Digitális rendszerek tervezése FPGA áramkörökkel
|
|
- Dezső Mezei
- 8 évvel ezelőtt
- Látták:
Átírás
1 Rendszerspecifikáció BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális rendszerek tervezése FPGA áramkörökkel Fehér Béla Szántó Péter, Lazányi János, Raikovich Tamás BME MIT atórium Felhasználói/piaci igények alapján Ellenőrzés Analízis Specifikáció (funkciók és más jellemzők) MIT HOGYAN Megvalósítás (modulok/komponensek rendszere) 1 Tervezés Szintézis Specifikáció finomítása Hierarchikus tervezési módszerek Felhasználói specifikáció Általában szöveges formában Jellemzően nem műszaki paraméterek Előzetes rendszerterv Követelmények lefordítása Főbb paraméterek meghatározása Funkcionális rendszerterv Globális döntések a megvalósításról Modul funkciók specifikálása Logikai tervezés 2 Felülről lefelé (top down) Léteznek a kívánt típusú komponensek? 3 Alulról felfelé (bottom up) Megfelel a rendszer a specifikációnak?
2 Tervezési szintek A hierarchikus szintek szétválaszthatók Gyakran egyedi tervezési megközelítést igényelnek FPGA technológia előnyei Az eszköz hardver szinten programozható AMIT HOGYAN több iterációban is elemezhető Általában a felülről lefelé haladó tervezési módszertant választjuk DE vetünk egy pillantást az eszköz adatlapjára, tudjuk milyen elemi és összetett komponenseket kínál A modulszintű, funkcionális leírásra koncentrálunk, a részletek kidolgozását a tervezőrendszerre hagyjuk DE ellenőrizzük a megvalósítás fontos paramétereit 4 5 Technológiai áttekintés Egyszerű PLD eszközök A digitális eszközök típusai Szabvány MSI Egyedi fix funkciók, ASSP Egyszerű PLD Logikai elemek Programozható logikák ASIC Komplex PLD MPU CPU PLA PAL GAL CPLD FPGA FPOA RPU Egyszerű struktúra, egyszerű használat Kétszintű kombinációs logika + regiszter Domináns elrendezés: mintermek összege Általános formában INV AND OR (INV) F k = Σ m i Például 4 változóra egy egyszerű kifejezés F 4 =AB+ACD+BC Minimális szemantikus távolság Specifikáció megvalósítás 6 7
3 Egyszerű PLD eszközök Egyszerű PLD eszközök PAL áramkörök felépítése (részlet PAL16xx) Dedikált CLK láb LogicI/O Register Q PAL, PLA: programozható logika GAL: programozható architektúra Kimeneti makrocella Logika Regiszter Ponált/negált Dedikált OEn láb 8 9 Egyszerű PLD eszközök Egyszerű PLD eszközök Altera EP sorozat: valóban univerzális PLD Szimmetrikus felépítés, minden láb I/O, kivéve Egyszerű makrocella, az összes opcióval Altera EP sorozat: valóban univerzális PLD Szimmetrikus felépítés, minden láb I/O, kivéve Egyszerű makrocella, az összes opcióval 10 11
4 Komplex programozható eszközök 80 as évek közepén Felhasználói igények nagyobb logikai és interfész kapacitás Technológiai lehetőségek Integráltság növelhető Két megközelítés Programozhatóság Komplexitás CPLD ~ CPU órajelnövelés Komplexitás Programozhatóság FPGA ~ Többmagos megoldások (multicore, manycore) Programozhatóság Komplexitás CPLD/MEGAPAL eszközök Ameglévő struktúra skálázása Egyszerű megoldás Blokkos felépítés Egyszintű/kétszintű huzalozás Determinisztikus időzítés Komplexitás Programozhatóság Hagyományos technológia Felhasználói igények figyelembevétele MPGA Maszk Programozott áramkör Moore törvény hatása a PLD piacon Tranzisztor/logikai elem ára csökken Redundancia, áramköri költség növelhető Piacra jutási idő jelentősége nő (termék életciklus) Prototípus, kis sorozat, induló termék TimetoMarket FPGA Field Programmable Gate Array 1984: Xilinx megalapítása Ross Freeman feltaláló Bernie Vonderschmitt: fabless company idea Jim Barnett csendestárs?? 1985: XC logikai cella LUT+DFF ~50I/O 5V, 50MHz toggle rate 14 15
5 FPGA technológiák Felhasználó általi programozhatóság Egyszer, nem javíthatóan (max. inkrementális jav.) Többször, de csak törlés után Minden induláskor Automatikusan master módban, vagy Külső vezérlés alatt, slave módban Működés közben Teljes konfiguráció átkapcsolása (indulási + egyéb) Részleges, dinamikus átkonfigurálás OTP FPGA Egyszer programozható eszközök A konfigurációs elem neve: antifuse Információ: fizikai állapot változtatása Előnyök: Kisméret R OFF,R ON,C Biztonságos Kiolvasás Változás Actel, Quicklogic Flash FPGA SRAM FPGA Sokszor programozható, törlés után Programozás, törlés beépítve is lehetséges Flash cella felépítése (Actel ProASIC) Információ: töltés Előny: Állandó Módosítható Biztonságos Actel A hagyományos FPGA megvalósítási elv A legáltalánosabb CMOS technológia Minden információ memória cellákban Beolvasandó, betöltendő Előny: Bármikor átprogramozható Olcsó technológia Mindig a legjobb felbontás Konfiguráció módosulhat Kozmikus sugárzás SEU, egyedi változás 18 19
6 FPGA felépítése FPGA felépítése Egyszerű felépítés (felhasználói oldalról nézve) Általános célú logikai elemek Programozható huzalozás Kivezetések A valódi komplexitás részben rejtve van Két réteg logika Konfiguráció beléptetése Visszaolvasás Példa: Xilinx SRAM FPGA Általános tulajdonságok Felépítés szerinti osztályozás Logikai cella alapkövetelménye: univerzális elem Granularitás szerint széles skála Finom Durva 1T NAND2 MUX4 LUT4 ½GAL Típusok felépítés szerint Egyszintű, seaofgates Csatorna Szimmetrikus / Manhattan Hierarchikus Szimmetrikus Csatorna típusú Hierarchikus 22 23
7 Logikai cella példák Logikai cella példák 1T finomságú konfigurálás NAND2 logikai cella alapú, finom granularitás Minimális redundancia Lokális kapcsolatok, nincs külön huzalozás Rengeteg kapcsolóelem Nincs globális órajel Kihalt típus, csak példa Logikai cella példák Logikai cella példák Közepes granularitású, MUX4 alapú cella Actel ACT1, ACT2, ACT3 Közepes granularitású SRAM LUT cellák LUT = Look Up Table = memória 4változó tetszőleges függvénye, táblázat a konfigurációból A LUT4 tekinthető egy MUX16 nak is, a konfigurációs program által rögzített adatbemenetekkel 26 27
8 A CLB erőforrása Logikai cella felépítése Az alap erőforrás a Logic Cell LC = 1 LUT + 1 FF LUT4 Tetszőleges 4 változós függvény 1 változóra hazárdmentes Működési idő bemenetszám és logikai komplexitás invariáns DFF Élvezérelt,, órajel eng. Szinkron/aszinkron SET/RESET Független kombinációs és regiszteres kimenet Általános jellemzők A cella felépítés alapjaiban egyszerű Tartalmaz persze sok kiegészítést Belső kapuk, erőforrások Lokális kapcsolatokhoz Független LUT / FF használathoz Speciális logikákhoz Sok bemenetű dekóder Sok bemenetű multiplexer Aritmetikai kiegészítés Dedikált CLB erőforrások A gyors átvitelképzés Az egységes alapkoncepció finomítása A LUT4 természetesen mindenre jó, de A sokváltozós logikai függvények, a legegyszerűbbek is túl sok szintet igényelnek lassú Az aritmetikai műveletekben kell átvitel jel. Ez egy fontos, de csak belül szükséges, időkritikus jel. LUT4 alapon 100% redundancia lép fel (3 bemeneti jel 2 függvénye) Hagyományos tömbszorzónál egy egy szinten kell lokális bitszorzat (AND2), valamint összeadás a részszorzatokhoz Az aritmetikai műveletek hatékonysága alapvető Sebességük a használhatóságot egyértelműen jellemzi Az elemei művelet: S j =A j xor B j xor C ij C oj =A j B j +A j C ij +B j C ij A teljes művelet végrehajtási ideje a C i0 C on 1 út terjedési ideje, n 1azadatméret függvénye A beépített egyszerű átvitel lánc feleslegessé tesz bármilyen más CLA, CS módszert 30 31
9 A gyors átvitel logika A gyors átvitel logika Aműveletet 1 bites fél összeadókra bontja A szelet Cin bejövő bitje BX input vagy alsó CLB Cout vagy fix 0 / 1 Összeg bit Fout=A0xorB0 Xout=FoutxorCin Átvitel Bit helyiértékenként átvitelterjesztés vagy átvitel generálás A CYMUXF vezérlése az Fout jellel Tehát ha Fout=1, terjeszt, ezért CoutF=Cin, egyébként CoutF=AB, vagyis generál, ha AB=1 Az erőforrások más logika megvalósítására is használhatók 32 Aritmetika ADD/SUB/INC/DEC művelet SUM=A xor B xor C i Átvitel terjesztés és/vagy generálás C o =AB+AC i +BC i C o =(AxorB)?C i :A; 33 I/O funkciók Huzalozás Alapvetően minden felhasználói láb I/O, tehát lehet kimenet, bemenet Nem használt lábak fix értéken Gyakran többfunkciós lábak Konfiguráció Normál használat A valódi I/O blokkok sokkal bonyolultabbak Beleszámítanak az ekvivalens kapu/rendszer kapu leltárba OE OUT PIN Többnyire hierarchikus Mindig van szomszédos kapcsolat Esetleg 2 vagy 4 sugarú Lehetnek ún. hosszú vonalak Teljes áramköri szelet felületén Vagy régiónként Vannak globális hálózatok Elengedhetetlen az órajel terjesztéshez Vagy a globális RESET kialakításához IN 34 35
10 A terv minőségét döntően befolyásolja Időzítések a huzalozási szintek számán buknak el A LUT késleltetés elfogadható, de komplex funkció több LUT összekapcsolását igényli Elérhető rendszer sebesség lecsökken Speciális elrendezések a minőség javítására Huzalozás fontossága Összefoglalás Komplex rendszerek tervezéséhez különböző eszközeink vannak, ezek egyike az FPGA Közepes, vagy kis sorozatoknál nem gazdaságos egyedi ASIC fejlesztése (idő, pénz, munka) FPGA k rugalmasan alkalmazhatók, gyors tervezés, megvalósítás, módosíthatóság Egyedi előnyök, alkalmazásfüggő specialitások Nagy komplexitás Nagy sebesség NEM EGYSZERRE! Kis fogyasztás 36 37
Digitális rendszerek tervezése FPGA áramkörökkel
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális rendszerek tervezése FPGA áramkörökkel Fehér Béla Szántó Péter,
Digitális rendszerek tervezése FPGA áramkörökkel
BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális rendszerek tervezése FPGA áramkörökkel Fehér Béla Szántó Péter,
Előadó: Nagy István (A65)
Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,
Digitális technika (VIMIAA02) Laboratórium 5
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 5
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD)
1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD) 1 1.1. AZ INTEGRÁLT ÁRAMKÖRÖK GYÁRTÁSTECHNOLÓGIÁI A digitális berendezések tervezésekor számos technológia szerint gyártott áramkörök közül
PAL és GAL áramkörök. Programozható logikai áramkörök. Előadó: Nagy István
Programozható logikai áramkörök PAL és GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,
Rendszertervezés FPGA eszközökkel
Rendszertervezés FPGA eszközökkel 1. előadás Programozható logikai eszközök 2011.04.13. Milotai Zsolt Tartalom Bevezetés: alkalmazási lehetőségek Nem programozható és programozható eszközök összehasonlítása
Dr. Oniga István DIGITÁLIS TECHNIKA
Dr. Oniga István DIGITÁLIS TECHNIKA Összeállította Dr. Oniga István A következő anyagok felhasználásával Digitális rendszerek tervezése FPGA áramkörökkel. Fehér Bela Szanto Peter, Lazanyi Janos, Raikovich
Dr. Oniga István DIGITÁLIS TECHNIKA
Dr. Oniga István DIGITÁLIS TECHNIKA Összeállította Dr. Oniga István A következő anyagok felhasználásával Digitális rendszerek tervezése FPGA áramkörökkel. Fehér Bela Szanto Peter, Lazanyi Janos, Raikovich
Digitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1
PAL és s GAL áramkörök
Programozható logikai áramkörök PAL és s GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó,
1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
Digitális rendszerek tervezése FPGA áramkörökkel SRAM FPGA Architektúrák
BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális rendszerek tervezése FPGA áramkörökkel SRAM FPGA Architektúrák
Digitális technika (VIMIAA02) Laboratórium 4
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.
Standard cellás tervezés
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Standard cellás tervezés A tanszéken rendelkezésre álló CENSORED technológia bemutatás és esettanulmány Figyelmeztetés! Ez
Digitális technika (VIMIAA02) Laboratórium 4
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,
A Xilinx FPGA-k. A programozható logikákr. Az FPGA fejlesztés s menete. BMF KVK MAI, Molnár Zsolt, 2008.
A Xilinx FPGA-k A programozható logikákr król általában A Spartan-3 3 FPGA belső felépítése Az FPGA fejlesztés s menete BMF KVK MAI, Molnár Zsolt, 2008. A programozható logikák k I. Logikai eszközök: -
FPGA áramkörök alkalmazásainak vizsgálata
FPGA áramkörök alkalmazásainak vizsgálata Kutatási beszámoló a Pro Progressio alapítvány számára Raikovich Tamás, 2012. 1 Bevezetés A programozható logikai áramkörökön (FPGA) alapuló hardver gyorsítók
DIGITÁLIS TECHNIKA. Szabó Tamás Dr. Lovassy Rita - Tompos Péter. Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar LABÓRATÓRIUMI ÚTMUTATÓ
Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Szabó Tamás Dr. Lovassy Rita - Tompos Péter DIGITÁLIS TECHNIKA LABÓRATÓRIUMI ÚTMUTATÓ 3. kiadás Mikroelektronikai és Technológia Intézet Budapest, 2014-1
Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar
Digitális Technika Dr. Oniga István Debreceni Egyetem, Informatikai Kar 3. Laboratóriumi gyakorlat A gyakorlat célja: Négy változós AND, OR, XOR és NOR függvények realizálása Szimulátor használata ciklussal
1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar
Digitális Technika Dr. Oniga István Debreceni Egyetem, Informatikai Kar 2. Laboratóriumi gyakorlat gyakorlat célja: oolean algebra - sszociativitás tétel - Disztributivitás tétel - bszorpciós tétel - De
Digitális technika (VIMIAA02) Laboratórium 5.5
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5.5 Fehér Béla Raikovich Tamás,
Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Digitális technika VIMIAA01 9. hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Digitális technika (VIMIAA01) Laboratórium 4
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 4 Fehér Béla Raikovich Tamás,
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a
Digitális technika VIMIAA02 6. EA
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 6. EA Fehér Béla BME MIT Kiegészítés az eddigi
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
Digitális technika VIMIAA02 6. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 6. EA Fehér Béla BME MIT Kiegészítés az eddigi
Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk
Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Elméleti anyag: Processzoros vezérlés általános tulajdonságai o z induló készletben
Dr. Oniga István DIGITÁLIS TECHNIKA 8
Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
Bevezetés az informatikába
Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Hobbi Elektronika. A digitális elektronika alapjai: Újrakonfigurálható logikai eszközök
Hobbi Elektronika A digitális elektronika alapjai: Újrakonfigurálható logikai eszközök 1 Programozható logikai eszközök Programozható logikai áramkörök (Programmable Logic Devices) a kombinációs logikai
Számítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés
VIII. BERENDEZÉSORIENTÁLT DIGITÁLIS INTEGRÁLT ÁRAMKÖRÖK (ASIC)
VIII. BERENDEZÉSORIENTÁLT DIGITÁLIS INTEGRÁLT ÁRAMKÖRÖK (ASIC) 1 A korszerű digitális tervezés itt ismertetendő (harmadik) irányára az a jellemző, hogy az adott alkalmazásra céleszközt (ASIC - application
Digitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Digitális Technika Elméleti
Számítógép Architektúrák (MIKNB113A)
PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Számítógép Architektúrák (MIKNB113A) 6. előadás: Vezérlő egységek II. - Programozható logikai eszközök Előadó: Dr. Vörösházi Zsolt
A LOGSYS GUI. Fehér Béla Raikovich Tamás, Laczkó Péter BME MIT FPGA laboratórium
BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A LOGSYS GUI Fehér Béla Raikovich Tamás, Laczkó Péter BME MIT atórium
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította:
Áramkörök elmélete és számítása Elektromos és biológiai áramkörök 3. heti gyakorlat anyaga Összeállította: Kozák László kozla+aram@digitus.itk.ppke.hu Elkészült: 2010. szeptember 30. Utolsó módosítás:
A hálózattervezés alapvető ismeretei
A hálózattervezés alapvető ismeretei Infokommunikációs hálózatok tervezése és üzemeltetése 2011 2011 Sipos Attila ügyvivő szakértő BME Híradástechnikai Tanszék siposa@hit.bme.hu A terv általános meghatározásai
Programmable Chip. System on a Chip. Lazányi János. Tartalom. A hagyományos technológia SoC / PSoC SoPC Fejlesztés menete Mi van az FPGA-ban?
System on a Chip Programmable Chip Lazányi János 2010 Tartalom A hagyományos technológia SoC / PSoC SoPC Fejlesztés menete Mi van az FPGA-ban? Page 2 1 A hagyományos technológia Elmosódó határvonalak ASIC
Elvonatkoztatási szintek a digitális rendszertervezésben
Budapest Műszaki és Gazdaságtudományi Egyetem Elvonatkoztatási szintek a digitális rendszertervezésben Elektronikus Eszközök Tanszéke eet.bme.hu Rendszerszintű tervezés BMEVIEEM314 Horváth Péter 2013 Rendszerszint
Programozó- készülék Kezelőkozol RT óra (pl. PC) Digitális bemenetek ROM memória Digitális kimenetek RAM memória Analóg bemenet Analóg kimenet
2. ZH A csoport 1. Hogyan adható meg egy digitális műszer pontossága? (3p) Digitális műszereknél a pontosságot két adattal lehet megadni: Az osztályjel ±%-os értékével, és a ± digit értékkel (jellemző
Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT Digitális Technika
DIGITÁLIS TECHNIKA 8 Dr Oniga. I stván István
Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
Kombinációs hálózatok Adatszelektorok, multiplexer
Adatszelektorok, multiplexer Jellemző példa multiplexer és demultiplexer alkalmazására: adó egyutas adatátvitel vevő adatvezeték cím címvezeték (opcionális) A multiplexer az adóoldali jelvezetékeken jelenlévő
DIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István
IGITÁLIS TECHNIKA 7 Előadó: r. Oniga István Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók S tárolók JK tárolók T és típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó,
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Beágyazott rendszerek Fehér Béla Raikovich Tamás
Digitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Sorrendi hálózatok Az eddigiekben
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások III. Kombinációs hálózatok 1. Tervezzen kétbemenetű programozható kaput! A hálózatnak két adatbenemete (a, b) és két funkcióbemenete (f, g) van. A kapu
Digitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Sorrendi hálózatok Az eddigiekben
Dr. Oniga István DIGITÁLIS TECHNIKA 4
Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan
8.3. AZ ASIC TESZTELÉSE
8.3. AZ ASIC ELÉSE Az eddigiekben a terv helyességének vizsgálatára szimulációkat javasoltunk. A VLSI eszközök (közöttük az ASIC) tesztelése egy sokrétűbb feladat. Az ASIC modellezése és a terv vizsgálata
5. Laborgyakorlat. Számláló funkciók, időzítő funkciók.
5. Laborgyakorlat Számláló funkciók, időzítő funkciók. A gyakorlat célja A számlálók és időzítők használata gyakori a folyamatirányításban. Gondoljunk egy futószalag indításának a késleltetésére, megállításánál
Az INTEL D-2920 analóg mikroprocesszor alkalmazása
Az INTEL D-2920 analóg mikroprocesszor alkalmazása FAZEKAS DÉNES Távközlési Kutató Intézet ÖSSZEFOGLALÁS Az INTEL D 2920-at kifejezetten analóg feladatok megoldására fejlesztették ki. Segítségével olyan
Attribútumok, constraint-ek
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Attribútumok, constraint-ek Fehér Béla Szántó Péter, Lazányi János, Raikovich
Digitális áramkörök és rendszerek alkalmazása az űrben 3.
Budapest Universit y of Technology and Economics Digitális áramkörök és rendszerek alkalmazása az űrben 3. Csurgai-Horváth László, BME-HVT 2016. Fedélzeti adatgyűjtő az ESEO LMP kísérletéhez European Student
Digitális technika (VIMIAA01) Laboratórium 9
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 9 Fehér Béla Raikovich Tamás,
Laborgyakorlat 3 A modul ellenőrzése szimulációval. Dr. Oniga István
Laborgyakorlat 3 A modul ellenőrzése szimulációval Dr. Oniga István Szimuláció és verifikáció Szimulációs lehetőségek Start Ellenőrzés után Viselkedési Funkcionális Fordítás után Leképezés után Időzítési
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló
Digitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Minimalizálási algoritmusok
3. A DIGILENT BASYS 2 FEJLESZTŐLAP LEÍRÁSA
3. A DIGILENT BASYS 2 FEJLESZTŐLAP LEÍRÁSA Az FPGA tervezésben való jártasság megszerzésének célszerű módja, hogy gyári fejlesztőlapot alkalmazzunk. Ezek kiválóan alkalmasak tanulásra, de egyes ipari tervezésekhez
Digitális technika VIMIAA02 3. EA
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 3. EA Fehér Béla BME MIT Minimalizálási algoritmusok
Fehér Béla Szántó Péter, Lazányi János, Raikovich Tamás BME MIT FPGA laboratórium
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális rendszerek tervezése FPGA áramkörökkel Konfiguráció és JTAG
Programozás és digitális technika II. Logikai áramkörök. Pógár István Debrecen, 2016
Programozás és digitális technika II. Logikai áramkörök Pógár István pogari@eng.unideb.hu Debrecen, 2016 Gyakorlatok célja 1. Digitális tervezés alapfogalmainak megismerése 2. A legelterjedtebb FPGA-k
Máté: Számítógép architektúrák
Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.
Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3
Előadó: Dr. Oniga István DIGITÁLIS TEHNIK 3 Logikai függvények logikai függvény olyan egyenlőség, amely változói kétértékűek, és ezek között csak logikai műveleteket végzünk függvények megadása történhet
Digitális eszközök típusai
Digitális eszközök típusai A digitális eszközök típusai Digitális rendszer fogalma Több minden lehet digitális rendszer Jelen esetben digitális integrált áramköröket értünk a digitális rendszerek alatt
Autóipari beágyazott rendszerek CAN hardver
Scherer Balázs, Tóth Csaba: Autóipari beágyazott rendszerek CAN hardver Előadásvázlat Kézirat Csak belső használatra! 2012.02.19. SchB, TCs BME MIT 2012. Csak belső használatra! Autóipari beágyazott rendszerek
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika
PLA és FPLA áramkörök
Programozható logikai áramkörök PLA és FPLA áramkörök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó,
Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész
Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog
A gyakorlatokhoz kidolgozott DW példák a gyakorlathoz tartozó Segédlet könyvtárban találhatók.
Megoldás Digitális technika II. (vimia111) 1. gyakorlat: Digit alkatrészek tulajdonságai, funkcionális elemek (MSI) szerepe, multiplexer, demultiplexer/dekóder Elméleti anyag: Digitális alkatrészcsaládok
Hobbi Elektronika. A digitális elektronika alapjai: További logikai műveletek
Hobbi Elektronika A digitális elektronika alapjai: További logikai műveletek 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL, 5th.
Digitális technika (VIMIAA01) Laboratórium 9
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 9 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 2
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 2 Fehér Béla Raikovich Tamás,
IRÁNYÍTÁSTECHNIKAI ALAPFOGALMAK, VEZÉRLŐBERENDEZÉSEK FEJLŐDÉSE, PLC-GENERÁCIÓK
IRÁNYÍTÁSTECHNIKAI ALAPFOGALMAK, VEZÉRLŐBERENDEZÉSEK FEJLŐDÉSE, PLC-GENERÁCIÓK Irányítástechnika Az irányítás olyan művelet, mely beavatkozik valamely műszaki folyamatba annak: létrehozása (elindítása)
TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6
TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása
Máté: Számítógép architektúrák
Kívánalom: sok kapu kevés láb Kombinációs áramkörök efiníció: kimeneteket egyértelműen meghatározzák a pillanatnyi bemenetek Multiplexer: n vezérlő bemenet, 2 n adatbemenet, kimenet z egyik adatbemenet
Szűrő architektúrák FPGA realizációjának vizsgálata
Szűrő architektúrák FPGA realizációjának vizsgálata Kutatási beszámoló a Pro Progressio alapítvány számára Szántó Péter, 2013. Bevezetés Az FPGA-ban megvalósítandó jelfeldolgozási feladatok közül a legfontosabb
HDL tervezés. Gábor Bata FPGA Developer Microwave Networks Ericsson Hungary Ltd.
HDL tervezés Gábor Bata FPGA Developer Microwave Networks Ericsson Hungary Ltd. gabor.bata@ericsson.com HDL tervezés A HDL gondolkodásmód Órajeltartományok Reset az FPGA-ban Példák a helyes tervezési-kódolási
Nagy Gergely április 4.
Mikrovezérlők Nagy Gergely BME EET 2012. április 4. ebook ready 1 Bevezetés Áttekintés Az elektronikai tervezés eszközei Mikroprocesszorok 2 A mikrovezérlők 3 Főbb gyártók Áttekintés A mikrovezérlők az
Véges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit
1. A programozható logikai eszközök főbb csoportjai
1. A programozható logikai eszközök főbb csoportjai 1.1 Logikai hálózatok gyakorlati megvalósítása A logikai hálózatokat a gyakorlatban háromféle alkatrésztípusból készíthetjük el. Ezek: Diszkrét logikai
Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék
Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás
DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint MEMÓRIÁK
DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS MEMÓRIÁK PROGRAMOZHATÓ LOGIKÁK MIKROPROCESSZOR MIKROPROCESSZOROS RENDSZER
DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint
DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS MEMÓRIÁK PROGRAMOZHATÓ LOGIKÁK MIKROPROCESSZOR MIKROPROCESSZOROS RENDSZER
LOGIKAI TERVEZÉS. Előadó: Dr. Oniga István Egytemi docens
LOGIKAI TERVEZÉS PROGRAMOZHATÓ ÁRAMKÖRÖKKEL Előadó: Dr. Oniga István Egytemi docens A tárgy weboldala http://irh.inf.unideb.hu/user/onigai/ltpa/logikai_tervezes.htmltervezes.html Adminisztratív információk
Irányítástechnika Elıadás. A logikai hálózatok építıelemei
Irányítástechnika 1 6. Elıadás A logikai hálózatok építıelemei Irodalom - Kovács Csongor: Digitális elektronika, 2003 - Zalotay Péter: Digitális technika, 2004 - U. Tiecze, Ch. Schenk: Analóg és digitális