Szűrő architektúrák FPGA realizációjának vizsgálata
|
|
- Ágoston Varga
- 9 évvel ezelőtt
- Látták:
Átírás
1 Szűrő architektúrák FPGA realizációjának vizsgálata Kutatási beszámoló a Pro Progressio alapítvány számára Szántó Péter, Bevezetés Az FPGA-ban megvalósítandó jelfeldolgozási feladatok közül a legfontosabb a véges impulzusválaszú (FIR) szűrők implementációja. Az erőforrásigény, feldolgozási teljesítmény és fogyasztás szempontjából is fontos, hogy adott feladathoz és FPGA architektúrához a megfelelő hardver struktúrát válasszuk. A kutatómunka ennek tükrében tekinti át a különböző megvalósítási lehetőségeket, s segíti a megfelelő struktúra kiválasztását. Konvolúció Az egy dimenziós FIR szűrés a szűrő impulzusválaszának és a bemeneti mintasorozat utolsó N elemének konvolúcióját jelenti: Realizáció szempontjából igen lényeges paraméterek: a bemeneti minták mintavételi frekvenciája a szűrő fokszáma (N) a bemeneti minták (x k ) felbontása a szűrő együtthatókészletének (c k ) felbontása A fenti képletből láthatóan az elvégezendő alapművelet a MAC (multiply-and-accumulate) művelet, vizsgáljuk meg ennek megvalósítási lehetőségeit. Elosztott aritmetika Bár a mai korszerű FPGA-k esetében melyekben nagyszámú dedikált szorzó áramkör található - jelentősége nem túl nagy, a teljesség kedvéért megemlítendő az elosztott aritmetika (DA distributed arithmetic) alkalmazása, melynek esetén a szorzás művelet végrehajtása alapvetően bitsorosan történik, így fizikailag csak egy egy bites szorzó valamint egy akkumulátor realizációját igényli. Bontsuk fel az i-edik bemeneti mintát (feltételezve, hogy B bites, egynél kisebb abszolút értékű kettes komplemens számok): Majd helyettesítsük be ezt a konvolúció képletébe:
2 Mivel az x kb értékek binárisak, így a kifejezésnek 2 N különböző értéke lehet (mindegyik a C együtthatókészlet elemeinek lineáris kombinációja). Ennek megfelelően a teljes konvolúciót megvalósító hardver struktúra az alábbi: <<1 accu y[n] x[n] (soros) SHR SHR SHR SHR N-1 B bites shift regiszter A megvalósítás előnye, hogy nem igényel dedikált szorzó áramkört, hátránya, hogy a szükséges méret a szűrő fokszámának növekedésével exponenciálisan nő. A számítási teljesítmény ugyanakkor nem függ a szűrő fokszámától, csak a bemeneti minták felbontásától. A bemeneti adat particionálásával és a struktúra többszörözésével a teljesítmény növelhető. Dedikált aritmetikai elemek A jelentősebb gyártók FPGA-i (Altera, Xilinx) igen régóta tartalmaznak a jelfeldolgozási műveletek végrehajtásához dedikált szorzó, illetve jelfeldolgozó egységeket. A régebbi, illetve olcsóbb termékekben (pl. Xilinx Spartan-3, Altera Cyclone IV) tipikusan 18x18 bites előjeles szorzó áramköröket találunk, míg az újabb családok esetén komplett MAC egységek kaptak helyet a szilíciumon. Az alábbi táblázat néhány FPGA család esetére összegzi a legfontosabb paramétereket. Xilinx Altera Spartan-3 18x18 bites előjeles szorzó 18x18 bites előjeles szorzó Spartan-6 18 bites elő-összeadó 48 bites akkumulátor 25x18 bites előjeles szorzó Virtex-6 48 bites akkumulátor logikai műveletek 18x18 bites előjeles szorzó Cyclone IV használható két 9x9 bites szorzóként 18x18 bites szorzó, 18 bites elő-összeadó, 44 bites akkumulátor Cyclone V 27x27 bites szorzó, 26 bites elő-összeadó, 64 bites akkumulátor kisméretű belső együttható tár (8x18 vagy 8x27 bit) Startix V megegyezik a Cyclone V-tel Amennyiben a fenti táblázatban szereplő felbontás megfelelő az adott alkalmazáshoz, úgy egy MAC művelet egyetlen DSP blokk felhasználásával megvalósítható, a működési frekvencia pedig tipikusan MHz körül alakul. Amennyiben az alkalmazás a fentieknél finomabb felbontást igényel, úgy a blokkok kaszkádosításával ez megoldható. Az alábbi blokkvázlat a
3 Spartan-6 négy darab DSP48A1 blokkjával megvalósított 35x35 bites szorzó kialakítását mutatja. a[34:17] Z -3 X + p[69:34] b[34:17] Z -3 DSP48A1 a[34:17] Z -2 >>17 X + p[33:17] {0, b[16:0}] Z -2 DSP48A1 {0, a[16:0}] X + b[34:17] DSP48A1 {0, a[16:0}] >>17 X + Z -3 p[16:0] {0, b[16:0}] DSP48A1 Szűrő struktúrák A szűrő működési frekvenciája (f clk ), a bemeneti mintavételi frekvencia (f s ) és a szűrő fokszáma alapján (N) a kialakított struktúrát három nagy csoportba sorolhatjuk: szekvenciális, párhuzamos és részben párhuzamos. Szekvenciális FIR struktúra Amennyiben teljesül, hogy, akkor a szekvenciális struktúra megfelelő számítási kapacitással rendelkezik. Ebben az esetben egyetlen MAC egység felel a kimeneti minta kiszámításáért, a számítás azaz egyetlen kimeneti minta előállítása pedig N órajelet vesz igénybe.
4 X + y MAC x Sample RAM Mivel egy órajelben csak egy-egy együtthatóra és bemeneti mintára van szükség, az FPGAkban található beágyazott memória blokkok kedvező lehetőséget kínálnak mind az együttható, mind pedig a minta késleltetővonal kialakítására (utóbbit cirkuláris bufferként használva). Tipikusan ezen belső memóriák dual-port kialakításúak, így az együttható készlet dinamikus változtatása is egyszerűen megoldható. Amennyiben a szűrő fokszáma kicsi (és így az általában 1-2 kb-os memóriák kihasználtsága alacsony), az Altera Stratix, illetve a Xilinx FPGA-k esetében alternatívát jelent az ún. elosztott memória használata, amely az FPGA általános erőforrását (LUT) konfigurálja memóriaként. Xilinx FPGA-k esetében a LUT-okból létrehozott, dinamikusan címezhető shift regiszterek is kedvező alternatívát kínálnak a kisméretű tárolóelemek kialakítására. Teljesen párhuzamos struktúra Amennyiben a mintavételi frekvencia megegyezik a működési frekvenciával (tipikusan ez a helyzet például videó feldolgozásnál), úgy csak a párhuzamos struktúra jelent megoldást. Ebben az esetben a szükséges MAC egységek száma megegyezik a szűrő fokszámával. A konvolúció képletének direkt leképezéséből származtatott ún. direct-form architektúrát az alábbi ábra mutatja. x C 0 X C 1 X C 2 X C 3 X C 4 X y
5 A rész-szorzatok összegzése ebben az esetben összeadó-fával történik. A fentiekben bemutatott DSP blokkok felépítéséhez ez a struktúra kevésbé illeszkedik: ugyan az első szintű összeadásokra felhasználható a DSP blokkokban található összeadó/akkumulátor, a további szintek megvalósítása viszont általános logikával történik (miközben a DSP blokkok felében kihasználatlan az összeadó). Ezen architektúra választását éppen ezért legfeljebb az indokolja, hogy késleltetése viszonylag kicsi. Ezzel ellentétben az ún. systolic FIR struktúra köszönhetően az elosztott összeadó fának teljes egészében kihasználja a DSP blokkok adottságait, s ez tekinthető az ideális választásnak. C 2 X + y C 1 X + C 0 X + x Fenti struktúra tökéletesen illeszkedik mind az Altera, mind pedig a Xilinx FPGA-kban található DSP blokkokhoz, ezen blokkok mellett semmiféle kiegészítő logika használatát nem igényli. A DSP blokkok közötti dedikált kaszkádosító huzalozás pedig a jelterjedési időket is minimalizálja, így igen magas működési frekvencia érhető el. Részben párhuzamos struktúra Részlegesen párhuzamosított struktúra használata szükséges amennyiben a szekvenciális megoldás teljesítménye nem elegendő, ugyanakkor a teljesítmény igény nem indokolja a teljesen párhuzamos struktúra kialakítását, azaz amikor. Ebben az esetben több MAC blokk kerül felhasználásra, s az egyes blokkok a rész-szorzatok egy-egy részhalmazát számítják. Tételezzük fel az alábbi paramétereket: f clk =400 MHz működési frekvencia f s =6 MHz mintavételi frekvencia 128-ad fokú szűrő Mivel, így olyan struktúrára van szükség, amely órajelenként képes két MAC művelet kiszámítására. Az alábbi ábrán látható DSP blokkok közül az alsó kettő végez ténylegesen rész-szorzat számítást, a harmadik blokk akkumulátorként funkcionál. Az együtthatókat és mintákat tároló bufferek szét vannak osztva a két MAC egység között, mindkét egység művelet végrehajtásáért felelős.
6 0 X + 0 Buffer 1. X + Sample Buffer 1. Buffer 0. X + x Sample Buffer 0. A mintatár (Sample Buffer) kialakítása történhet dual-port memóriával vagy Xilinx FPGA-k esetében dinamikusan címezhető shift regiszterekkel. Előbbi esetben minden számítási ciklus végén az utolsóként feldolgozott minta átkerül az első mintatárból a másodikba, megvalósítva egy fizikailag ketté bontott cirkuláris buffert. Decimáló- és interpoláló szűrők A decimálás művelete aluláteresztő szűrésből és mintaeldobásból áll: k-ad fokú decimálás esetén a bemeneti jelből kiszűrésre kerülnek a kimeneti mintavételi frekvencia felénél nagyobb frekvenciájú komponensek, majd minden k minta közül (k-1)-t eldobunk. A számítási igény k-ad részére csökkenthető, ha az eldobott mintákat ki sem számítjuk. Ekkor azt is kijelenthetjük, hogy a szűrés számítási igénye független a decimálás fokszámától. A decimálás során használt szűrőkről ugyanis elmondható, hogy a decimálási faktor duplázásakor az ehhez szükséges szűrő fokszáma is a kétszeresére nő. Összességében tehát egyetlen kimeneti minta előállításához kétszeres számú MAC műveletre van szükség, egy kimeneti minta számítására viszont kétszer annyi órajel áll rendelkezésre. Tekintsünk egy N=12 pontos szűrőt, valamint másodfokú decimálást. Ez esetben az érvényes kimenetet generáló konvolúciók (c az együtthatókat, x a bemeneti mintákat jelöli): c 0 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 10 c 11 x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13 x 14 x 15 Decimálás esetén a legnagyobb számítási teljesítményű struktúra (órajelenként egy új bemeneti minta feldolgozása) egy-egy MAC egysége sem csak egy együtthatóval képzett részszorzatot számít, hanem a decimálás fokának megfelelő számút, tehát jelen esetben kettőt. Fenti táblázatban az azonosan színezett együtthatókat ugyanaz a MAC egység használja fel az első számítási fázis első órajelében az első MAC egység az részszorzatot, a második órajelben pedig a részszorzatot számítja. Ebben a MAC egységben a további kimeneti értékek számítása során sem x 0 sem pedig x 1 nem kerül felhasználásra, így ezek továbbadhatók a következő MAC egységnek, tehát a kiadódó struktúra előremutató
7 adatfolyam jellegű. A MAC egységek számára a bemeneti mintákat a decimálási faktortól függő hosszúságú késleltetővonalak (shiftregiszterek) szolgáltatják. 0 X + y 0 További MAC egységek X + Z -3 X + Z -3 X + Nem ilyen kedvező a helyzet abban az esetben, ha a MAC egységenként feldolgozott együtthatók száma nem egyezik meg a decimálás fokával például ha a fenti esetben egy MAC egység 4 együtthatóval képzett részeredményeket számít. Többé-kevésbé megtartva a fenti struktúrát a MAC egység együttható összerendelés az alábbiak szerint módosítható: c 0 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 10 c 11 x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13 x 14 x 15 Tehát az első kimeneti érték számításakor a három MAC egység ugyanazokat a részszorzatokat számítja, mint az előző esetben a 6 MAC egység közül az első három. Az ezt követő két órejelben ugyanez a három MAC egység számítja ki azokat a részszorzatokat, ami az előző esetben a második három MAC egység feladata volt. Ahhoz, hogy a megfelelő bemenetek rendelkezésre álljanak, a bemeneti shiftregiszter-lánc második felét is a három MAC egység bemenetére kell kötni, tehát minden MAC egység két shiftregiszterből képes bemenetet venni. Interpoláció esetén is lehetőség van a műveletvégzés racionalizálására. Mivel I-ed fokú interpoláció esetén minden bemeneti minta közé (I-1) darab 0 értékű mintát illesztünk, így az ezekkel képzett részszorzat 0, tehát a számítás elhagyható. Az alábbi táblázat másodfokú interpoláció esetét mutatja, az azonosan színezett részszorzatok számítása történik 1-1 MAC egységben. Tehát például a második kimenet előállításához az első MAC egység a részszorzatot számítja, míg a harmadik kimenet előállításához a értéket, és így tovább. Általánosan tehát I-ed fokú interpoláció esetén minden MAC I darab együtthatóval végzett számításokért felelős, s I egymást követő órajelben ezeket ugyanazzal a bemeneti mintával szorozza össze.
8 c 0 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 10 c 11 x 0 0 x 1 0 x 2 0 x 3 0 x 4 0 x x 1 0 x 2 0 x 3 0 x 4 0 x 5 0 x 6 x 1 0 x 2 0 x 3 0 x 4 0 x 5 0 x 6 0 Új bemeneti minta beolvasása ezért minden I-edik órajelben történik, ezt leszámítva a struktúra megfelel a teljesen párhuzamos MAC alapú FIR struktúrának. Összegzés A fentiekből láthatóan a korszerű FPGA-k felépítése architektúrálisan igen kedvező a MAC művelet alapú jelfeldolgozási feladatok megvalósításához. A nagyobb eszközökben, melyek akár DSP blokkot tartalmaznak, extrém sebességű és/vagy fokszámű szűrők is megvalósíthatók, míg a kisebb eszközök igen kedvező ár/teljesítmény és ár/fogyasztás mutatókkal rendelkeznek.
FPGA áramkörök alkalmazásainak vizsgálata
FPGA áramkörök alkalmazásainak vizsgálata Kutatási beszámoló a Pro Progressio alapítvány számára Raikovich Tamás, 2012. 1 Bevezetés A programozható logikai áramkörökön (FPGA) alapuló hardver gyorsítók
Részletesebben5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a
RészletesebbenAkusztikus MEMS szenzor vizsgálata. Sós Bence JB2BP7
Akusztikus MEMS szenzor vizsgálata Sós Bence JB2BP7 Tartalom MEMS mikrofon felépítése és típusai A PDM jel Kinyerhető információ CIC szűrő Mérési tapasztalatok. Konklúzió MEMS (MicroElectrical-Mechanical
RészletesebbenXilinx Vivado HLS gyakorlat (2018.) C implementáció és testbench
Xilinx Vivado HLS gyakorlat (2018.) C implementáció és testbench 1. Töltse le a tárgy honlapjáról a gyakorlathoz tartozó file-t. 2. Hozzon létre egy Vivado HLS projektet az alábbi beállításokkal. a. Adja
Részletesebbenegy szisztolikus példa
Automatikus párhuzamosítás egy szisztolikus példa Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus
Részletesebben2. Elméleti összefoglaló
2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges
RészletesebbenAnalóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék
Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás
RészletesebbenRendszertervezés FPGA eszközökkel
Rendszertervezés FPGA eszközökkel 1. előadás Programozható logikai eszközök 2011.04.13. Milotai Zsolt Tartalom Bevezetés: alkalmazási lehetőségek Nem programozható és programozható eszközök összehasonlítása
RészletesebbenLaborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
RészletesebbenMintavétel: szorzás az idő tartományban
1 Mintavételi törvény AD átalakítók + sávlimitált jel τ időközönként mintavétel Mintavétel: szorzás az idő tartományban 1/τ körfrekvenciánként ismétlődik - konvolúció a frekvenciatérben. 2 Nem fednek át:
RészletesebbenElőadó: Nagy István (A65)
Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,
RészletesebbenA tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással
.. A tervfeladat sorszáma: 1 A ALU egység 8 regiszterrel és 8 utasítással Minimálisan az alábbi képességekkel rendelkezzen az ALU 8-bites operandusok Aritmetikai funkciók: összeadás, kivonás, shift, komparálás
RészletesebbenVéges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit
RészletesebbenLogikai tervezés gyakorlatok (2018.)
Logikai tervezés gyakorlatok (2018.) Tartalom 1. 7-szegmenses vezérlő... 2 2. TMP121 SPI interfész... 4 3. Audió CODEC illesztése... 6 4. FIR szűrő... 12 5. ChipScope FIR szűrő... 15 6. SERDES... 16 1.
Részletesebben1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
Részletesebben10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
101 ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel történik A feldolgozás előtt az analóg jeleket digitalizálni kell Rendszerint az
Részletesebben1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD)
1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD) 1 1.1. AZ INTEGRÁLT ÁRAMKÖRÖK GYÁRTÁSTECHNOLÓGIÁI A digitális berendezések tervezésekor számos technológia szerint gyártott áramkörök közül
RészletesebbenDigitális jelfeldolgozás
Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális
RészletesebbenX. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.
RészletesebbenSzámítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés
RészletesebbenDigitális jelfeldolgozás
Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés
RészletesebbenDigitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló
RészletesebbenDigitális jelfeldolgozás
Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.
RészletesebbenDr. Oniga István DIGITÁLIS TECHNIKA 8
Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
RészletesebbenVéges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. Tervezzünk egy soros mintafelismerőt, ami a bemenetére ciklikusan, sorosan érkező 4 bites számok közül felismeri azokat, amelyek 3-mal vagy 5-tel oszthatók. A fenti
RészletesebbenSzámítógép felépítése
Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége
RészletesebbenLogikai tervezés gyakorlatok (2017.)
Logikai tervezés gyakorlatok (2017.) Tartalom 1. FPGA CPLD interfész... 1 2. TMP121 SPI interfész... 4 3. Audió CODEC illesztése... 6 4. FIR szűrő... 10 5. ChipScope FIR szűrő... 13 6. SRAM interfész...
RészletesebbenDigitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika
Részletesebben3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK
3.6. AGYOMÁNYOS SZEKVENCIÁIS FUNKCIONÁIS EGYSÉGEK A fenti ismertető alapján elvileg tetszőleges funkciójú és összetettségű szekvenciális hálózat szerkeszthető. Vannak olyan szabványos funkciók, amelyek
Részletesebben5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix
2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.
RészletesebbenLaborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.
RészletesebbenÖsszeadás BCD számokkal
Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok
RészletesebbenDigitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
RészletesebbenDigitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
RészletesebbenAkusztikus MEMS szenzor vizsgálata. Sós Bence
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Akusztikus MEMS szenzor vizsgálata Önálló laboratórium zárójegyzőkönyv 2014/15. I. félév Sós Bence III. évf,
RészletesebbenDIGITÁLIS TECHNIKA 8 Dr Oniga. I stván István
Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
RészletesebbenWavelet transzformáció
1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan
RészletesebbenDigitális elektronika gyakorlat
FELADATOK 1. Felhasználva az XSA 50 FPGA lapon található 100MHz-es programozható oszcillátort, tervezzetek egy olyan VHDL modult, amely 1 Hz-es órajelet állít elő. A feladat megoldható az FPGA lap órajelének
RészletesebbenAritmetikai utasítások I.
Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást
RészletesebbenHálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások
Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Egyenirányítás: egyenáramú komponenst nem tartalmazó jelből egyenáramú összetevő előállítása. Nemlineáris áramköri elemet tartalmazó
RészletesebbenA/D és D/A átalakítók gyakorlat
Budapesti Műszaki és Gazdaságtudományi Egyetem A/D és D/A átalakítók gyakorlat Takács Gábor Elektronikus Eszközök Tanszéke (BME) 2013. február 27. ebook ready Tartalom 1 A/D átalakítás alapjai (feladatok)
RészletesebbenAnalóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)
RészletesebbenBevezetés az informatikába
Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
RészletesebbenDigitális rendszerek. Mikroarchitektúra szintje
Digitális rendszerek Mikroarchitektúra szintje Mikroarchitektúra Jellemzők A digitális logika feletti szint Feladata az utasításrendszer-architektúra szint megalapozása, illetve megvalósítása Példa Egy
Részletesebbenelektronikus adattárolást memóriacím
MEMÓRIA Feladata A memória elektronikus adattárolást valósít meg. A számítógép csak olyan műveletek elvégzésére és csak olyan adatok feldolgozására képes, melyek a memóriájában vannak. Az információ tárolása
RészletesebbenDigitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
RészletesebbenDigitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
Részletesebben3. A DIGILENT BASYS 2 FEJLESZTŐLAP LEÍRÁSA
3. A DIGILENT BASYS 2 FEJLESZTŐLAP LEÍRÁSA Az FPGA tervezésben való jártasság megszerzésének célszerű módja, hogy gyári fejlesztőlapot alkalmazzunk. Ezek kiválóan alkalmasak tanulásra, de egyes ipari tervezésekhez
Részletesebben7.2.2. A TMS320C50 és TMS320C24x assembly programozására példák
7.2.2. A TMS320C50 és TMS320C24x assembly programozására példák A TMS320C50 processzor Ez a DSP processzor az 1.3. fejezetben lett bemutatva. A TMS320C50 ##LINK: http://www.ti.com/product/tms320c50## egy
RészletesebbenSzekvenciális hálózatok és automaták
Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával
RészletesebbenFehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)
DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális
RészletesebbenDigitális Rendszerek és Számítógép Architektúrák (BSc államvizsga tétel)
Pannon Egyetem Villamosmérnöki és Információs Rendszerek Tanszék Digitális Rendszerek és Számítógép Architektúrák (BSc államvizsga tétel) 1. tétel: Neumann és Harvard számítógép architektúrák összehasonlító
RészletesebbenÚjrakonfigurálható technológiák nagy teljesítményű alkalmazásai
Újrakonfigurálható technológiák nagy teljesítményű alkalmazásai Xilinx System Generator Szántó Péter BME MIT, FPGA Laboratórium Xilinx System Generator MATLAB Simulink Toolbox Simulink Modell alapú grafikus
Részletesebbenfunkcionális elemek regiszter latch számláló shiftregiszter multiplexer dekóder komparátor összeadó ALU BCD/7szegmenses dekóder stb...
Funkcionális elemek Benesóczky Zoltán 24 A jegyzetet a szerzői jog védi. Azt a BM hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése szükséges. funkcionális
RészletesebbenShift regiszter + XOR kapu: 2 n állapot
DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális
RészletesebbenDigitális szűrő méréshez (DF)
MÉRÉSI SEGÉDLET Digitális szűrő méréshez (DF) V1 épület V. emelet 504. labor Készítette: Dudás Levente 016. 1 A digitális szűrő elépítése A szűrő blokkvázlata az 1.1. ábrán látható. 1.1. ábra A szűrő a
RészletesebbenMérési struktúrák
Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést
RészletesebbenA mintavételezéses mérések alapjai
A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel
RészletesebbenA Xilinx FPGA-k. A programozható logikákr. Az FPGA fejlesztés s menete. BMF KVK MAI, Molnár Zsolt, 2008.
A Xilinx FPGA-k A programozható logikákr król általában A Spartan-3 3 FPGA belső felépítése Az FPGA fejlesztés s menete BMF KVK MAI, Molnár Zsolt, 2008. A programozható logikák k I. Logikai eszközök: -
RészletesebbenSzámítógépek felépítése
Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák
RészletesebbenFlynn féle osztályozás Single Isntruction Multiple Instruction Single Data SISD SIMD Multiple Data MISD MIMD
M5-. A lineáris algebra párhuzamos algoritmusai. Ismertesse a párhuzamos gépi architektúrák Flynn-féle osztályozását. A párhuzamos lineáris algebrai algoritmusok között mi a BLAS csomag célja, melyek annak
RészletesebbenSegédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu
RészletesebbenInformatika Rendszerek Alapjai
Informatika Rendszerek Alapjai Dr. Kutor László Alapfogalmak Információ-feldolgozó paradigmák Analóg és digitális rendszerek jellemzői Jelek típusai Átalakítás rendszerek között http://uni-obuda.hu/users/kutor/
RészletesebbenDigitális rendszerek tervezése FPGA áramkörökkel
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális rendszerek tervezése FPGA áramkörökkel Fehér Béla Szántó Péter,
RészletesebbenIványi László ARM programozás. Szabó Béla 6. Óra ADC és DAC elmélete és használata
ARM programozás 6. Óra ADC és DAC elmélete és használata Iványi László ivanyi.laszlo@stud.uni-obuda.hu Szabó Béla szabo.bela@stud.uni-obuda.hu Mi az ADC? ADC -> Analog Digital Converter Analóg jelek mintavételezéssel
RészletesebbenMikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Beágyazott rendszerek Fehér Béla Raikovich Tamás
RészletesebbenMagas szintű optimalizálás
Magas szintű optimalizálás Soros kód párhuzamosítása Mennyi a várható teljesítmény növekedés? Erős skálázódás (Amdahl törvény) Mennyire lineáris a skálázódás a párhuzamosítás növelésével? S 1 P 1 P N GPGPU
RészletesebbenAdatok ábrázolása, adattípusok
Adatok ábrázolása, adattípusok Összefoglalás Adatok ábrázolása, adattípusok Számítógépes rendszerek működés: információfeldolgozás IPO: input-process-output modell információ tárolása adatok formájában
RészletesebbenSzámítógép architektúra
Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Számítógép architektúra Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Irodalmi források Cserny L.: Számítógépek
Részletesebben13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem
1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,
RészletesebbenDigitális szűrők - (BMEVIMIM278) Házi Feladat
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rszerek Tanszék Digitális szűrők - (BMEVIMIM278) FIR-szűrő tervezése ablakozással Házi Feladat Név: Szőke Kálmán Benjamin Neptun:
Részletesebbenkövetkező: 2.)N=18 bites 2-es komplemens fixpontos rendszer p=3 Vmin+ =delta r=2^(-p)=2^(-3)=
1. ZH A 1.)FPGA A Xilinx FPGA áramköröknek három alapvető építőeleme van: CLB: konfigurálható logikai blokk: szükséges logikai kapcsolatok megvalósítása egy logikai tömbben. Tartalmaz 2db. D Flip-Flop-ot
RészletesebbenBevezetés az informatikába
Bevezetés az informatikába 3. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Részletesebben7.hét: A sorrendi hálózatok elemei II.
7.hét: A sorrendi hálózatok elemei II. Tárolók Bevezetés Bevezetés Regiszterek Számlálók Memóriák Regiszter DEFINÍCIÓ Tárolóegységek összekapcsolásával, egyszerű bemeneti kombinációs hálózattal kiegészítve
RészletesebbenDigitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek
RészletesebbenElektronika Előadás. Modulátorok, demodulátorok, lock-in erősítők
Elektronika 2 10. Előadás Modulátorok, demodulátorok, lock-in erősítők Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök, Műszaki
RészletesebbenAz INTEL D-2920 analóg mikroprocesszor alkalmazása
Az INTEL D-2920 analóg mikroprocesszor alkalmazása FAZEKAS DÉNES Távközlési Kutató Intézet ÖSSZEFOGLALÁS Az INTEL D 2920-at kifejezetten analóg feladatok megoldására fejlesztették ki. Segítségével olyan
RészletesebbenMintavételezés és AD átalakítók
HORVÁTH ESZTER BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM JÁRMŰELEMEK ÉS JÁRMŰ-SZERKEZETANALÍZIS TANSZÉK ÉRZÉKELÉS FOLYAMATA Az érzékelés, jelfeldolgozás általános folyamata Mérés Adatfeldolgozás 2/31
Részletesebben1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba
Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai
RészletesebbenDigitális elektronika gyakorlat. A VHDL leírástípusok
A VHDL leírástípusok 1. A funkcionális leírásmód Company: SAPIENTIA EMTE Engineer: Domokos József Create Date: 08:48:48 03/21/06 Design Name: Module Name: Logikai es kapuk funkcionalis leirasa- Behavioral
RészletesebbenDigitális technika (VIMIAA02) Laboratórium 5
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5 Fehér Béla Raikovich Tamás,
RészletesebbenDigitális technika (VIMIAA02) Laboratórium 5
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5 Fehér Béla Raikovich Tamás,
RészletesebbenElektronika Előadás. Analóg és kapcsolt kapacitású szűrők
Elektronika 2 8. Előadás Analóg és kapcsolt kapacitású szűrők Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - Ron Mancini (szerk): Op Amps for Everyone, Texas Instruments, 2002 16.
Részletesebben4-1. ábra. A tipikus jelformáló áramkörök (4-17. ábra):
3.1. A digitális kimeneti perifériák A digitális kimeneti perifériákon keresztül a számítógép a folyamat digitális jelekkel működtethető beavatkozó szervei számára kétállapotú jeleket küld ki. A beavatkozó
RészletesebbenLaborgyakorlat 3 A modul ellenőrzése szimulációval. Dr. Oniga István
Laborgyakorlat 3 A modul ellenőrzése szimulációval Dr. Oniga István Szimuláció és verifikáció Szimulációs lehetőségek Start Ellenőrzés után Viselkedési Funkcionális Fordítás után Leképezés után Időzítési
RészletesebbenPWM elve, mikroszervó motor vezérlése MiniRISC processzoron
PWM elve, mikroszervó motor vezérlése MiniRISC processzoron F1. A mikroprocesszorok, mint digitális eszközök, ritkán rendelkeznek közvetlen analóg kimeneti jelet biztosító perifériával, tehát valódi, minőségi
RészletesebbenDIGITÁLIS KOMMUNIKÁCIÓ Oktató áramkörök
DIGITÁLIS KOMMUNIKÁCIÓ Oktató áramkörök Az elektronikus kommunikáció gyors fejlődése, és minden területen történő megjelenése, szükségessé teszi, hogy az oktatás is lépést tartson ezzel a fejlődéssel.
RészletesebbenF1301 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok
F3 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok F3 Bev. az elektronikába SZEKVENIÁLIS LOGIKAI HÁLÓZATOK A kimenetek állapota nem csak a bemenetek állapotainak kombinációjától
RészletesebbenSZÁMÍTÓGÉP ARCHITEKTÚRÁK
SZÁMÍTÓGÉP ARCHITEKTÚRÁK Az utasítás-pipeline szélesítése Horváth Gábor, Belső Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-05-19 1 UTASÍTÁSFELDOLGOZÁS
RészletesebbenIntegrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta
Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta Elektronikus Eszközök Tanszék Mai témák Transzfer kapu Kombinációs logikai elemek különböző CMOS megvalósításokkal Meghajtó áramkörök
RészletesebbenIntelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
RészletesebbenGyakorló többnyire régebbi zh feladatok. Intelligens orvosi műszerek október 2.
Gyakorló többnyire régebbi zh feladatok Intelligens orvosi műszerek 2018. október 2. Régebbi zh feladat - #1 Az ábrán látható két jelet, illetve összegüket mozgóablak mediánszűréssel szűrjük egy 11 pontos
RészletesebbenKANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR. Mikroelektronikai és Technológiai Intézet. Aktív Szűrők. Analóg és Hírközlési Áramkörök
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR Mikroelektronikai és Technológiai Intézet Analóg és Hírközlési Áramkörök Laboratóriumi Gyakorlatok Készítette: Joó Gábor és Pintér Tamás OE-MTI 2011 1.Szűrők
Részletesebben4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök
4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016
RészletesebbenÉRZÉKELŐK ÉS BEAVATKOZÓK I. 0. TANTÁRGY ISMERTETŐ
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 0. TANTÁRGY ISMERTETŐ Dr. Soumelidis Alexandros 2018.09.06. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG A tárgy célja
RészletesebbenJelfeldolgozó processzorok (DSP) Rekonfigurálható eszközök (FPGA)
Beágyazott elektronikus rendszerek (P-ITEEA_0033) Jelfeldolgozó processzorok (DSP) Rekonfigurálható eszközök (FPGA) 5. előadás 2015. március 11. Analóg jelfeldolgozás Analóg bejövő jelek (egy folyamat
RészletesebbenSzimuláció RICHARD M. KARP és AVI WIGDERSON. (Készítette: Domoszlai László)
Szimuláció RICHARD M. KARP és AVI WIGDERSON A Fast Parallel Algorithm for the Maximal Independent Set Problem című cikke alapján (Készítette: Domoszlai László) 1. Bevezetés A következőkben megadott algoritmus
Részletesebben10. Digitális tároló áramkörök
1 10. Digitális tároló áramkörök Azokat a digitális áramköröket, amelyek a bemeneteiken megjelenő változást azonnal érvényesítik a kimeneteiken, kombinációs áramköröknek nevezik. Ide tartoznak az inverterek
RészletesebbenA feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg: Olvasható aláírás:...
2 év hó nap NÉV:MEGOÁSneptun kód: feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg: Olvasható aláírás: Kedves Kolléga! kitöltést a dátum, név és aláírás rovatokkal kezdje!
RészletesebbenI. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI
I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.
Részletesebben