frekvencia esetén használhatjuk f = 75/min f = 100/min pitvari frekv. = 300/min kamrai frekv. = 75/min

Akciós potenciálok a szív különböző területein PITVARI IZOMSEJTEK lassú vezetés, spontán depolarizáció gyors vezetés 0 3 4 0 0 12 3 0 40 40 40 80 80 80 [s] Az ionáramok a kamraizomsejtekéihez hasonlóak. A rövidebb repolarizációt egy különösen gyorsan nyíló (ultra-rapid) K csatorna árama (IKur) okozza. If ICa 0,5 [s] ICa Ito: INa Az AV-csomó sejtjei hasonlóan viselkednek, de lassabb a spontán depolarizációjuk. az akciós potenciál fázisai 0,5 ICa If: pacemaker (Na) áram ICa: ICaT tranziens Ca -áram ICaL a depolarizációért felelős áram IK: repolarizáló áram 3 kifelé kifelé befelé IK [s] 0 1 2 [mv] 4 0 1,0 IZOMSEJTEK gyors vezetés, lassú repolarizáció 0 0,5 ionáram [mv] 3 K AMRAI befelé membránpotenciál [mv] SINUSCSOMÓ Ito1 tranziens K -áram Ito2 Cl -áram IKr: gyorsan nyíló K -csatorna IKs: lassan nyíló K -csatorna IK1: a nyugalmi potenciált fenntartó K -áram INa: depolarizáló Na -áram ICa: ICaT tranziens Ca -áram ICaL a K -áramok átmeneti ellensúlyozója A Purkinje-rostok sejtjei hasonlóan viselkednek, de spontán depolarizálódnak (If-áram miatt). P05

P06 Az akciós potenciálok, az EKG és a szívciklus viszonya AZ AKCIÓS POTENCIÁLOK ÉS AZ REFRAKTER A PERIÓDUSOK SZÍVCIKLUS EKG diastole akciós potenciálok (egyetlen sejt) diastole systole [Hgmm] sinuscsomó 100 abszolút refrakteritás nyomás pitvar 100 mv aorta 50 pitvar relatív refrakteritás kamra 500 [ms] 1 mv EKG (a teljes szív) 0 kamrai depolarizáció repolarizáció pitvari depolarizáció repolarizáció vulnerábilis időszak kamratérfogat kamra 0 I II szívhangok refrakteritás EKG diastole systole diastole

Intervallumok és szegmentumok Intervallumok esetén az időtartamot, szegmentumok esetén pedig az izoelektromos vonaltól való eltérést ill. a lefutást értékeljük. QRS QRS T P PQ QT T P PQ U PQ QT ST TP QTU SZEGMENTUMOK INTERVALLUMOK (IDŐTARTAMOK) Intervallum Definíció Biológiai jelentés Norm. érték PQ a P hullám elejétől a Q (ha nincs, az R) hullám elejéig pitvar-kamrai átvezetési idő 0,120,20 s QRS a Q hullám (ha nincs, akkor az R) elejétől az S (ha nincs, az R) hullám végéig a kamrai depolarizáció időtartama <0,11 s QT a Q hullám (ha nincs, az R) elejétől a T hullám végéig a kamrai elektromos aktiváció időtartama, elektromos systole frekvenciafüggő QTc < 0,44 s korrigált QT: QTc = QT / RR (RR s-ben kifejezve) P07

P08 Az elektromos dipólus. A szív dipólusmodellje AZ AZ ELEKTROMOS DIPÓLUS ELEKTROMOS DIPÓLUS ERŐTERE potenciál 0 elektromos dipólus m A ekvipotenciális görbék A dipólust merőlegesen felező sík pontjaiban nulla a potenciál! dipólusvektor erővonalak SZÍVIZOMROSTON VEZETŐDŐ INGERÜLET ELEKTROMOS DIPÓLUST HOZ LÉTRE A nyugalomban levő szívizomrost a depolarizáció terjedése MŰKÖDŐ SZÍV ELEKTROMOS TERE IS DIPÓLUSSAL MODELLEZHETŐ nullvektor dipólusvektor teljes depolarizáció a repolarizáció terjedése nullvektor dipólusvektor A depolarizáció terjedésekor a vezetődésével azonos irányú elektromos dipólusvektor jön létre, repolarizáció során viszont terjedésével ellentétes irányú dipólusvektor keletkezik. m

A hexaaxiális referenciarendszer 90 240 jobb (right) 60 bal (left) 210 I avr avr avl avf II 30 avl 180 0 I III 150 II III 30 avf láb (foot) 120 60 90 A frontális elvezetésekhez természetes módon hozzárendelhető egy-egy tengely Majd ezeket a tengelyeket egy pontból megrajzolva kapjuk az ún. hexaaxiális referenciarendszert P09

P10 A dipólusvektor összefüggése az elvezetésekben mért feszültséggel UI I Egy adott elvezetésben mérhető avr feszültség arányos a dipólusvektornak a kérdéses elvezetés tengelyére eső merőleges vetületével. m UII 0 < UIII < UI < UII UaVL m UaVF UIII II UI avf Ha a vetület iránya azonos az elvezetés tengelyének irányával, akkor a mért feszültség pozitív, ha ellentétes, akkor a feszültség negatív. avr Ha a dipólusvektor pont merőleges az elvezetés tengelyére, akkor mind a vetület, mind pedig a mért feszültség nulla. UII UaVR < 0 < UaVL < UaVF UaVR III I m avl avl UaVL > 0 m UaVF = 0 UIII UaVR < 0 UII = UIII II UaVR = UaVL III avf A dipólusvektor és a feszültségek összefüggését meghatározó arányossági tényező egyénenként változó, függ a szív mellkastól való távolságától, a szövetek vezetőképességétől. Az arányossági tényező a bipoláris és az unipoláris elvezetésekre nem pontosan azonos. A tárgyalt összefüggés a frontális elvezetésekre érvényes, a mellkasi elvezetésekre csak közelítő jelleggel igaz! Fontos következmény: ha két elvezetés tengelye ellentétes egymással, akkor az ezekben regisztrált EKG görbék is egymás tükörképei lesznek (az izoelektromos vonalra, mint tükörtengelyre nézve). Ez az ún. tükörkép-jelenség. Több elvezetésben mért feszültség ismeretében rekonstruálható a dipólusvektor iránya. A vektorkardiográfia éppen a dipólusvektor térbeli rekonstrukciójával foglalkozik.

Vektorkardiográfia és a skaláris EKG. Az átlagos QRS-vektor VEKTORKARDIOGRAM A EKG ÖSSZEFÜGGÉSE feszültség I idő Ha a momentánvektorokat egy pontból kiindulónak képzeljük el, a vektorok csúcsai a P-, QRS- és a T-hullámoknak megfelelően egy-egy térbeli görbét írnak le. Ezek leggyakrabban önmagukba visszatérő, zárt hurkok, hiszen a PQ- és az ST-szegmentum izoelektromos szokott lenni. VEKTORKARDIOGRAM ÉS A SKALÁRIS (frontális síkú vetületek) I idő frontális sík ltsé zü fes II ltsé fes zü g g QRS-hurok T-hurok AZ ÁTLAGOS QRS-VEKTOR, horizo nt ális sí k momentánvektorok A QRS- és a T-hurkok térbeli megjelenítése, valamint frontális és horizontális vetületük egy teljes szívciklus idejére (a P-hurkot elhagytuk) idő III III II TENGELYÁLLÁS (frontális síkú vetületek) az átlagos QRS-vektor frontális síkra eső vetülete tengelyállás A szív elektromos tengelye (átlagos QRS-vektor) a QRS időtartama alatti dipólusvektorok átlaga. Az átlagos QRS-vektor frontális síkra eső vetületének vízszintessel bezárt szögét tengelyállásnak szoktuk nevezni. P11

P12 A tengelyállás becslése 1. BECSLÉS (keskeny QRS-ek esetén alkalmazható módszer) I ÉRTÉKELÉS 90 avr extrém bal deviáció II avl 30 bal deviáció 180 III 0 avf 1. A 6 frontális elvezetés közül kiválasztjuk az ekvifázisost: ez most az I elvezetés. 120 90 Ezért a tengelyállás az I elvezetés tengelyére merőleges lesz. Két ilyen irány van, a 90 és a 90. középállás extrém jobb deviáció I jobb deviáció 110 90 I 90 2. A két lehetséges megoldás közül kiválasztjuk a valóságost: A tengelyállás lehetséges irányával párhuzamos az avf elvezetés. Mivel itt a QRS erősen pozitív, ezért a 90 -os megoldás nem jó, az eredmény tehát: 90. avf Szinonimák extrém deviáció = kóros deviáció jobb deviáció = vertikális állású szív bal deviáció = horizontális állású szív

A tengelyállás becslése 2. BECSLÉS, HA NINCS EKVIFÁZISOS ELVEZETÉS I avr II avl III avf 1. A 6 frontális elvezetés közül kiválasztjuk azt, amelyik legkevésbé tér el az ekvifázisostól. Ez nem biztos, hogy egyértelmű. Itt pl. két elvezetést is választhatunk, a III-at és az avl-t: A eset III avl B eset 2. A két lehetséges megoldás közül kiválasztjuk a valóságost: 3. Kb. 10 -kal módosítjuk a megoldást a megfelelő irányban, hisz az eredetileg kiválasztott elvezetésünk nem volt ténylegesen ekvifázisos: A két lehetséges választás: 210 A eset III 30 III III 40 240 avl avl B eset avl 60, mert II-ben a QRS pozitív 60 a végső becslés 30 helyett 40º, így a III-ra való vetület pozitív 30, mert I-ben a QRS pozitív a végső becslés 60 helyett 50º, így az avl-re való vetület pozitív 50 P13

P14 A QRS vizsgálata a horizontális síkban 1. Az átmeneti zóna A horizontális síkban az ún. átmeneti zónát szokás meghatározni, ahelyett, hogy az átlagos QRS-vektor horizontális síkra eső vetületének irányát vizsgálnánk (mint a frontális síkban a tengelyállás becslésekor). a QRS-hurok horizontális síkra eső vetülete V6 az átlagos QRS-vektor horizontális síkra eső vetülete V6 V5 V5 V2 V3 V1 V2 V3 na zó V1 V4 eti en átm V4 R-hullám progresszió: V1-től V5-ig (olykor V6-ig) haladva a QRS komponenseinek algebrai összege növekszik, mégpedig negatívból pozitívba megy át. Az átmeneti zóna az, ahol az összeg kb. nulla. Ez egészséges emberekben legtöbbször a V3 és V4 között van. Az átmeneti zóna a frontális síkban megismert ekvifázisos elvezetésnek felel meg. Így az átmeneti zónát a szívvel összekötő egyenesre merőleges lesz az átlagos QRS-vektor horizontális síkra eső vetülete. Ez egészséges embereknél leggyakrabban a laterális iránytól kb. 45 -os szögben hátrafelé néz.

A QRS vizsgálata a horizontális síkban 2. Az átmeneti zóna eltolódásai JOBBRA TOLÓDOTT ÁTMENETI ZÓNA (horális rotáció, gyenge R-hullám progresszió) TOLÓDOTT ÁTMENETI ZÓNA (antihorális rotáció) V6 átmeneti az átlagos QRS-vektor horizontális síkra eső vetülete zóna V5 óna V5 V4 V1 V1 V2 V6 az átlagos QRS-vektor horizontális síkra eső vetülete V3 átm ene ti z BALRA V4 V2 V3 A horális/antihorális rotáció az átlagos QRS-vektor vetületének az óramutató járásával azonos/ellentétes elfordulására utal. Az elnevezés oka, hogy az orvos fekvő beteg vizsgálatakor a mellkast rendszerint alulról látja és nem felülről, ahogy itt ábrázoltuk. P15

P16 A szív ingerületvezető-rendszere pitvari izomzat AZ INGERÜLETVEZETŐ-RENDSZER DEPOLARIZÁCIÓJA His-köteg sinuscsomó Tawara-szárak bal oldal jobb oldal bal anterior fasciculus bal posterior fasciculus AV-csomó vena cava S AV A HT P sinuscsomó pitvarok AV-csomó His-köteg Tawara-szárak Purkinje-rostok Az ingerületvezető-rendszer depolarizációjának (a pitvar kivételével) nincs közvetlen jele a felszíni EKG-n! kamraizomzat Purkinje-rostok RENDSZERINT S: A: AV: H: T: P: A SINUSCSOMÓ A DOMINÁNS PACEMAKER HIS-KÖTEG ELEKTROGRAM (HBE) 100 mv felszíni EKG alsó pitvari elektróda sinuscsomó HBE küszöbpotenciál A HV A HV A HV A HV A A HV ingerületvezetés a pitvarizomzatban 100 mv membránpotenciál A sinuscsomóból levezetett ingerület rendszerint kisüti az AV-csomó pacemaker sejtjeit, mielőtt azok elérnék a küszöbpotenciált. Ez tovább lassítja az AV-csomó sajátfrekvenciáját (overdrive suppression). Mindez elősegíti, hogy a sinuscsomó legyen a szív domináns pacemakere. AV-csomó küszöbpotenciál 0 1 2 idő [s] Ebben az időpontban érte volna el a küszöbpotenciált az AV-csomó, ha a pitvarokon levezetődő ingerület korábban nem depolarizálta volna. Wenckebach típusú másodfokú AV-blokk His-köteg elektrogramja. Látszik, hogy a PQ-idő fokozatos megnyúlását az AH-, és nem a HV-intervallum megnyúlása okozza (vagyis a blokk proximális). A: alsó pitvari depolarizáció H: a His-köteg depolarizációja V: kamrai depolarizáció

Az aritmiák vázlatos felosztása aritmiák ingerképzési zavarok nomotóp sinus tachycardia sinus bradycardia sinus arrhythmia sinus leállás sinuscsomó-betegség ingerületvezetési zavarok heterotóp aktív típus szerint: extrasystole tachycardia lebegés remegés kiindulási hely szerint: pitvari junkcionális kamrai blokkok passzív típus szerint: escape ütés escape ritmus preexcitációs szindrómák súlyosság szerint: I-fokú II-fokú III-fokú (teljes) hely szerint: SA AV intraventricularis kiindulási hely szerint: junkcionális kamrai Ez a felosztás csak a tájékozódást szolgálja, a klinikai gyakorlatban más beosztást használnak. Vannak aritmiák, melyek kialakulásához vezetési és ingerképzési zavar is szükséges. Igen gyakori az is, hogy az egyik aritmia egy másik kialakulását elősegíti. P17

P18 Az extrasystolék időbeli viszonyai RRn RR1 RR2 S extrasystole A AV V RRn : normál periódusidő A kamrai extrasystolék rendszerint kompenzáltak. RR1 : kapcsolási idő RR2 : kompenzációs pauza Ha: akkor az extrasystole: RR1 RR2 < 2RRn alulkompenzált RR1 RR2 = 2RRn kompenzált (teljesen kompenzált) RR1 RR2 > 2RRn túlkompenzált RR1 RR2 = RRn interpolált PPn S PP1 PP2 PPn A AV V RRn RR1 RR2 RRn PP1 < PPn, PP2 PPn, RR1 RR2 = PP1 PP2 A supraventricularis extrasystolék rendszerint alulkompenzáltak.

Az AV-blokkok felosztása Súlyosság Meghatározás Megjegyzés Pacemaker szükséges I-fokú minden P-hullám átvezetődik, csak lassan (a PQ-idő megnyúlt) RR = PP, a szívfrekvencia nem csökken nem II-fokú egy-egy P-hullám átvezetése kimarad, de az utánuk következő átvezetődik gyakran ciklusokban jelentkezik nem Mobitz I a ciklusokon belül a PQ-idők fokozatosan nyúlnak rendszerint átmeneti ill. proximalis, ezért jó prognózisú nem 2:1 blokk csak minden 2. P-hullám vezetődik át eldöntendő, hogy proximalis vagy distalis igen/nem Mobitz II a ciklusokon belül a PQ-idők változatlanok súlyosbodásra hajlamos ill. distalis, ezért rossz prognózisú igen Magas fokú több egymás utáni P-hullám nem vezetődik át, de olykor van átvezetés a befogott ill. fúziós ütések jelenléte alapján különíthető el a teljes blokktól igen III-fokú (teljes) egyetlen P-hullám sem vezetődik át túlélés csak akkor lehetséges, ha pótritmus alakul ki; ekkor a pitvarok és kamrák egymástól függetlenül működnek igen P19

P20 I-fokú, magas fokú és teljes AV-blokk PQ [ms] 280 280 280 280 I S A AV V RR [ms] 800 800 I-FOKÚ PQ [ms] 800 2120 2120 TELJES (III-FOKÚ) BLOKK 340 BLOKK 380 F C I S A AV V RR [ms] 1500 1480 1240 MAGAS FOKÚ BLOKK 1500 F: fúziós ütés C: kamrai befogás (capture)

A másodfokú AV-blokk Wenckebach (Mobitz I) típusa PQ [ms] 160 280 360 400 160 PP III S A PQ1 840 800 760 PP PQ2 RR1 AV V RR [ms] PP PQ3 RR2 PP PP PQ4 RR3 PQ1 RRblokk 1200 1. Az AV-átvezetés (PQ-idő) fokozatosan nyúlik, majd egy P-hullám nem vezetődik át. Ezt követően a jelenség ciklusokban ismétlődik. Az EKGrészlet egy 5:4 átvezetési arányú ciklust, és a következő ciklus első tagját mutatja be. 2. Típusos esetben a cikluson belüli RR-intervallumok csökkennek. Feltételek: PP konstans, PQ1 < PQ2 < PQ3 < PQ4 RR1 = PP PQ2 PQ1 RR2 = PP PQ3 PQ2 RR3 = PP PQ4 PQ3 Típusos esetben a szomszédos PQ-idők növekménye csökken: PQ2PQ1 > PQ3PQ2 > PQ4PQ3 Így: RR1 > RR2 > RR3 3. A ciklusok közötti (az át nem vezetett P-hullámot tartalmazó) RRintervallum hosszabb, mint a PP, de rövidebb, mint 2PP (vagy bármely cikluson belüli RR 2-szerese). RRblokk > PP PQ1 > PP RRblokk = 2PP PQ1 PQ4 < 2PP P21

P22 A másodfokú AV-blokk Mobitz II típusa PQ [ms] 200 200 200 200 PP I S A PQ RR AV V RR [ms] PQ 800 800 PP PP PP PQ RR PQ RRblokk 1600 1. Az AV-átvezetés (PQ-idő) konstans (lehet normális és megnyúlt is), majd egy P-hullám nem vezetődik át. Ezt követően a jelenség ciklusokban ismétlődhet. Az EKG-részlet egy 4:3 átvezetési arányú ciklust, és a következő ciklus első tagját mutatja be. Feltételek: PP és PQ konstans 2. A cikluson belüli RR-intervallumok egyenlőek (hacsak nincs sinus arrhythmia). RR = PP 3. A ciklusok közötti (az át nem vezetett P-hullámot tartalmazó) RRintervallum a PP- ill. a többi RR-intervallum kétszeresével azonos hosszúságú. RRblokk = 2PP

A QRS-komplexum leírása. Az intrinsicoid deflection (ID) fogalma A QRS-KOMPLEXUM csomós R-hullám rs AZ RS qr R INTRINSICOID DEFLECTION qrs QS rsr' rsr' RR' hasadt R-hullám Az rsr', rsr' RR' stb. formákat M-komplexumnak is nevezzük. (Az rsr' ejtése: r S r vessző.) (ID) Az ID fogalma csak a mellkasi elvezetésekben értelmezhető! Az ID-pont az a pont, ahol a QRS utoljára lefelé fordul (nyíllal jelölve). Az ID-idő a QRS kezdete és az ID-pont között eltelt idő. Az ID-idő azt méri, hogy mennyi idő alatt jut el az ingerület a kérdéses mellkasi elektróda alatti szívterületig. Ezért az ID-idő mérése hasznos pl. Tawara-szár-blokk vagy kamrai hypertrophia gyanújakor. Egészséges emberen: jobb oldali elvezetések (V1, V2) ID < 40 ms bal oldali elvezetések (V5, V6) ID < 60 ms P23

P24 Az intraventricularis vezetési zavarok felosztása Az intraventricularis vezetési zavarok sajátossága, hogy az erős megnyúlást okozó I-fokú és a III-fokú blokkok a felszíni EKG alapján nem különböztethetők meg egymástól. TAWARA-SZÁR-BLOKKOK Jobb-Tawara-szár-blokk Bal-Tawara-szár-blokk Inkomplett Tawara-szár-blokkról akkor beszélünk, ha a QRS alakja szárblokknak megfelelő, de a QRS nem kórosan széles. HEMIBLOKKOK Bal anterior hemiblokk (extrém bal deviáció) Bal posterior hemiblokk (extrém jobb deviáció) KOMBINÁLT ÉS EGYÉB BLOKKOK Bifascicularis blokkok: pl. jobb-tawara-szár-blokk és bal anterior hemiblokk együtt Egyéb esetek: trifascicularis blokkok átmeneti, alternáló, frekvenciadependens formák nem specifikus blokkok peri-infarktusos blokkok

Tawara-szár-blokkok Ha supraventricularis eredetű ingerület ellenére széles a QRS és a WPW kizárható, gondoljunk Tawara-szár-blokkra! JOBB-TAWARA-SZÁR-BLOKK BAL-TAWARA-SZÁR-BLOKK V6 V6 QRS T QRS T V1 Összehasonlító táblázat jobbszár-blokk Jellegzetességek: supraventricularis ingerület széles QRS ( 120ms) V1-ben M-komplexum vagy hasadt R I-ben és V6-ban széles S V1-ben megnyúlt ID-idő szekunder repolarizációs zavarok A tengelyállás: nem jellemző. I V1 V6 egészséges V1 balszár-blokk Jellegzetességek: supraventricularis ingerület széles QRS ( 120ms) V5, V6, I, avl-ben csomós vagy hasadt R V5, V6-ban nincs Q-hullám V1V4-ben rs vagy QS V6-ban megnyúlt ID-idő szekunder repolarizációs zavarok A tengelyállás: többnyire bal deviáció, de ez nem kötelező. P25

Preexcitáció, járulékos nyalábok, WPW-szindróma A preexcitáció azt jelenti, hogy egy járulékos köteg miatt a kamrák túl korán depolarizálódnak JÁRULÉKOS Atrioventricularis (Kent) nyaláb NYALÁBOK WPW-SZINDRÓMA REENTRY TACHYCARDIÁK WPW-SZINDRÓMÁBAN (AVRT) atrio-his-nyaláb (James) járulékos köteg preexcitáció WPW-szindrómát okoz LGL-szindrómát okoz, ritka Mahaim-típusú nyalábok His-kamrai nyaláb AV-kamrai nyaláb atrio-fasciculáris nyaláb, AV-szerű átvezetéssel fúziós kamrai ütések ortodróm tachycardia nincs preexcitáció keskeny QRS, gyakoribb forma a δ -hullám a QRS-t a PQ-intervallum rovására szélesíti A WPW-szindróma fő jellegzetességei: rövid PQ széles QRS δ -hullám szekunder repolarizációs zavarok antidróm tachycardia maximális preexcitáció széles QRS, ritkább forma P26

A reentry kialakulása HOGYAN SZÜNTETHETŐ MEG? megszűnhet magától (extrasystole) a refrakteritás megnyújtásával (vagus manőver vagy gyógyszer) pacing, overdrive pacing DC-sokk (csak indokolt esetben) ELŐFELTÉTELEK párhuzamos vezetőnyalábok az egyik nyalábon unidirekcionális blokk a blokkolt nyalábon visszafelé vezetődő ingerület újra ingerelni tudja a másik nyalábot A Az unidirekcionális blokk lehet állandó, de leggyakrabban átmeneti. Ehhez az szükséges, hogy a két vezetőnyaláb refrakteritása eltérjen, továbbá a második ingerület egy bizonyos időablakban érkezzen az első után. A második ingerület lehet egy extrasystole. B ESET: ha a második ingerület túl korán érkezik, mindkét pályát refrakteritásban éri, ezért nem történik semmi ESET: C ESET: ha a második ingerület túl későn érkezik, mindkét pályán le tud vezetődni, ilyenkor sem történik semmi átmeneti unidirekcionális blokk akkor jön létre, ha a második ingerület akkor érkezik, amikor az egyik pálya még refrakter, de a másik már nem 1 idő idő Jelmagyarázat: első ingerület második ingerület az első ingerület okozta refrakteritás a második ingerület depolarizációs hulláma a második ingerület okozta refrakteritás 2 3 4 5 6 7 idő Ez a lépés kritikus. Az ingerület csak akkor képes újra belépni a jobb oldali nyalábra, ha ott már elmúlt a refrakter stádium. Ha ez megtörténik, a reentry elvileg örökké körbe-körbe forog (gyakorlatilag egy megfelelő időben jelentkező extrasystole ugyanúgy le tudja állítani, ahogy elindította). P27

P28 A P-abnormalitások EKG-jelei ELTÉRÉS NÉLKÜLI P-LLÁM P-MITRALE P-PULMONALE széles P-hullámok magas P-hullámok horizontális elvezetések frontális elvezetések A P-hullám időtartama normálisan nem haladja meg a 0,1 s-ot, amplitúdója pedig a 0,25 mv-ot a P-hullám jobb pitvari komponense bal pitvari komponens eredő P-hullám bal pitvari P-vektor jobb pitvari P-vektor V1-ben a P-hullám gyakran bifázisos, az első, pozitív fázis inkább a jobb pitvari, míg a második, negatív fázis a bal pitvari összetevőnek felel meg V1-ben erős negatív komponens V1-ben erős pozitív komponens

A repolarizációs zavarok leírása ST-SZAKASZ T-LLÁM Az ST-szakasz normálisan izoelektromos. ST-depresszió (deprimált ST) ascendáló horizontális ST-eleváció (elevált ST) jelző nélküli, sima ST-eleváció dómszerű ST-eleváció (jelentős ST-eleváció, magas T-hullámmal összeolvadva) A T-hullám rendszerint pozitív és nem szimmetrikus. T-hullám eltérések Kombinált ST-T-eltérések magas, csúcsos lapos descendáló negatív sajkaszerű coronaria T (szimmetrikus, mély, csúcsos, negatív) kamrai strain (descendáló, felülről konvex ST-depresszió, amit bifázisos, vagy negatív T-hullám követ) ST-eleváció, amit bifázisos T-hullám követ (infarctus akut szakában) P29

Az ST-elevációs infarctusok lokalizációja és stádiumbeosztása a fájdalom fellépte Lokalizáció Az elvezetések, melyekben az infarctus jelei láthatók extenzív anterior (anterolaterális) I, avl, V1, V2, V3, V4, V5, V6 anteroseptalis V1, V2, V3, V4 hiperakut stádium akut stádium laterális I, avl, V5, V6 magas laterális I, avl szubakut stádium inferior II, III, avf posterior tükörkép jelek: (V1 ), V2, V3 direkt jelek: V7, V8, V9 definitív stádium (régi infarctus) Az infarctust követően a kóros EKGjelenségek rendkívül változatosan követhetik egymást. Itt az ST-elevációs infarctusok tipikus lefolyását illusztráljuk. dómszerű ST-eleváció (ST-eleváció, magas csúcsos T-hullámmal összeolvadva) pathológiás Q-hullám és/vagy R-redukció, ST-eleváció, negatív T-hullám (a Thullám valójában bifázisos, de a pozitív fázis összeolvad az ST-elevációval) pathológiás Q-hullám és/vagy R-redukció, coronaria T-hullám (szimmetrikus, mély, csúcsos, negatív a T-hullám) a pathológiás Q-hullám rendszerint élethosszan megmarad; a repolarizációs zavarok normalizálódhatnak P30

A laesio okozta ST-eltérések kialakulása A laesio súlyos, de csak átmeneti, nekrózist nem okozó hypoxiás állapot. A laesio miatt csökken a nyugalmi potenciál. A LAESIO HATÁSA AZ AKCIÓS POTENCIÁLRA SUBENDOCARDIALIS LAESIO SUBEPICARDIALIS/TRANSMURALIS Előfordul: tipikus angina pectoris kisméretű infarctusok A nyugalmi potenciál csökkenése miatt az extracelluláris térben a laesio által érintett terület kevésbé lesz pozitív az egészséges szívizom területénél, vagyis a diastole alatt (TP- és PQ-szegmentumok) egy konstans dipólus jön létre, mely a laesio felől az egészséges terület felé mutat (ún. diastolés sértési áram). egészséges LAESIO Előfordul: Prinzmetal-angina nagyobb infarctusok a bal kamra fala laesio fekete nyilak: diastolés sértési áram systole diastole systole A laesio alatt azonban a systole is megváltozik: csökken az akciós potenciál meredeksége, a plató szintje, továbbá gyorsabb lesz a repolarizáció is, vagyis a systole alatt a laesio által érintett terület kevésbé depolarizált, mint az egészséges. Ez egy, a laesio által érintett terület felé mutató dipólust hoz létre az ST-szegmentum idejére (ún. systolés sértési áram). zöld nyilak: systolés sértési áram A TP- és PQ-szegmentum emelkedik, az ST pedig süllyed. Mindez ST-depresszióként jelentkezik. A TP- és PQ-szegmentum süllyed, az ST pedig emelkedik. Mindez ST-elevációként jelentkezik. P31

A necrosis jelei az EKG-n NAGYOBB KITERJEDÉSŰ, TRANSMURALIS INFARCTUS A necrosis által érintett területeken nincs elektromos aktivitás, így az ellenoldali dipólusok ellensúlyozás nélkül jelennek meg. Ezért az infarctus felőli elvezetésekben nagy valószínűséggel pathológiás Q-hullámot, vagy QS-komplexumot látunk. KISEBB KITERJEDÉSŰ, SUBENDOCARDIALIS INFARCTUS A körülményektől függően, pathológiás Q-hullámot, vagy R-redukciót (az indokoltnál kisebb R-hullámot) látunk. A pathológiás Q-hullám azért lesz széles, mert a necrosis körüli szövetekben az ingerületvezetés lassú, így az elektróda felé haladó, R-hullámot okozó depolarizáció csak késve jelentkezik. P32

A T-hullámok alakját meghatározó tényezők MIÉRT KONKORDÁNS A T-LLÁM? Ha a kamrák izomsejtjeiben a repolarizáció a depolarizáció sorrendjét követné, akkor a T-hullámnak a QRS fő kitérésével ellentétesnek (diszkordánsnak) kellene lennie. endo epi Tudjuk azonban, hogy a kamraizomzat sejtjeiben az akciós potenciál hossza jelentősen különbözik: az epicardium közelében sokkal rövidebb, mint az endocardiumban. Emiatt az epicardiumban korábban fejeződik be a repolarizáló, mint az endocardiumban, annak ellenére, hogy itt a depolarizáció később kezdődik. Az akciós potenciál hosszában tapasztalható jelentős különbség azzal magyarázható, hogy a K -csatornák tekintetében jelentős a polimorfizmus, és más az epicardialis és az endocardialis sejtek csatornaösszetétele. A valóságban a kamrafal a szokásos módon, belülről kifelé, radiális irányban depolarizálódik, így a repolarizáció terjedésének iránya a depolarizációéval ellentétes lesz, ezért a T-hullám konkordáns. MI OKOZHAT TEHÁT DISZKORDÁNS 1. Ha a kamrák tömegének jelentős része nem a szokásos radiális irányban depolarizálódik, hanem a fallal érintőleges irányban. Ilyenkor a repolarizáció sorrendje a depolarizációét fogja követni. T-LLÁMOT? III pl. kamrai extrasystole 2. Ha pl. ischaemia következtében megváltoznak az ioncsatornák működési feltételei, és jelentősen lassul az ingerületvezetés és/vagy I jelentősen csökken az akciós potenciálok hosszában tapasztalható különbség. pl. anginás roham alatt, átmenetileg megfigyelhető negatív T-hullámok 3. Ha valamilyen stresszhatásra megváltozik a kamrai izomsejtek K -csatorna-összetétele, s ezáltal az akciós potenciálok hossza. Ez lassabban alakul ki, mint az előző eset, de tartósabb (napokig, vagy még tovább tartó) változást okoz. V4 pl. coronaria T-hullám kialakulása subacut infarctusban P33