Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó



Hasonló dokumentumok
Tömegpontok mozgása egyenes mentén, hajítások

Mechanika. Kinematika

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

1 2. Az anyagi pont kinematikája

Mechanikai rezgések = 1 (1)

Mit nevezünk nehézségi erőnek?

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

Hely, idő, haladó mozgások (sebesség, gyorsulás)

Mozgástan (kinematika)

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

1. Feladatok a dinamika tárgyköréből

Függvények Megoldások

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Fizika feladatok - 2. gyakorlat

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.

KOVÁCS BÉLA, MATEMATIKA II.

Exponenciális és logaritmusos kifejezések, egyenletek

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Mechanika - Versenyfeladatok

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

Fizika példák a döntőben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

10. Koordinátageometria

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Számítógépes Grafika mintafeladatok

A klasszikus mechanika alapjai

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.

Mérnöki alapok 2. előadás

W = F s A munka származtatott, előjeles skalármennyiség.

Mérnöki alapok 1. előadás

Összeállította: dr. Leitold Adrien egyetemi docens

További adalékok a merőleges axonometriához

Speciális mozgásfajták

A bifiláris felfüggesztésű rúd mozgásáról

Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

A mechanika alapjai. A pontszerű testek dinamikája

NULLADIK MATEMATIKA szeptember 13.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

Egy nyíllövéses feladat

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Mérések állítható hajlásszögű lejtőn

Érettségi feladatok Koordinátageometria_rendszerezve / 5

EGY ABLAK - GEOMETRIAI PROBLÉMA

Érettségi feladatok: Koordináta-geometria 1/5

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -

Egy kinematikai feladat

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.

Fizika alapok. Az előadás témája

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria

Newton törvények és a gravitációs kölcsönhatás (Vázlat)

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

5. előadás. Skaláris szorzás

Egy mozgástani feladat

Rezgőmozgás, lengőmozgás

Hely, idő, haladó mozgások (sebesség, gyorsulás)

Számítógépes Grafika mintafeladatok

Gyakorló feladatok Egyenletes mozgások

Munka, energia Munkatétel, a mechanikai energia megmaradása

Adatok: fénysebesség, Föld sugara, Nap Föld távolság, Föld Hold távolság, a Föld és a Hold keringési és forgási ideje.

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Tér, idő, hely, mozgás (sebesség, gyorsulás)

PÉLDÁK ERŐTÖRVÉNYEKRE

HELYI TANTERV. Mechanika

Vektorok és koordinátageometria

Egy sík és a koordinátasíkok metszésvonalainak meghatározása

1. feladat. 2. feladat

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor

Felvételi, 2017 július -Alapképzés, fizika vizsga-

Koordinátageometria Megoldások

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

Érettségi feladatok: Trigonometria 1 /6

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit

KOVÁCS BÉLA, MATEMATIKA I.

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA

KOVÁCS BÉLA, MATEMATIKA I.

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Vektoralgebra. 1.) Mekkora a pillanatnyi sebesség 3 s elteltével, ha a kezdősebesség (15;9;7) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s 2?

Tömegvonzás, bolygómozgás

Fizika feladatok megoldása Tanszéki, Munkaközösség, Pannon Egyetem Fizika és Mechatronika Intézet

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

Átírás:

Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik: - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó okokat; - Dinamikára: a testek mozgását tanulmányozza, figyelembe véve a kiváltó okokat; - Sztatika: a testek mechanikai egyensúlyának feltételeit tanulmányozza; 1. Mozgás és nyugalom Bevezető fogalmak: Mikor mozog egy test? A kérdésre csak akkor tudunk pontos választ adni, ha van egy vonatkoztatási rendszerünk (a vonatkoztatási vagy viszonyítási test az, melyhez képest megadjuk a tanulmányozott test helyzetét). Szükséges eszközök: méteres és időmérő. Együtt vonatkoztatási rendszert alkotnak. Ha a test helyzete a vonatkoztatási rendszerhez képest időben változik, akkor azt mondjuk, hogy hozzá képest mozgásban van. Grafikusan egy test mozgását gyakran Descartes féle derékszögű koordináta-rendszerben adjuk meg. A helyzetvektor olyan vektor melynek kezdőpontja a koordináta-rendszer origója, csúcsa (végpontja) pedig az anyagi ponton van (lásd ábra). (anyagi pont: a testek mozgása során, gyakran elhanyagolhatóak a test méreteit, a testet pontnak tekintjük melyek tömege a test tömegével egyenlő). A helyzetvektornak a három tengely szerint három vetülete van. A vetületek kifejezhetőek a koordináták egységvektorai és a vetületek nagyságainak segítségével:, vagy az egységvektorokat felhasználva: (egységvektor = nagysága 1 egység, iránya, irányítása megegyezik az egyik koordináta irányával illetve irányításával.) Mozgáskor a test által érintett pontok összességét a mozgás pályájának nevezzük. Egy test mozgását egy vonatkoztatási rendszerhez képest (ezután Mechanika Kinematika 1

VR) leírhatjuk a megtett úttal (a pályán mért távolság, s) vagy az elmozdulásvektorral (elmozdulásvektor = a test két helyzetének megfelelő helyzetvektor különbsége: ). A megtett út (s) és az elmozdulásvektor ( ) nem egyenértékűek! A megtett út skaláris mennyiség az elmozdulásvektor vektoriális. Nagyságuk is általában különbözik (lásd ábra). A mozgástörvény meghatározza a test helyzetét az idő függvényében. Általános alakja: Az első vektoriális a második skaláris alak. 2. A sebesség A testek mozgásának jellemzésére használt alapvető fizikai mennyiség. A középsebesség az egységnyi idő alatt megtett utat jelenti. Mértékegysége SI-ben (SI System International = Nemzetközi Mértékrendszer) m/s. A középsebesség nem tartalmaz csak a sebesség nagyságára vonatkozó információt, hiányzik az irány és irányítás. Ezért bevezetjük a középsebesség-vektort, mely az elmozdulásvektor és időtartam hányadosa. Az ábrán is látható, hogy a középsebesség-vektor iránya és irányítása megegyezik az elmozdulásvektor irányával és irányításával. A pillanatnyi sebességvektort akkor kapjuk, ha az időintervallumot zéró felé közelítjük ( ). A pillanatnyi sebesség a test sebességét jelenti egy adott pillanatban, iránya érintőleges a pályához. 3. A gyorsulás A sebesség időbeli változását a gyorsulás jellemzi. Jele: a. Képlete: mértékegysége a m/s 2. Mechanika Kinematika 2

Az ábrán látható, hogy a középgyorsulás vektor egyenlő a sebességváltozás-vektor és időtartam hányadosával, iránya és irányítása a sebességváltozás-vektor irányával és irányításával megegyező. Pillanatnyi gyorsulásról beszélünk, ha az időintervallumot zéró felé szűkítjük. A gyorsulást fel szokás bontani két egymásra merőleges összetevőre: a tangenciális vagy (pályához-) érintőleges gyorsulásra és normális vagy centripetális gyorsulásra (az érintő irányára merőleges). A tangenciális gyorsulás a sebesség nagyságának változását jellemzi, a normális gyorsulás pedig a sebesség irányának változását. A mozgásokat gyakran a gyorsulás összetevői szerint osztályozzuk. Az alábbi táblázat ezt a felosztási módot tükrözi: Egyenes vonalú mozgás a n =0 Görbe vonalú mozgás an 0 A MOZGÁSOK OSZTÁLYOZÁSA a gyorsulás összetevőinek függvényében egyenletes a t =0 egyenletesen változó a>0 gyorsuló a t =állandó a<0 lassuló változó a állandó R=állandó körmozgás egyenletes körmozgás a n =állandó, a t =0 egyenletesen változó körmozgás a n =állandó, a t - állandó R=változó görbe vonalú mozgás változó körmozgás a n =állandó, a t - változó 4. Egyenes vonalú egyenletes mozgás Ebben az esetben nincs gyorsulás, tehát a sebességvektor állandó. Ebből következik, hogy a pálya egyenes, a sebesség iránya megegyezik a pálya irányával. A mozgás leírásához elégséges egyetlen koordinátát használni, legyen ez az Ox tengely. A mellékelt ábrán O az origó, vagy a VR kezdőpontja, t 0 a kezdeti időpont, x 0 a test kezdeti távolsága a kezdőponthoz Mechanika Kinematika 3

képest, t a végső időpont melynek megfelel az x végső távolság. A sebesség kifejezése a fenti jelöléseket használva: Mivel a sebesség nem változik, ezért a középsebesség egyenlő a pillanatnyi sebességgel. A (8)-as egyenletből kifejezve az x végső helyzetnek megfelelő távolságot: összefüggést kapjuk, mely az egyenes vonalú egyenletes mozgást végző test mozgástörvénye. Ha az időt akkor kezdjük mérni, amikor a test az x 0 pontban van, akkor t 0 =0 és ha a VR kezdőpontját pont az x 0 pontban választjuk, akkor x 0 =0 és a (9)-es összefüggés leegyszerűsödik: A mozgás grafikus ábrázolását az alábbi v=v(t) és x=x(t) grafikon szemlélteti: A sebesség grafikon alatti terület nagysága egyenlő a megtett úttal (téglalap melynek oldalai v és t-t 0 ). Az út-idő grafikon iránytényezője tanα, pont a sebességgel egyenlő: 5. Egyenes vonalú egyenletesen változó mozgás Ebben az esetben a normális gyorsulás zéró, tehát egyenes vonalú mozgásról van szó, viszont a tangenciális gyorsulás zérótól különböző és állandó. Tehát a mozgás pályája egyenes, a sebesség nagysága pedig egyenlő időközökben egyenlő értékkel változik. Az egyenes vonalú egyenletes mozgás törvényei: Mechanika Kinematika 4

a) Sebességtörvény A középgyorsulás (7)-es kifejezéséből kapjuk: A (12)-es kifejezésből a végső sebességet kifejezve, kapjuk: A (13)-as kifejezést sebességtörvénynek nevezzük. Ha a kezdeti időpillanat zéró, akkor: b) Mozgástörvény (úttörvény) A középsebesség (5)-ös kifejezéséből: ahonnan, kifejezve x-et: Mivel a sebességváltozás egyenletes, a középsebesség kiszámítható, mint a kezdősebesség és végsősebesség számtani középarányosa: Behelyettesítve a 17-es kifejezést a 16-os egyenletbe és rendezve azt, megkapjuk a mozgástörvényt: Ha a kezdeti időpillanatot zérónak tekintjük, a 18-as egyenlet egyszerűbb alakját kapjuk: Ha a test kezdeti helyzete egybeesik az origóval (x 0 =0): c) Galilei képlete A 14-es egyenletből az időt kifejezve és a 20-as egyenletbe helyettesítve kapjuk: Mechanika Kinematika 5

A műveleteket elvégezve és rendezve kapjuk: A 21-es egyenlőséget Galilei képletének nevezzük. Az egyenes vonalú egyenletes mozgás esetén az a=a(t), v=v(t) és x=x(t) függvények ábrái a következők: Megjegyzések: a gyorsulás grafikonból kiolvasható, hogy a gyorsulás állandó és a grafikon alatti terület egyenlő a t-t 0 időintervallumban bekövetkezett sebességváltozással. A sebesség grafikon egy egyenes, ami azt jelenti, hogy a sebesség változása egyenesen arányos az idővel (egyenletesen változik). A grafikon és vízszintes közötti szög tangense pedig egyenlő a gyorsulás mértékével. Az út grafikonja egy parabola, mivel az út az idő másodfokú függvénye. 6. Szabadesés, függőleges hajítás Szabadeséskor és függőleges hajításkor a testre egyetlen erő hat, a gravitációs vonzóerő a Föld részéről, a súrlódási erőt elhanyagoljuk és a gravitációs erőt állandónak tekintjük. Ezen feltételek teljesülésekor a test mozgása egyenes vonalú és egyenletesen változó lesz. A gyorsulás egyenlő a gravitációs gyorsulással, a megtett utat gyakran magasságként említjük (jele: h). Ha a testet szabadon elengedjük (v 0 =0) és az origót pont a mozgás kezdőpontjában veszszük fel, akkor a mozgástörvény: a test pillanatnyi sebességét pedig a: Mechanika Kinematika 6

összefüggés adja meg. Függőleges hajítás esetén figyelembe kell venni, hogy a test felfele mozog, gyorsulása pedig ellentétes, ezért a mozgástörvény: A sebesség változását adó sebességtörvény a következő: A test lassuló mozgást végez, sebessége csökken, míg eléri pályájának maximális értékét, majd szabadeséssel visszaesik. A fenti összefüggéseket alkalmazva, az esés ideje szabadeséskor: A legnagyobb magasság v 0 kezdősebességű függőleges hajításkor: Bizonyítható, hogy az emelkedés és esés ideje egyenlő. 7. Mozgás függőleges síkban, gravitációs térben (ferde hajítás) A hajítás ebben az esetben a vízszintessel 90 0 -tól eltérő szögben történik. A súrlódást ezentúl is elhanyagoljuk, és feltételezzük, hogy a testre csak a gravitációs erő hat. A mozgás leírásához két koordináta szükséges (a mozgás síkban történik), legyen ez az Ox és Oy tengely. A mozgás egy görbe vonalú pályán történik, melynek megszerkesztjük a vetületét az Ox és Oy tengelyre. Mechanika Kinematika 7

Az Ox tengely (vízszintes) irányában nem hat erő, tehát egyenes vonalú egyenletes a mozgás állandó v x0 sebességgel. Az Oy tengely irányában a súlyerő hat. A mozgás hasonló egy függőleges hajításhoz, ahol a kezdősebesség v y0. A test által elért legnagyobb magasságot az Oy tengely menti mozgásból számítjuk ki feltételezve, hogy a v y sebességkomponens a legnagyobb magasságon zéró: Az emelkedési idő a 25-ös egyenletből: A teljes hajítás ideje pont kétszer akkora, mint az emelkedési idő. Időközben az Ox tengely mentén megtett út: 8. Egyenletes körmozgás Ebben az esetben a test mozgásának pályája egy kör, sebességének nagysága pedig állandó. Ebből következik, hogy normális gyorsulása állandó, tangenciális gyorsulása pedig zéró. A mellékelt ábrán az egyenletes körmozgást végző test az A pontból a B pontba kerül. A sebességvektorok a két pontban merőlegesek a sugárra (érintők a körhöz). Azért, hogy megkapjuk a sebesség változását az A pontból párhuzamosan eltoljuk a sebességvektort a B pontba. Figyelembe véve, hogy az OAB és BCD háromszögek hasonlóak, írhatjuk: A 31-esben s a megtett út, R a körmozgás sugara. Figyelembe véve, hogy a megtett út, a 31- es egyenletből kiszámítható a gyorsulás nagysága: A körmozgást jellemző egyéb fizikai mennyiségek: a) Periódus Mechanika Kinematika 8

Az idő, amely alatt a test egy teljes kört ír le. Jele: T, mértékegysége: s (szekundum). b) Frekvencia Az időegység alatt leírt körök számával egyenlő. Jele: ν, mértékegysége: Hz(hertz). Ha az időegységet osztjuk a frekvenciával (a leírt körök számával) megkapjuk az egy kör leírásához szükséges időt, vagyis a periódust: c) Szögsebesség A sugár által, egységnyi idő alatt leírt középponti szög. Jele: ω, mértékegysége: rad/s (radián/szekundum). A radián szögmérték, egy teljes körnek (360 0 ) megfelel 2π radián. Mivel egy teljes kört (2π radián) pont egy periódus alatt tesz meg, ezért a szögsebesség: Az egyenes vonalú egyenletes mozgásnál tanult 9-es mozgástörvény megfelelője körmozgás esetén a megtett szög kifejezése az idő függvényében. A szögsebesség meghatározásából vagy a 34-es egyenletből következik: Egyéb összefüggések: Mechanika Kinematika 9