PLA és FPLA áramkörök
|
|
- Ernő Fehér
- 8 évvel ezelőtt
- Látták:
Átírás
1 Programozható logikai áramkörök PLA és FPLA áramkörök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest, 1987 Gál T.: Programozható logikák BME - tankönyvkiadó, P. Ammon: Kapumátrix-áramkörök, Műszaki könyvkiadó, 1989.
2 A tantárgy szervezése: Heti 1 előadás 1 házi feladat / félév 1 ZH / félév. Előfeltétel: Digitális technika A félévközi jegy megszerzése: A házi feladat és a ZH alapján A ZH az utolsó EA -on lévő pót ZH n JAVÍTHATÓ! (Az elégtelen ZH t kötelező javítani.) (A PZH eredménye törli az előző ZH eredményét)
3 Ismétlés és rávezetés: Bevezetésképpen, oldjunk meg a Digitális Technika c. tantárgyból már jól ismert több-kimenetelű hálózatot. Példa: 7 szegmenses kijelző
4 A programozható logikai áramkörök alapfelosztása: Programozható Logikai Áramkörök Processzorok, Mikroprocesszorok INTEL, AMD,.. PIC, 8080, Z80, UART, USART, Programozható memóriák PROM, EPROM, EEPROM, Programozható Logikai mezők PLA / FPLA, PLD, PAL / GAL, CPLD, FPGA,
5 A programozható logikai áramkörök, mint IC -k rendszertechnikai felosztása: Integrált Áramkörök Szabványos IC-k Felhasználás-specifikus IC-k Fix funkciók TTL, CMOS, BICMOS, ECL, I 2 L processzorok I/O processzorok Jelprocesszorok controllerek Programozható funkciók PROM, EPROM EEPROM, FLASH Programozható logikai áramkörök Semi Custom Gate Array Standard Cell Full Custom PLÁ, PLD, PAL, GAL, FPGA,
6 A digitális IC-k szerinti felosztás:
7 Bevezetés: A programozható digitális áramkörök alapvetően 2 nagy csoportba sorolhatók: -Az időosztásos elven működő áramkörök: Működésüket kristály-oszcillátor ütemezi, és a program ismétlődően lefutva hajtódik végre ( Processzor, PLC, ). Jellemzőjük, hogy a kombinációs típusú f.-ket is sorrendi hálózat realizálja. Számos előnyük mellett, hátrányaik: a működési frekvenciájuk alacsony, nagy zavarérzékenység. -Huzalozott logikás áramkörök: A fejlesztések a huzalozott logikás áramkörök programozhatóvá alakítása felé irányulnak. Ezekből lettek a programozható logikai elemek, amelyek a huzalozott architektúrát követik. A program a működés előtt kerül letöltésre, ezért letöltő programnak is nevezik. Az ilyen áramkörök felhasználó specifikusak, tervezésükhöz speciális SW-k állnak rendelkezésre, gyorsak, nehezen másolhatóak. Ezekkel az áramkörökkel foglalkozik ez a tantárgy.
8 Programozható Logikai Eszközök (PLD): Két nagy csoportba sorolhatjuk őket: SPLD (Simple PLD) CPLD (Complex PLD) A PLD -k: Olyan kétszintű kapuáramköri tömböt, illetve flip-flop sorozatot tartalmaznak, amelyeknek egymással való összekötésük még nincs kialakítva. Az összeköttetéseket a felhasználó véglegesíti, ún. letöltő programmal. Ezt gyakran konfigurálásnak is nevezik. Az FPGA k (Field Programmable Gate Array) Felhasználó által programozható kapu-mátrix áramkörök: Egy olyan mátrix struktúrájú elrendezésből állnak, ahol egyrészt a cellák közötti összekötések, másrészt a cellák logikai funkciói is a felhasználó által programozhatóak.
9 Az ASIC ok (Application Specific Integrated Circuits) Felhasználó (alkalmazás) specifikus IC k.: Abban különböznek a klasszikus IC-k-től, hogy maga a felhasználó részben, vagy egészen meghatározza a legyártandó áramkört. Semi Custom: részben a könyvtárilag definiált maszkokból állítja össze a felhasználó az áramkört. Full Custom: a gyártás, a kezdettől a végéig a felhasználó előírásai alapján megy végbe. Drága inkább csak nagy sorozatokban kifizetődő. Megj.: Az angol irodalom, szinte minden programozható logikai áramkört az ASIC kategóriába sorol, mivel a felhasználó a program révén, tulajdonképpen a HW-t módosítja.
10 PLA és FPLA eszközök-1: PLA Programmable Logic Array FPLA Field Mint tudjuk a diszjunktív kanonikus alak szorzatok (mintermek) összege (logikai VAGY) kapcsolata. Így például a függvényt az ábra mutatja Ennek első szintjén logikai ÉS kapcsolat, második szintjén VAGY kapuk vannak. A két kapu diódás megfelelőjét az ábra mutatja.
11 PLA és FPLA eszközök-2: A diszjunktív kanonikus alak diódás áramkörökkel történő megvalósítását az ábra mutatja (az ábrán a negálást felső vessző jelöli, míg az ellenállás jelképi jelölésében az angolszászt alkalmaztuk. A megvalósítás felső részében az ÉS funkciót egy ÉS-mátrix, míg az alsó rész VAGY-mátrixa a második szint VAGY kapcsolatát valósítja meg. Az ábra alapján is látható, hogy a diszjunktív kanonikus alakú függvény diódás ÉS és VAGY mátrix segítségével létrehozható. Ezen felismerés vezetett az ú.n. programozható logikai mátrix megalkotásához, melyben ÉS és VAGY mátrixot hoznak létre, de az egyes elemek bekötésének definiálását (vagyis, hogy részt vesz-e az összefüggésben) a felhasználóra bízzák.
12 PLA és FPLA eszközök-3: Tekintsük így a következő ábrát (lásd köv. Dia )! Itt egy 16 elemű (16 változós) ÉS mátrix (max. 16-változós minterm) és egy 48 elemes (48 bemenetű) VAGY-mátrix látható. Az ÉS-mátrixnál minden bemeneti változónál inverter segítségével - lehetőségünk van a változó ponált és negált módozatát is kiválasztani a mintermek összefüggéséhez. Ráadásként 3 különböző VAGY függvényt tudunk kialakítani és ezek mindegyike 1-1 KIZÁRÓ VAGY kapu segítségével különkülön majd 1 közös engedélyező jel (Kimenetek engedélyezése) segítségével egyszerre is letiltható ill. engedélyezhető. A felhasználó beavatkozási lehetősége a diódákkal sorba iktatott biztosítékokkal (fuse) valósul meg: ahol nem kívánunk kapcsolatot, ott a biztosítékot kiiktatjuk (ez a gyakorlatban az érintett vezetékre adott áramimpulzussal történhet). A valóságban ú.n. inverz biztosítékokat (antifuse) használnak, melyeknél az áramimpulzus két vezetőréteg közti szigetelést iktat ki (lásd. Köv. ábra). Így aktivizálásukkal rövidzárat tudunk létrehozni: így ott kell beavatkoznunk, ahol összeköttetést akarunk a mátrixban létrehozni. A fenti módon, két programozható mátrix-szal rendelkező megoldást PLA-nak nevezzük. Amrennyiben a VAGY mátrix előre rögzített kapcsolatokat definiál, és így csak az ÉS mátrix programozására van lehetőségünk, úgy PAL-ról beszélünk. antibiztosíték
13
14 PLA és FPLA eszközök-4: A programozható logikai áramkörök (PLA / FPLA) olyan kétszintű ÉS/VAGY hálózatot tartalmaznak, amelyekben mind az ÉS mátrix mind a VAGY mátrix bekötései programozhatók. A hálózat típusa szerint, 2 alapvető kategóriába sorolhatók: Kombinációs típusú PLA-k (lásd előzőek) Regiszteres típusú PLA-k (ahol a kombinációs típusú PLA-k egy flip-flop sorral (lehet ezt pufferelés vagy regiszternek is nevezni) vannak kiegészítve). A PLA eszközök már a gyártónál, előre felprogramozott áramkörök (természetesen a megrendelő igénye és specifikálása alapján. Az egész programozás, ún. maszkolással történik), míg az FPLA eszközöket a felhasználó saját maga programozhatja fel (természetesen ehhez rendelkeznie kell a megfelelő eszközökkel). Az FPLA-k programozása rendszerint 3 lépésben történik: Az ÉS mátrix programozása A VAGY mátrix programozása A KIMENET programozása. Vessünk újra egy pillantást a kombinációs hálózatokra! Egy adott bemeneti kombinációra az igazságtábla ugyanazon sorában feltüntetett kimeneti kombináció a válasz. Beadunk egy számot, mire egy másik számot várunk a kimeneteken. Ha jól belegondolunk, a memóriák feladata is teljesen ugyanez: minden egyes cím bevitelekor egy előzőleg betöltött adat jelenik meg. Vagyis ha egy memóriát egy vele azonos számú be- és kimenettel rendelkező kombinációs hálózat igazságtáblája szerint töltünk fel, akkor ez a memória helyettesítheti a kombinációs hálózatot. (köv. dia )
15
16 PLA és FPLA eszközök-5: Ha az előzőeket elfogadjuk és figyelembe vesszük, akkor kimondhatjuk, hogy a PLA-kat a ROM-okhoz, míg az FPLA-kat az EPROM-okhoz hasonló technológiával gyártják. Vagyis, mintha a PLA-k hiányos címmezejű ROM-ok lennének. Ezek alapján egy ÉS és egy VAGY mátrixos PLA-t, tulajdonképpen egy ÉS ROM-ból és egy VAGY ROM-ból fel tudunk építeni. Ennek szemléltetését láthatjuk az ábrán. A B ROM A (ÉS ROM) P 1 P 2 ROM B (VAGY ROM) Q 1 Q 2
17 & & A kimenő függvények származtatását láthatjuk a következő ábrán. Ne tévesszen meg bennünket, hogy a VAGY mátrix NÉS kapukból tevődik össze. Ez: 1. DeMorgan elv alapján lehetséges. 2. Gyorsabb lesz az áramkör (NÉS gyorsabb mint a VAGY, homogén áramkör). A A-negált B B-negált ROM A P1 P2 & Q1 & Q2 ROM B
18 PLA és FPLA eszközök-6: És végül nézzük meg az áramkört a PLA-knál szokásos jelölési formában, és írjuk fel mik lesznek a kimenetek (Q 1, Q 2 ), a köztes függvények: (P 1, P 2 ) az adott bemeneteknél (A, B). A 1 ROM A B P 1 P 2 Q Q 1 2 A. B A B A. B A. B A. B 1 ROM B P1 P2 Q1 Q2
19 PLA és FPLA eszközök-7: A PLA / FPLA -knál szokásos jelölési formák pontosabb megértéséhez kövessük figyelemmel a következő ábrákat:
20 PLA és FPLA eszközök-8: A memóriaelemmel történő megvalósítás előnyei: könnyen átprogramozható, így a fejlesztési szakaszban nem kell újraépítenünk egy apró változtatásnál az egész áramkört, nem igényel függvény-egyszerűsítést, nem fordulhat elő benne statikus és dinamikus hazárd (bár itt is van funkcionális hazárd, amit szinkronizációval szüntethetünk meg). A megoldásnak hátrányai is vannak: Egy memória-áramkör sokkal lassabb, mint a logikai kapukból összeállított kombinációs hálózat, speciális időzítési feltételekkel fogadhat csak jeleket (pl. a címnek bizonyos ideig stabilnak kell lennie, hogy előálljon a kimenet), míg a függvény-egyszerűsítéssel kapott megoldás esetleg csak néhány kapuból állna, a memóriába a teljes igazságtáblázatot be kell programozni: n darab bemenethez mindenképp be kell szereznünk egy 2 n kapacitású memóriát, ezen kívül a memóriaelem a legtöbb esetben drágább is. A két változat előnyeit egyesíti a programozható logikai eszközökkel történő megvalósítás. Ezek tulajdonképpen olyan előre kialakított kombinációs hálózatok, amelyeknek az összeköttetéseit programozhatjuk. Angol elnevezésük az FPLA (Field Programmable Logic Array).
21 PLA és FPLA eszközök-összefoglalás-1: Az FPLA -knál mind az ÉS -mátrix, mind a VAGY -mátrix a felhasználó által programozható. Léteznek olyan egyszerűbb áramkörök is, amelyeknél csak az ÉS - mátrix változtatható, a VAGY -mátrixot a gyártás során rögzítették. Az ilyen eszközöket PAL -nak ( Programmable Array Logic) nevezzük. Elterjedésük oka, hogy olcsóbb berendezésekkel programozhatók, mint az FPLA -k. Felhasználásuk során katalógusból kell kiválasztanunk a nekünk megfelelő VAGY -mátrixú áramkört. Az FPLA-k előnyei: A memória-áramkörökhöz hasonlóan könnyen átprogramozhatók, annyi programozott összeköttetés is elegendő az esetükben, amennyivel az egyszerűsített függvényt elő tudjuk állítani (míg a memóriáknál az összes variációt be kellett programozni), gyorsabbak, mint a memória-áramkörök (hiszen egyszerű kombinációs hálózatok). Hátrányaik: A kombinációs hálózathoz hasonlóan egyszerűsítést igényelnek, nem mentesek a hazárdoktól.
22 PLA és FPLA eszközök-összefoglalás-2: A PLA / FPLA eszközök olyan áramkörök, amelyekben mind az ÉS, mind a VAGY mátrixok keresztpontjai programozhatók (PLA gyárilag felprogramozott, FPLA felhasználó által programozható). Olyan logikai funkciók megvalósításánál előnyösek, melyek sok bemeneti változót, és kevés szorzattagot igényelnek. A kimeneti függvényben szereplő közös szorzattagot (közös implikáns), csak egyszer kell előállítani. Mivel a VAGY kapu bemenetek száma korlátozott, tetszőleges logikai függvény megvalósítására nem garantált. Ellentétben a memóriákkal (és kombinációs hálózatokkal), a logikai függvényeket nem az igazságtáblázat alapján realizálják, hanem a logikai egyenletek alapján. Feladat: Megjegyzés: Valójában képzeljünk el egy több-kimenetes kombinációs hálózatot, melyet megvalósítunk PLA/FPLA áramkörrel. Készítse el egy magadott feladat kapcsolási rajzát a PLA / FPLA knál szokásos formában. Elemezze a feladatot Írja fel a szükséges egyenleteket Készítse el a klasszikus kapcsolási rajzot Készítse el a PLA / FPLA féle kapcsolási rajzot. A gyakorlatban ismert PLA áramkörök: TEXAS: TMS2000, TMS2200 SIGNETICS: IFL (4alaptípus: FPLA, FPLS, FPRP, FPGA)
23 Gyakorlatok - 1: PLS 100 áramkör
24 Gyakorlatok - 2: PLS 100 áramkör
25 Gyakorlatok - 3: Y,Z függvények megvalósítása
26 Gyakorlatok - 4: egy feladat megoldása
27 Gyakorlatok - 5: A programlap kitöltéséhez szükséges kódok A kimeneti szintek beállítása: FIGYELEM! Itt nem anti-biztosítékokat használnak, így eredeti állapotban a kapcsolódási pontok vezetnek, ha felkonfiguráljuk (felprogramozzuk), szigetelnek.
28 Gyakorlatok - 6: a feladat programlapon való ábrázolása
29 Gyakorlatok - 7: Üres programlap
PAL és GAL áramkörök. Programozható logikai áramkörök. Előadó: Nagy István
Programozható logikai áramkörök PAL és GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,
Előadó: Nagy István (A65)
Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,
1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD)
1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD) 1 1.1. AZ INTEGRÁLT ÁRAMKÖRÖK GYÁRTÁSTECHNOLÓGIÁI A digitális berendezések tervezésekor számos technológia szerint gyártott áramkörök közül
PAL és s GAL áramkörök
Programozható logikai áramkörök PAL és s GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó,
Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3
Előadó: Dr. Oniga István DIGITÁLIS TEHNIK 3 Logikai függvények logikai függvény olyan egyenlőség, amely változói kétértékűek, és ezek között csak logikai műveleteket végzünk függvények megadása történhet
Kombinációs hálózatok Adatszelektorok, multiplexer
Adatszelektorok, multiplexer Jellemző példa multiplexer és demultiplexer alkalmazására: adó egyutas adatátvitel vevő adatvezeték cím címvezeték (opcionális) A multiplexer az adóoldali jelvezetékeken jelenlévő
1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS:
1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: A legegyszerűbb alak megtalálása valamilyen egyszerűsítéssel lehetséges (algebrai, Karnaugh, Quine stb.). Célszerű
DIGITÁLIS TECHNIKA feladatgyűjtemény
IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki
XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat
XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat vesszük sorra. Elsőként arra térünk ki, hogy a logikai értékek
Logikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104.
Logikai hálózatok Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St. I. em. 04. Tanszéki honlap: www.kjit.bme.hu/hallgatoknak/bsc-targyak-3/logikai-halozatok Gyakorlatok: hétfő + 08:5-0:00 J 208 HF: 4.
I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ)
I.5. LOGIKI FÜGGVÉNEK EGSERŰSÍTÉSE (MINIMLIÁCIÓ) Nem mindegy, hogy a logikai függvényeket mennyi erőforrás felhasználásával valósítjuk meg. Előnyös, ha kevesebb logikai kaput alkalmazunk ugyanarra a feladatra,
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.
IRÁNYÍTÁSTECHNIKA I.
IRÁNÍTÁSTEHNIK I. 5 éves Sc kurzus Összeállította: Dr. Tarnai Géza egetemi tanár udapest, 8. Rendszer- és iránításelméleti ismeretek. félév. félév Diszkrét állapotú rendszerek, logikai hálózatok Foltonos
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó,
Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedés- és Járműirányítási Tanszék Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Segédlet az Irányítástechnika I.
Irányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár
Irányítástechnika I. Előadó: Dr. Bede Zsuzsanna, adjunktus Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St.
IRÁNYÍTÁSTECHNIKAI ALAPFOGALMAK, VEZÉRLŐBERENDEZÉSEK FEJLŐDÉSE, PLC-GENERÁCIÓK
IRÁNYÍTÁSTECHNIKAI ALAPFOGALMAK, VEZÉRLŐBERENDEZÉSEK FEJLŐDÉSE, PLC-GENERÁCIÓK Irányítástechnika Az irányítás olyan művelet, mely beavatkozik valamely műszaki folyamatba annak: létrehozása (elindítása)
VIII. BERENDEZÉSORIENTÁLT DIGITÁLIS INTEGRÁLT ÁRAMKÖRÖK (ASIC)
VIII. BERENDEZÉSORIENTÁLT DIGITÁLIS INTEGRÁLT ÁRAMKÖRÖK (ASIC) 1 A korszerű digitális tervezés itt ismertetendő (harmadik) irányára az a jellemző, hogy az adott alkalmazásra céleszközt (ASIC - application
3. A DIGILENT BASYS 2 FEJLESZTŐLAP LEÍRÁSA
3. A DIGILENT BASYS 2 FEJLESZTŐLAP LEÍRÁSA Az FPGA tervezésben való jártasság megszerzésének célszerű módja, hogy gyári fejlesztőlapot alkalmazzunk. Ezek kiválóan alkalmasak tanulásra, de egyes ipari tervezésekhez
Integrált áramkörök/5 ASIC áramkörök
Integrált áramkörök/5 ASIC áramkörök Rencz Márta Elektronikus Eszközök Tanszék 12/10/2007 1/33 Mai témák Az integrált áramkörök felosztása Integrált áramkörök létrehozása Integrált áramkörök tervezése
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1
Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6
Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.
TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6
TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása
Hazárdjelenségek a kombinációs hálózatokban
Hazárdjelenségek a kombinációs hálózatokban enesóczky Zoltán 2004 jegyzetet a szerzői jog védi. zt a ME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb elhasználáshoz a szerző belegyezése
LOGIKAI TERVEZÉS. Előadó: Dr. Oniga István Egytemi docens
LOGIKAI TERVEZÉS PROGRAMOZHATÓ ÁRAMKÖRÖKKEL Előadó: Dr. Oniga István Egytemi docens A tárgy weboldala http://irh.inf.unideb.hu/user/onigai/ltpa/logikai_tervezes.htmltervezes.html Adminisztratív információk
Standard cellás tervezés
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Standard cellás tervezés A tanszéken rendelkezésre álló CENSORED technológia bemutatás és esettanulmány Figyelmeztetés! Ez
Alapkapuk és alkalmazásaik
Alapkapuk és alkalmazásaik Bevezetés az analóg és digitális elektronikába Szabadon választható tárgy Összeállította: Farkas Viktor Irányítás, irányítástechnika Az irányítás esetünkben műszaki folyamatok
11.2. A FESZÜLTSÉGLOGIKA
11.2. A FESZÜLTSÉGLOGIKA Ma a feszültséglogika számít az uralkodó megoldásnak. Itt a logikai változó két lehetséges állapotát két feszültségérték képviseli. Elvileg a két érték minél távolabb kell, hogy
Számítógép Architektúrák (MIKNB113A)
PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Számítógép Architektúrák (MIKNB113A) 6. előadás: Vezérlő egységek II. - Programozható logikai eszközök Előadó: Dr. Vörösházi Zsolt
Digitális Technika 2. Logikai Kapuk és Boolean Algebra
Digitális Technika 2. Logikai Kapuk és oolean lgebra Sütő József Egyetemi Tanársegéd Referenciák: [1] D.M. Harris, S.L. Harris, Digital Design and Computer rchitecture, 2nd ed., Elsevier, 213. [2] T.L.
Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész
Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog
DIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint
6... IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐÁS rató Péter: Logikai rendszerek tervezése, Tankönyvkiadó, udapest, Műegyetemi Kiadó,
3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK
3.6. AGYOMÁNYOS SZEKVENCIÁIS FUNKCIONÁIS EGYSÉGEK A fenti ismertető alapján elvileg tetszőleges funkciójú és összetettségű szekvenciális hálózat szerkeszthető. Vannak olyan szabványos funkciók, amelyek
Békéscsabai Kemény Gábor Logisztikai és Közlekedési Szakközépiskola "Az új szakképzés bevezetése a Keményben" TÁMOP-2.2.5.
Szakképesítés: Log Autószerelő - 54 525 02 iszti Tantárgy: Elektrotechnikaelektronika Modul: 10416-12 Közlekedéstechnikai alapok Osztály: 12.a Évfolyam: 12. 32 hét, heti 2 óra, évi 64 óra Ok Dátum: 2013.09.21
1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
Nagy Gergely április 4.
Mikrovezérlők Nagy Gergely BME EET 2012. április 4. ebook ready 1 Bevezetés Áttekintés Az elektronikai tervezés eszközei Mikroprocesszorok 2 A mikrovezérlők 3 Főbb gyártók Áttekintés A mikrovezérlők az
Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT Digitális Technika
Szekvenciális hálózatok és automaták
Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával
2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához
XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput
DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint MEMÓRIÁK
DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS MEMÓRIÁK PROGRAMOZHATÓ LOGIKÁK MIKROPROCESSZOR MIKROPROCESSZOROS RENDSZER
DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint
DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS MEMÓRIÁK PROGRAMOZHATÓ LOGIKÁK MIKROPROCESSZOR MIKROPROCESSZOROS RENDSZER
Digitális technika - Ellenőrző feladatok
igitális technika - Ellenőrző feladatok 1. 2. 3. a.) Írja fel az oktális 157 számot hexadecimális alakban b.) Írja fel bináris és alakban a decimális 100-at! c.) Írja fel bináris, oktális, hexadecimális
Digitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Digitális Technika Elméleti
Digitális rendszerek tervezése FPGA áramkörökkel
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális rendszerek tervezése FPGA áramkörökkel Fehér Béla Szántó Péter,
DIGITÁLIS TECHNIKA. Szabó Tamás Dr. Lovassy Rita - Tompos Péter. Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar LABÓRATÓRIUMI ÚTMUTATÓ
Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Szabó Tamás Dr. Lovassy Rita - Tompos Péter DIGITÁLIS TECHNIKA LABÓRATÓRIUMI ÚTMUTATÓ 3. kiadás Mikroelektronikai és Technológia Intézet Budapest, 2014-1
Digitális rendszerek tervezése FPGA áramkörökkel
Rendszerspecifikáció BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális rendszerek tervezése FPGA áramkörökkel
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
Alapkapuk és alkalmazásaik
Alapkapuk és alkalmazásaik Tantárgy: Szakmai gyakorlat Szakmai alapozó évfolyamok számára Összeállította: Farkas Viktor Bevezetés Az irányítástechnika felosztása Visszatekintés TTL CMOS integrált áramkörök
Dr. Oniga István DIGITÁLIS TECHNIKA 4
Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Kombinációs LABOR feladatok Laborfeladat: szavazatszámláló, az előadáson megoldott 3 bíró példája Szavazat példa specifikáció Tervezz
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
8.3. AZ ASIC TESZTELÉSE
8.3. AZ ASIC ELÉSE Az eddigiekben a terv helyességének vizsgálatára szimulációkat javasoltunk. A VLSI eszközök (közöttük az ASIC) tesztelése egy sokrétűbb feladat. Az ASIC modellezése és a terv vizsgálata
elektronikus adattárolást memóriacím
MEMÓRIA Feladata A memória elektronikus adattárolást valósít meg. A számítógép csak olyan műveletek elvégzésére és csak olyan adatok feldolgozására képes, melyek a memóriájában vannak. Az információ tárolása
Név: Logikai kapuk. Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest?
Név: Logikai kapuk Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest? Ha a logikai változókat állású kapcsolókkal helyettesítené, ezek milyen módon való kapcsolásával
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
F1301 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok
F3 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok F3 Bev. az elektronikába SZEKVENIÁLIS LOGIKAI HÁLÓZATOK A kimenetek állapota nem csak a bemenetek állapotainak kombinációjától
Gépészmérnöki és Informatikai Kar Automatizálási és Kommunikáció- Technológiai Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar 2019/2020. tanév I. félév Automatizálási és Kommunikáció- Technológiai Tanszék Digitális rendszerek I. c. tantárgy előadásának és gyakorlatának ütemterve
Digitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök
4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016
Digitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
Rendszertervezés FPGA eszközökkel
Rendszertervezés FPGA eszközökkel 1. előadás Programozható logikai eszközök 2011.04.13. Milotai Zsolt Tartalom Bevezetés: alkalmazási lehetőségek Nem programozható és programozható eszközök összehasonlítása
Programozás és digitális technika II. Logikai áramkörök. Pógár István Debrecen, 2016
Programozás és digitális technika II. Logikai áramkörök Pógár István pogari@eng.unideb.hu Debrecen, 2016 Gyakorlatok célja 1. Digitális tervezés alapfogalmainak megismerése 2. A legelterjedtebb FPGA-k
Autóipari beágyazott rendszerek
Autóipari beágyazott rendszerek Dr. Fodor, Dénes Speiser, Ferenc Szerzői jog 2014 Pannon Egyetem A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0042 azonosító számú Mechatronikai mérnök MSc tananyagfejlesztés
1. EGY- ÉS KÉTVÁLTOZÓS LOGIKAI ELEMEK KAPCSOLÁSTECHNIKÁJA ÉS JELÖLŐRENDSZERE
. EGY- ÉS KÉTVÁLTOZÓS LOGIKI ELEMEK KPCSOLÁSTECHNIKÁJ ÉS JELÖLŐRENDSZERE tananyag célja: z egy- és kétváltozós logikai függvények Boole algebrai szabályainak, kapcsolástechnikájának és jelölésrendszerének
A Xilinx FPGA-k. A programozható logikákr. Az FPGA fejlesztés s menete. BMF KVK MAI, Molnár Zsolt, 2008.
A Xilinx FPGA-k A programozható logikákr król általában A Spartan-3 3 FPGA belső felépítése Az FPGA fejlesztés s menete BMF KVK MAI, Molnár Zsolt, 2008. A programozható logikák k I. Logikai eszközök: -
Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0
Logikai áramkörök Feszültségszintek A logikai rendszerekben az állapotokat 0 ill. 1 vagy H ill. L jelzéssel jelöljük, amelyek konkrét feszültségszinteket jelentenek. A logikai algebrában a változókat nagy
11.2.1. Joint Test Action Group (JTAG)
11.2.1. Joint Test Action Group (JTAG) A JTAG (IEEE 1149.1) protokolt fejlesztették a PC-nyák tesztelő iapri képviselők. Ezzel az eljárással az addigiaktól eltérő teszt eljárás. Az integrált áramkörök
Digitális Rendszerek (BSc)
Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (Sc) 1. előadás: Logikai egyenletek leírása I. oole-algebra axiómái és tételei Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu
5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK
5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK A tananyag célja: a kódolással kapcsolatos alapfogalmak és a digitális technikában használt leggyakoribb típusok áttekintése ill. áramköri megoldások
Elvonatkoztatási szintek a digitális rendszertervezésben
Budapest Műszaki és Gazdaságtudományi Egyetem Elvonatkoztatási szintek a digitális rendszertervezésben Elektronikus Eszközök Tanszéke eet.bme.hu Rendszerszintű tervezés BMEVIEEM314 Horváth Péter 2013 Rendszerszint
Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította:
Áramkörök elmélete és számítása Elektromos és biológiai áramkörök 3. heti gyakorlat anyaga Összeállította: Kozák László kozla+aram@digitus.itk.ppke.hu Elkészült: 2010. szeptember 30. Utolsó módosítás:
DIGITÁLIS TECHNIKA II
IGIÁLIS ECHNIA II r Lovassy Rita r Pődör Bálint Óbudai Egyetem V Mikroelektronikai és echnológia Intézet 3 ELŐAÁS 3 ELŐAÁS ELEMI SORRENI HÁLÓZAO: FLIP-FLOPO (2 RÉSZ) 2 AZ ELŐAÁS ÉS A ANANYAG Az előadások
10. Digitális tároló áramkörök
1 10. Digitális tároló áramkörök Azokat a digitális áramköröket, amelyek a bemeneteiken megjelenő változást azonnal érvényesítik a kimeneteiken, kombinációs áramköröknek nevezik. Ide tartoznak az inverterek
PROGRAMOZHATÓ LOGIKAI ESZKÖZÖK. Elıadó: Dr. Oniga István Egytemi docens
PROGRAMOZHATÓ LOGIKAI ESZKÖZÖK Elıadó: Dr. Oniga István Egytemi docens A tárgy weboldala http://irh.inf.unideb.hu/user/onigai/ple/programozhato_logika.html Adminisztratív információk Tárgy: Oktató: Dr.
Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar
Digitális Technika Dr. Oniga István Debreceni Egyetem, Informatikai Kar 2. Laboratóriumi gyakorlat gyakorlat célja: oolean algebra - sszociativitás tétel - Disztributivitás tétel - bszorpciós tétel - De
MUNKAANYAG. Bellák György László. Mechatronikai elemek. A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása
Bellák György László Mechatronikai elemek A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása A követelménymodul száma: 0944-06 A tartalomelem azonosító száma és
DIGITÁLIS ADATTÁRAK (MEMÓRIÁK)
DIGITÁLIS ADATTÁRAK (MEMÓRIÁK) A digitális berendezések a feladatuk ellátása közben rendszerint nagy mennyiségű adatot dolgoznak fel. Feldolgozás előtt és után rendszerint tárolni kell az adatokat ritka
Irányítástechnika Elıadás. A logikai hálózatok építıelemei
Irányítástechnika 1 6. Elıadás A logikai hálózatok építıelemei Irodalom - Kovács Csongor: Digitális elektronika, 2003 - Zalotay Péter: Digitális technika, 2004 - U. Tiecze, Ch. Schenk: Analóg és digitális
6. hét: A sorrendi hálózatok elemei és tervezése
6. hét: A sorrendi hálózatok elemei és tervezése Sorrendi hálózat A Sorrendi hálózat Y Sorrendi hálózat A Sorrendi hálózat Y Belső állapot Sorrendi hálózat Primer változó A Sorrendi hálózat Y Szekunder
Digitális Rendszerek (BSc)
Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (BSc) 2. előadás: Logikai egyenletek leírása II: Függvény-egyszerűsítési eljárások Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu
Aszinkron sorrendi hálózatok
Aszinkron sorrendi hálózatok Benesóczky Zoltán 24 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ I. feladatlap Egyszerű, rövid feladatok megoldása Maximális pontszám: 40. feladat 4 pont
6. LOGIKAI ÁRAMKÖRÖK
6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.
28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK
28. EGYSZERŰ DIGITÁLIS ÁRMKÖRÖK Célkitűzés: z egyszerű kombinációs digitális áramkörök elvi alapjainak, valamint ezek néhány gyakorlati alkalmazásának megismerése. I. Elméleti áttekintés digitális eszközök
5. Hét Sorrendi hálózatok
5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő
2. hét Kombinációs hálózatok leírási módjai
2. hét Kombinációs hálózatok leírási módjai 2.1. A kombinációs hálózat alapfogalmai Logikai hálózatnak nevezzük azokat a rendszereket, melyeknek bemeneti illetve kimeneti jelei logikai jelek, a kimeneti
Programozható logikai vezérlõk
BUDAPESTI MÛSZAKI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR KÖZLEKEDÉSAUTOMATIKAI TANSZÉK Programozható logikai vezérlõk Segédlet az Irányítástechnika I. c. tárgyhoz Összeállította: Szabó Géza egyetemi tanársegéd
Digitális eszközök típusai
Digitális eszközök típusai A digitális eszközök típusai Digitális rendszer fogalma Több minden lehet digitális rendszer Jelen esetben digitális integrált áramköröket értünk a digitális rendszerek alatt
MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MEGOLDÁSA
MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MEGOLDÁSA Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Számolási, áramköri, tervezési
12. hét: Kombinációs hálózatok megvalósítása LSI/MSI áramkörökkel (PAL, PLA, PROM, CPLD), VLSI (FPGA) áramkörökkel és memóriával.
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 12. hét: Kombinációs hálózatok megvalósítása LSI/MSI áramkörökkel (PAL, PLA, PROM,
6. LOGIKAI ÁRAMKÖRÖK
6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.
Digitális technika kidolgozott tételek
Digitális technika kidolgozott tételek 1. digit jel, kódok Analóg jel: általában lineáris egységek dolgozzák fel, időben folyamatos, valamilyen függvénnyel leírhatóak. Jellemzői: egyenszint átvitel, jel-zaj
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem MIKROELEKTRONIKA, VIEEA306 A MOS inverterek http://www.eet.bme.hu/~poppe/miel/hu/13-mosfet2.ppt http://www.eet.bme.hu Vizsgált absztrakciós szint RENDSZER
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások III. Kombinációs hálózatok 1. Tervezzen kétbemenetű programozható kaput! A hálózatnak két adatbenemete (a, b) és két funkcióbemenete (f, g) van. A kapu
DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA
206.0.08. IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 5. ELŐÁS 5. ELŐÁS. z előzőek összefoglalása: kanonikus alakok, mintermek, maxtermek,
A PLÁ k programozhatóságát biztosító eszközök
Programozható logikai áramkörök A PLÁ k programozhatóságát biztosító eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika
Versenyző kódja: 7 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.
54 523 02-2017 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási,
A + B = B + A, A + ( B + C ) = ( A + B ) + C.
6. LOGIKAI ÁRAMKÖRÖK Számítógépekben, műszerekben, vezérlő automatákban alapvető szerep jut az olyan áramköröknek, melyek valamilyen logikai összefüggést fejeznek ki. Ezeknek a logikai áramköröknek az
MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR
MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Számolási, áramköri, tervezési feladatok